daho National Laboratory

RELAP5-3D Compressor Model

James E. Fisher Cliff B. Davis Walter Weaver

2005 International Relap5 Users Seminar Jackson, WY September 7-9, 2005

Views expressed in this presentation are those of the authors and do not necessarily reflect agreement by the government.

Outline of Presentation

- Compressor characteristics and applications
- Implementation into RELAP5-3D
 - Comparison/contrast to existing pump model
 - Input data considerations
- Verification testing
- Conclusions

Compressor Characteristics

- Positive Displacement
 - Low flow rates, high pressure ratio
- Dynamic
 - Convert velocity to pressure in continuous flow process
 - Centrifugal
 - 1.3 < P_o/P_i < 13
 - 75% < η < 87%
 - Axial flow
 - 1.1 < P_o/P_i < 1.4
 - 80% < η < 91%

Recompression Brayton Cycle Reactor

Idaho National Laboratory

Similarities Between Compressor and Pump Models in RELAP5

Rotational velocity

- Input from table with or without trip
- Torque-Inertia equation, optionally with motor torque
- Shaft rotational velocity equation
- Spindown (coastdown) data
- Dissipation

Differences Between RELAP5 Compressor and Pump Models

- Only inlet junction has head added to fluid
- Volume is the outlet state
- Outlet junction is optional
- Outlet can be connected to another compressor or a non-compressor

RELAP5-3D Implementation

- Volume-oriented component
- Independent variables are speed and flowrate
- Pressure ratio and linearized density used to calculate real outlet state
- Compressor head appears in mixture momentum equation
 - Added to Inlet Junction
 - Liquid and vapor phase terms present
- Efficiency determines isentropic and dissipative torque components
- Dissipative torque added to energy equation

Compressor Performance Map

Performance Characteristics

- Normal operation
 - Region between the surge and choke points
 - Surge
 - Aerodynamic instability in impeller or diffuser
 - Intermittent flow direction (and force direction) reversal
 - Choking
 - Sonic flow at minimum area point
 - Efficiency drops rapidly

Dimensionless Variable Input

- Independent dimensionless parameters
- Corrected mass flow

$$\dot{m}_{C} = \frac{\dot{m}}{\rho_{0,in} a_{0,in} D^2}$$

• Corrected speed

$$N_{\rm C} = \frac{\rm ND}{a_{0,\rm in}}$$

Relative Corrected Variables

• Mass flow rate

$$v = \frac{\dot{m}}{\rho_{0,in} a_{0,in}} / \left(\frac{\dot{m}}{\rho_{0,in} a_{0,in}}\right)_{Rated}$$

• Speed

$$\alpha = \frac{N}{a_{0,in}} / \left(\frac{N}{a_{0,in}}\right)_{Rated}$$

Low Flow Considerations

• Compressor total torque

$$\tau_{T} = \frac{\dot{m}}{\omega} \frac{P_{1}^{T}}{\rho_{m}} \frac{R_{P} - 1}{\eta_{ad}}$$

Becomes indeterminate if R_P -> 1 and η_{ad} -> 0

• Use l'Hopital's rule

$$\lim_{R_{p}\to 1,\eta_{ad}\to 0} \frac{R_{p}-1}{\eta_{ad}} = \lim_{R_{p}\to 1,\eta_{ad}\to 0} \frac{d(R_{p}-1)}{d(\eta_{ad})}$$

• Apply for $\eta_{ad} < 1 \times 10^{-10}$

Verification Testing

- Compared to MIT design calculations⁽¹⁾
 - Gas-Cooled Fast Reactor
 - Supercritical CO₂ Cycle
- Two compressors
 - Main compressor
 - Recompressing compressor
- Results shown for recompressing compressor

1. Dostal, V. et. al., *CO*₂ *Brayton Cycle Design and Optimization*, MIT-ANP-TR-090, Massachusetts Institute of Technology, November 2002.

RELAP5 Separate Effects Model

- Compressor is Component 350
- Components 345, 346, and 380
 Represent plena
- Area of Component 346 large
- Pressure boundary conditions at 341 and 382
- Steady-state calculations for range of flows and speeds
 - Relative corrected speeds of 0.5, 0.8, 1.0

Pressure Ratio Comparison

Power Consumption Comparison

Idaho National Laboratory

Conclusions

- Compressor implementation similar to pump
 - All rotational velocity, coastdown, torque-inertia options available
 - Head in mixture momentum equation, dissipation in energy equation
- Linear interpolation over relative corrected speed and flow used to determine pressure ratio and efficiency
- Verification testing demonstrated satisfactory performance

