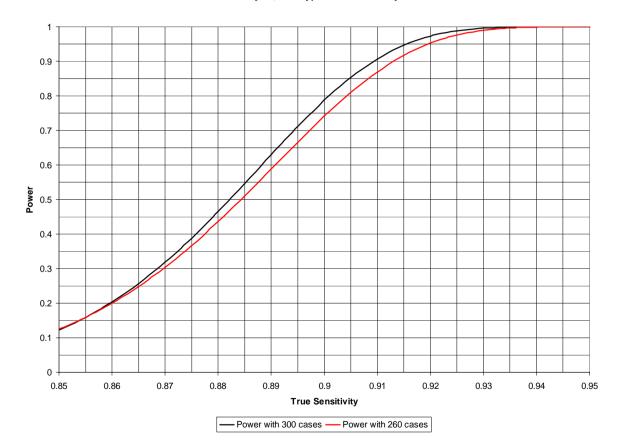
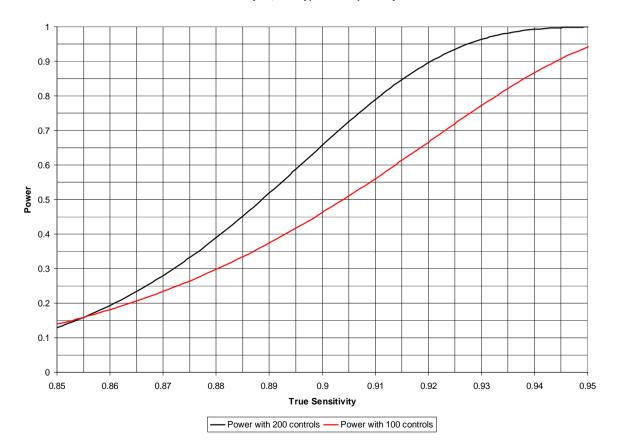
Statistical Considerations for Detection of Bladder Cancer by Microsatellite Analysis (MSA) of Urinary Sediment: Multi-Institutional Study

Presentation at the EDRN FDA Education Workshop February 15, 2007


Mark Thornquist Co-PI, EDRN Data Management and Coordinating Center

Study Design

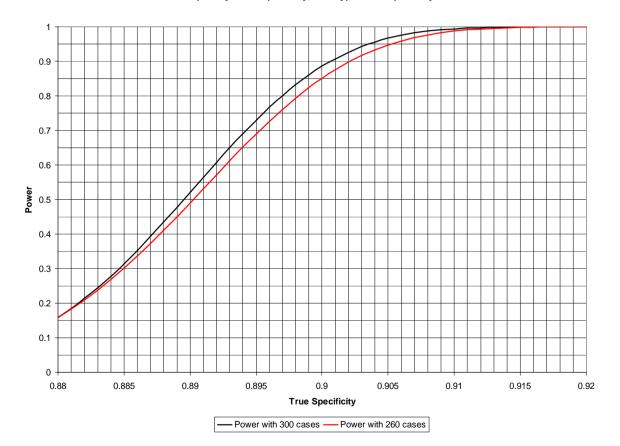
- Prospective study
- Primary outcomes: Sensitivity and specificity of an MSA panel of 16 markers to detect <u>recurrent</u> bladder cancer in the two years following resection of incident bladder cancer
- Secondary outcome: Sensitivity and specificity of the MSA panel to detect incident bladder cancer
- Study populations:
 - 260 bladder cancer cases, with baseline and follow-up every three months for 2 years (9 total contacts)
 - 100 healthy normal controls Group 1
 - 100 controls with potentially confounding conditions: 25 BPH, 25 bladder infections, 25 hematuria, 25 foreign bodies (e.g., stones, stents) – Group 2
- Specimens collected: blood (baseline only for cases), urine
- Data collected:
 - Cystoscopy (except in healthy normal controls)
 - Urine cytology
 - Pathology (whenever biopsy is done)


Study Power: Baseline Sensitivity

Effect of Change in Sample Size on Power of the MSA Study – Baseline Analysis, Null Hypothesis Sensitivity = 0.85

Study Power: Baseline Specificity

Power of the MSA Study --Baseline Analysis, Null Hypothesis Specificity = 0.85


Study Power: Follow-Up Sensitivity

Effect of Change in Sample Size on the Power of the MSA Study --Follow-Up Analysis for Sensitivity, Null Hypothesis Sensitivity = 0.70

Study Power: Follow-Up Specificity

Effect of Change in Sample Size on the Power of the MSA Study --Follow-Up Analysis for Specificity, Null Hypothesis Specificity = 0.88

Analysis Plan—Baseline Data

- Sensitivity [P(M+|D+)] and Specificity [P(M-|D-)] for the pre-defined marker panel
 - D- defined as no disease indicated by cystoscopy (group 1 controls all considered D-)
 - Specificity calculated separately for group 1 and group 2 controls
- Secondary analyses
 - Weighted estimate of group 2 specificity that weights to the anticipated prevalence of the conditions in the screening population
- Exploratory subgroup analyses
 - Sensitivity and specificity by sex
 - Specificity by type of potentially confounding condition
- Exploratory marker combination analyses
 - Optimization of panel rule (markers included, cutpoints, combination rule) with training and test sets

Analysis Plan—Follow-Up Data

- Sensitivity and specificity for the pre-defined marker panel
 - Based on concurrent marker status, fit using GEE methods
 - Anticipatory estimate:
 - Se(t-s) = P[M+(t-s)|D+(t)], Sp(t-s) = P[M-(t-s)|D-(t)]
 - Fit using GEE methods
 - Goal to determine the value of s that provides satisfactory sensitivity while maintaining high specificity
- Exploratory marker combination analyses
 - If an improved marker panel is developed in the baseline analysis, that panel will be examined for concurrent and anticipatory sensitivity and specificity in the follow-up data
 - Exploratory analyses of marker combinations similar to those done in the baseline analyses can be conducted here using concurrent marker status as the outcome and with <u>participants</u> randomly divided into training and test sets

Analysis Plan—Other Analyses

 Potential bias—the participating sites are include several with a strong referral component. We will examine whether the baseline risk factor distribution of study participants matches those in bladder cancer cases from large population-based studies conducted by ACS and the National Center for Health Statistics