FACTS

04/2008

U.S. DUFALMARY OF BUILDY Office of Fourier Extension National Eveloy Technology Laboratory

CONTACTS

Sean Plasynski

Sequestration Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4867 sean.plasynski@netl.doe.gov

Gary J. Stiegel

Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov

José D. Figueroa

Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4966 jose.figueroa@netl.doe.gov

Gerald Choi

Nexant 101 Second Street 10/Fl. San Francisco, CA 94105 415-369-1075 gnchoi@nexant.com

CARBON DIOXIDE HYDRATE PROCESS FOR GAS SEPARATION FROM A SHIFTED SYNTHESIS GAS STREAM

Background

One approach to de-carbonizing coal is to gasify it to form fuel gas consisting predominately of carbon monoxide and hydrogen. This fuel gas is sent to a shift conversion reactor where carbon monoxide reacts with steam to produce carbon dioxide (CO₂) and hydrogen. After scrubbing the CO₂ from the fuel, a stream of almost pure hydrogen stream remains, which can be burned in a gas turbine or used to power a fuel cell with essentially zero emissions. However, for this approach to be practical, it will require an economical means of separating CO₂ from mixed gas streams. Since viable options for sequestration or reuse of CO₂ are projected to involve transport through pipelines and/or direct injection of high pressure CO₂ into various repositories, a process that can separate CO₂ at high pressures and minimize recompression costs will offer distinct advantages. This project addresses the issue of CO₂ separation from shifted synthesis gas at elevated pressures.

The project is concerned with development of the low temperature SIMTECHE process, which utilizes the formation of CO_2 hydrates to remove CO_2 from a gas stream. Many people are familiar with methane hydrates but are unaware that, under the proper conditions, CO_2 forms similar hydrates. In Phase 1, a conceptual process flow scheme was developed. The thermodynamic limits of such a process were confirmed by equilibrium hydrate formation experiments for shifted synthesis gas compositions, and rapid hydrate formation kinetics were demonstrated in a bench-scale flow apparatus. Performance projections were then made for a few selected process configurations, and encouraging preliminary economics were developed.

Primary Project Goal

The goal of this project is to construct and operate a laboratory-scale unit utilizing the hydrate process for CO_2 separation.

Objectives

This project will investigate an innovative, proprietary, CO_2 capture technology that can be applied to integrated gasification combined cycle power plants and other industrial gasification facilities. The SIMTECHE CO_2 -Hydrate Separation Process holds promise of not only greatly reducing CO_2 emissions but also reducing the costs and the energy penalty associated with the capture process.

PARTNERS	• Objectives include:
Nexant	 Experimental confirmation of the feasibility of the proposed CO₂ hydrate concept
Los Alamos National Laboratory	 Experimental communition of the reasonity of the proposed CO₂ hydrate concep Extending previously developed process modeling to the latest proposed conce
SIMTECHE	 Extending previously developed process modering to the fatest proposed concept for the SIMTECHE process.
COST	• Determining the ultimate reduction in CO ₂ concentration that can be achieved and assessing the potential negative influence of H ₂ S and CH ₄ on the process.
Total Project Value	 Providing detailed design and operating data in preparation for field testing of a slipstream test unit at an industrial site.
\$14,385,000 DOE/Non-DOE Share	 Assessing the impact of the experimental findings on the overall process economics and identifying critical properties and critical parameters.
\$5,435,000 / \$0	Accomplishments
Los Alamos National Laboratory DOE/Non-DOE Share	 Demonstrated the viability of low-temperature CO₂ separation from a mixed-ga stream through the formation of CO₂ hydrates.
\$8,950,000 / \$0	• Potential 68 percent CO ₂ removal was demonstrated during once-through operation at 1000 psi without promoters.
	• Potential 90 percent CO ₂ removal was demonstrated with promoters.
ADDRESS	• Confirmed design residence time assumptions on both a kinetic and heat transf
National Energy	basis.
Technology Laboratory 1450 Queen Avenue SW Albany, OR 97321-2198 541-967-5892	 Engineering analysis showed that a two-stage Simteche process with a promote and 90 percent CO₂ removal was most economic, and compared favorably with two-stage Selexol process.
2175 University Avenue South Suite 201	Benefits
Fairbanks, AK 99709 907-452-2559	The hydrate process will provide a high-pressure, low-temperature system for separating CO_2 from shifted synthesis gas in an economical manner. The process can be adapted to an axisting assification power plant for CO ₂ constrained in
3610 Collins Ferry Road	 can be adapted to an existing gasification power plant for CO₂ separation in the production of synthesis gas. Overall, the process will result in a residual
P.O. Box 880 Morgantown, WV 26507-0880 304-285-4764	 concentrated stream of hydrogen capable of fueling zero-emission power plants of the future and a concentrated CO₂ stream available for re-use or sequestration.
626 Cochrans Mill Road	Water Recycle
P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4687	CO2 Gas to Compression and Sequestration
One West Third Street, Suite 1400	Ammonia Reactor
Tulsa, OK 74103-3519 918-699-2000	Temp: 34-38°F Nucleated Water Water
	Heat CO ₂ Hydrate Slurry Flash
CUSTOMER SERVICE	
CUSTOMER SERVICE I-800-553-7681	CO ₂ Hydrate Slurry Plus H ₂

Project196.indd