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Figure 1:  General Framework for an Intelligent Control System
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Abstract. The key to real-time intelligent control lies in the knowledge models that
the system contains.  Three main classes of knowledge are identified:  parametric,
geometric/iconic, and symbolic.  Each of these classes provides unique
perspectives and advantages for the planning of behaviors by the intelligent system.

1. Introduction

The concept of intelligence in control applies to a variety of approaches to extending
classical control theory that include learning, non-linear control, model-based control, and,
in general, control of complex systems that will “do the right thing” when confronted with
unexpected or unplanned situations [1].  “Intelligent” systems have some knowledge of the
system to be controlled or that they use some model of the system in calculating control
outputs.  The American Heritage Dictionary [10] defines intelligence as “the capacity to
acquire and apply knowledge.”

Creating, capturing, and using the knowledge of the system to be controlled is one
branch of what is known as knowledge engineering.  The real-time aspects of control make
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this problem domain uniquely different than other knowledge engineering problems.
Intelligent control requires several different types of “knowledge,” and the highest levels of
control require the same symbolic knowledge as ontologies, expert systems, or logic
systems.

2. Classes of Knowledge

A general framework for a model-based control system is shown schematically in Fig.
1.  This framework shows a hierarchical control structure with a world model hierarchy
explicitly interposed between the sensor processing hierarchy and the behavior generation
or task decomposition hierarchy, allowing for model-based perception and model-based
control [2], [3]. Example labels for three of the levels (subsystem, primitive, and servo), per
[2] are shown.   This paper presents an overview of the types of data needed for the world
model hierarchy.

We argue that there are three distinctly different classes of knowledge in such a control
hierarchy: system parameters at the servo level; maps and images at the middle levels, and
symbolic data at the highest levels.  We will consider each of these below.

We can further distinguish knowledge that is learned or acquired, which we will call in
situ knowledge, from knowledge that is pre-programmed or referenced from an outside
database, which we will call a priori knowledge. This provides a framework for
considering learning and adaptive control.

2.1.  Parametric Level Knowledge

The lowest levels of any control system, whether for an autonomous robot, a machine
tool, or a refinery, are at the servo level, where knowledge of the value of system
parameters is needed to provide position and/or velocity and/or torque control of each
degree of freedom by appropriate voltages sent to a motor or a hydraulic servo valve.  The
control loops at this level can generally be analyzed with classical techniques and the
“knowledge” embedded in the world model is the specification of the system functional
blocks, the set of gains and filters that define the servo controls for a specific actuator, and
the current value of relevant state variables.  These are generally called the system
parameters, so we refer to knowledge at this level as parametric knowledge. Fig. 2 shows a
traditional PD servo control for a motor of a robot arm.

2.2.  Iconic or Geometric Level Knowledge

Above the servo level are a series of control loops that coordinate the individual servos
and that require what can be generally called “geometric knowledge,” "iconic knowledge,"
or "patterns."   Iconic knowledge includes maps, images, models of the kinematics of the
machines being controlled, and knowledge of the spatial geometry of parts or other objects
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that are sensed and with which the machine interacts in some way.  This is where objects
and their relationship in space and time are modeled so as to represent and preserve those
spatial and temporal relationships, as in a map, image, or trajectory.

For industrial robots, machine tools, and coordinate measuring machines, the first
level above the servo level deals with the kinematics of the machine, relating the geometry
of the different axes to allow coordinated control.  Linear, circular and other interpolation
and motion in world or tool coordinates are enabled by such coordination.  The
"knowledge" here may be the kinematic equations or Jacobian coefficients that define the
geometric relationships of the axes, or the mathematical routines for interpolation or
coordinate transformations.  It is at this level that systematic multi-dimensional geometric
errors such as non-orthogonality of axes of a machine tool and Abbe offset errors are
considered [4]. Fixtureless inspection is an example of the applying such equations. Fig. 3
shows a fixtureless part which is placed on the table of an inspection machine and the pose
of the part is determined by matching an image of the part (dark edges) with a predicted
image derived by rotating and translating a CAD model of the part (light edges) [5].

2.3.  Symbolic Knowledge

At the highest levels of control, knowledge will be symbolic, whether dealing with
actions or objects.  It is at this level that a large body of relevant work exists in knowledge
engineering for domains other than real-time control, such as formal logic systems or rule
based expert systems.  Whether the knowledge is represented in terms of mathematical
logic, rules, frames, or semantic nets, there is a formal linguistic structure for defining and
manipulating and using the knowledge.  A good presentation of different concepts of
knowledge representation is found in Davis [6].

An example of a formal description of a solid model of a part is shown in Fig. 4.  A
block is being described using International Standards Organization Standard for the
Exchange of Product Model Data (STEP) Part 21 [7]. Note the fundamentally different
nature of this linguistic representation from a geometric representation where, for example,
a block might be represented by equations of six planes with bounding curves and a
coordinate transformation matrix to position the block within a given coordinate system.

Linguistic representations provide ways of expressing knowledge and relationships, and
of manipulating knowledge, including the ability to address objects by property.  Tying

Figure 3:  Part Pose Computation



symbolic knowledge back into the geometric levels provides the valuable ability to identify

objects from partial observations and then extrapolate facts or future behaviors from the
symbolic knowledge.  In the manufacturing domain, using a feature-based representation
(which is symbolic) is reasonable at the generative planning level (Fig. 5a).    The
geometric representation of each edge and surface that comprise a feature (Fig. 5c) can be
tied to the feature definition in order to facilitate calculations for generating the tool paths.
Graphical primitives (Fig. 5b) that relate to the geometry can also be tied to features to
easily let users pick a feature by selecting on a portion of it on the screen.

STEP Part 21 files are one of many ways of representing symbolic information.
Different representation techniques often offer different advantages. For example, as is the
case in almost any planning and control system, it is often advantageous to be able to
reason over information that is represented. This includes being able to infer information
that may not be explicitly represented, as well as the ability to pose questions to the
knowledge base and receive answers in return. One way of enabling this functionality is to
represent the symbolic information in the world model in a logic-based, computer-
interpretable format, such as in the Knowledge Interface Format (KIF) representation [8].

Through the use of an inference engine or theorem prover, information represented in
this format could be queried, and logically-proven answers could be returned. As an
example, a manufacturer may want to know whether a given set of fixture positions is
suitable to fully inspect a part. Assuming that the necessary inspection points, access
volumes, and machine capabilities are represented in KIF, the manufacturer could enter in
the fixture positions and the system could logically-prove whether those positions are
sufficient to fully inspect the part. Future work will be exploring this area in more detail via
the implementation of logic-based ontologies to represent the symbolic information in the
control hierarchy.

3. Control With Multiple Levels of Knowledge

The most significant and complex autonomous mobile robot built to date is the Army's
Experimental Unmanned Vehicle (XUV) being developed for scout missions
(reconnaissance, surveillance, and target acquisition (RSTA) missions).  The architecture

DATA;
#10 =
BLOCK_BASE_SHAPE(#20,#30,#70,#80);
#20 = NUMERIC_PARAMETER(‘block Z
dimension’,50.,’mm’);
#30 = ORIENTATION(#40,#50,#60);
#40 = DIRECTION_ELEMENT((0.,0.,1.));
#50 = DIRECTION_ELEMENT((1.,0.,0.));
#60 = LOCATION_ELEMENT((62.5,37.5,0.));
#70 = NUMERIC_PARAMETER(‘block Y
dimension’,75.,’mm’);
#80 = NUMERIC_PARAMETER(‘block X
dimension’,125.,’mm’);
#90 = SHAPE((),#10,());
#100 = PART(‘out’,’rev1’,’’,’simple
part’,’insecure’,(),#90,(),(),(),$,(),
(#110),(),());
#110 = MATERIAL(‘aluminum’,’soft
aluminum’,$,(),());

Figure 4: STEP Representation of a Block Figure 5: Pocket Feature
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for this vehicle is called 4D/RCS, merging the work of Dickmanns in Germany on road
following [9] and the work of Albus at NIST [3].  Both use data from multiple sensors to
build a world model and then use that model for planning what the vehicle should do.

The Army XUV has successfully navigated many kilometers of off road terrain,
including fields, woods, streams and hilly terrain, given only a few way points on a low
resolution map by an Army scout.  The XUV used its on-board sensors to create high
definition multi-resolution maps of its environment and then navigated successfully
through very difficult terrain. Over the next several years, symbolic knowledge will be
added to enable tactical behaviors and human-machine interaction.

4. Conclusion

No single type of knowledge representation is adequate for all purposes.  Davis [6]
argues that representation and reasoning at the symbolic level are inextricably intertwined,
and that different reasoning mechanisms, such as rules and frames, have different natural
representations that must be integrated in a representation architecture to achieve the
advantages of multiple approaches to reasoning.

We would go further and argue that there is a requirement for integrating iconic and
parametric knowledge with multiple types of symbolic knowledge and that, as Davis
argues, there is a basic need for a representational architecture to provide a basis for
intelligent control, which we have presented above in Figure 1.

 For example, with the ability for the Army XUV not only to sense when there is an
obstacle in its path, but also to be able to compare that sensed data (possibly represented in
an occupancy grid) with a priori knowledge of obstacles (possibly represented in KIF in a
symbolic world model), the XUV can make more informed decisions about the best action
to take, taking into consideration the type of obstacle it encounters. If the obstacle is
deemed to be a boulder, the XUV must take evasive maneuvers. However, if it is simple
tumbleweed, the XUV may be able to drive through it. This is the essence of intelligent
control.
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