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ABSTRACT

Water and CO, uptake in CdCl, powder precursors was
investigated using thermogravimetric analysis/Fourier
transform infrared spectroscopy (TGA/FTIR). Exposure of
powders under ambient conditions shows that a steady-state
hydration level near 9 % (by weight) is achieved after brief
exposure to room air, with minimal absorption and/or
adsorption of CO,. TGA has also shown that storage in a
desiccator with Mg(ClO,), preserves the anhydrous form.
Water is rapidly devolved from hydrated powders, with the
pure anhydrate reappearing at temperatures below 150°C
under N, flow and a modest heating rate of 10°C/min.
Water present in raw-powder precursors is shown to affect
the appearance of source plates manufactured by the close-
spaced sublimation (CSS) method.

1. Introduction

A number of techniques exist to make thin-film CdTe
solar cells and the majority utilize cadmium chloride in a
post-deposition heat treatment. The use of cadmium
chloride in the various “heat treatments” is related to the
experience-based expectation that it will lead to optimal
performance of the n-CdS/p-CdTe heterojunction. In many
cases, recrystallization and reduction of grain boundary area
via grain growth have been associated with the chloride
treatment. As such, the mechanisms associated with the role
of cadmium chloride as a sintering aid (fluxing agent) are
only qualitatively understood at the present time and more
fundamental knowledge of basic properties of this
compound is clearly needed.

CdS/CdTe devices produced at the National Renewable
Energy Laboratory (NREL) currently use a vapor process
for the CdCl, treatment. The process begins by depositing
a thick CdCl, film (~1 mm thick) onto a 2" x 2" Corning
glass plate (7059 or 7059 F) by CSS of CdCl, powders from
a graphite boat. This glass substrate plate is then used in the
same chamber as a source plate for vapor treatment of a
CdS/CdTe device using a CSS-like process. Although this
process works well, anecdotal evidence suggests that
moisture may be an important and uncontrolled parameter
of both the source-plate fabrication and vapor-treatment
processes. Although this evidence is contrary to preliminary
data [1], it should not be a surprise because CdCl, is a
strongly hygroscopic material.  Specifically, we have
observed that source powders can erupt (decrepitate) from
the graphite boat during source-plate fabrication if the
moisture content of the powder is high. This decrepitation
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leads to considerable non-reproducibility during CdCl,
source-plate production.  Further, there appear to be
significant differences between the source-plate films
formed with old (hydrated) CdCl, powders and new powder
sources. Finally, the vapor process appears to commence
more rapidly when the laboratory humidity is high (i.e., the
summer months). To isolate effects of moisture on the
NREL wvapor CdCl, process, this study uses TGA to
measure the moisture content of CdCl, powders following
controlled exposures to various environmental conditions.
The CdCl, powders used at NREL are Alfa-Aesar products
of 4N purity, anhydrous, and packed under argon. Two
batches of the powders were investigated for this study.
These batches were manufactured separately, and the major
distinction between the two is the length of time they have
been stored in the laboratory. Henceforth, any reference to
"old" or "new" powders refers to these different batches.

2. Experimental Procedure

Anhydrous CdCl, powder samples were stored under
controlled conditions including exposure to room air, storage
in a desiccator charged with Mg(ClOy),, and storage in a
helium-filled glove box. For the air-exposed samples, an
hygrometer was placed in the open container to monitor air
humidity and temperature. Thermogravimetry, coupled with
FTIR, was used to determine (in situ) species evolution and
rate-of-loss when the powders were heated. A constant
heating rate of 10°C/min from ambient to 500°C under an N,
flow of 100 cc/min was used in all experiments.

3. Results and Discussion

As shown in Figure 1., fresh anhydrous powder and
samples stored in protected environments exhibit little or no
hydration. Regardless of exposure conditions, mass loss
observed below 200°C is attributed to water evolution. This is
demonstrated by real-time FTIR absorbance spectra
correlating well with the TGA data. The steady "baseline" at
intermediate temperatures is indicative of the pure anhydrate,
and mass loss at temperatures above 450°C is due to
sublimation of CdCl, (m.p. 568°C). CO, has been observed in
some cases during the initial heating (low temperature) but at
this time, it is uncertain if the CO, is present in the CdCl, or
simply an artifact from the brief exposure of the TGA/FTIR
system to the atmosphere during sample loading. No
absorbance peaks are observed that correspond to the
sublimation of CdCl, as it is an IR-inactive species.
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Figure 1. Thermogravimetric profiles of CdCl, stored under
various conditions and heated at 10°C/min under N, flow.

Figure 2 shows the rate of hydration of CdCl, exposed to
air. It is not clear at this time if the scatter in the data for
exposure <5 days is related to some physical process. In any
case, a steady-state value of ~9% (by weight) hydration was
achieved after 1 week of exposure. This agrees well with
preliminary analysis of the old powder source used to make
source plates at NREL. In that case, no special precautions
were used to preserve the anhydrous state of the powder and
thermogravimetric analysis showed the water content to be ~8

wt.%. For reference, a fully hydrated compound (CdCl,2.5
H,0, stable up to 34°C) contains ~20 wt.% H,O.
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Figure 2. Moisture uptake in CdCl, exposed to ambient air.

The hydration level of CdCl, powder impacts the
appearance of newly fabricated source plates. The old powder
source (~8 wt.% water) produced more desirable source plates
in the sense that the sublimated layer was thicker and more
uniform as compared to plates made with the new powder (~2
wt.% water). However, as shown in Table 1, net-transfer
efficiency (ratio of mass deposited on glass to total mass lost)
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was much lower with the old CdCl,. In other words, though
more material was deposited under the same conditions with
the old powder, a correspondingly larger amount of the
powder was simply wasted. It is believed that the old-source
powder is forcibly expelled (decrepitation) from the boat
during a rapid heating (ambient to 200°C in 2 minutes) portion
of the source-plate manufacturing process. In that case, the
rapidly-evolved water vapor could enhance the transport of
CdCl, from the graphite boat in an aerosol at the low
temperatures. Indeed, solid particles were observed in the
deposition chamber to a much greater degree with the old
powder. Further, it is speculated that the aerosol coats the
glass substrate to an appreciable degree or at least nucleates
the surface for more efficient transfer at higher temperatures
where CdCl, vapor sufficiently exists (e.g. 500°C).

Table 1. Mass transfer of different CdCl, powders using the
same time-temperature profile for source-plate fabrication.

Source Transfer Mass Distribution
Powder | Efficiency (% initial mass)
Glass | Boat System
Residue | Loss
Old 54.3 20.2 62.8 17.0
Old 71.2 22.5 68.4 9.1
Old 54.3 21.3 60.7 18.0
Old 443 17.8 59.8 22.4
Old 58.6 23.9 59.2 16.9
Old 45.1 19.3 57.3 23.5
Old 31.2 16.9 45.9 37.2
New 75.5 8.2 89.1 2.7

4. Conclusions and Further Work

Water is readily absorbed by anhydrous CdCl, under
ambient conditions. However, CdCl, source powders do not
achieve full hydration. CO, absorption is minimal for the
short-term exposure used in this study. The decrepitation
phenomena will be further explored by controllably hydrating
new material and assessing its impact on source-plate
characteristics. An additional study will focus on the impact
of water vapor in the process ambient when treating
CdS/CdTe devices, with emphasis on chlorine diffusion into
the device.
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