
Transparent, Incremental Checkpointing at Kernel Level: a

Foundation for Fault Tolerance for Parallel Computers

Roberto Gioiosa1,2 José Carlos Sancho1 Song Jiang1 Fabrizio Petrini3

Kei Davis1

1Performance and Architecture Laboratory
Computer and Computational Sciences Division

Los Alamos National Laboratory, NM 87545, USA
{jcsancho,sjiang,kei}@lanl.gov

2Dipartimento Informatica Sistemi e Produzione
Universitá degli Studi di Roma ”Tor Vergata”

00133 Roma, Italy
gioiosa@ing.uniroma2.it

3Applied Computer Science Group
Computational Sciences and Mathematics Division

Pacific Northwest National Laboratory, WA 99352, USA
fabrizio.petrini@pnl.gov

Abstract

We describe the software architecture, technical fea-
tures, and performance of TICK (Transparent Incre-
mental Checkpointer at Kernel level), a system-level
checkpointer implemented as a kernel thread, specifi-
cally designed to provide fault tolerance in Linux clus-
ters. This implementation, based on the 2.6.11 Linux
kernel, provides the essential functionality for trans-
parent, highly responsive, and efficient fault tolerance
based on full or incremental checkpointing at system
level. TICK is completely user-transparent and does
not require any changes to user code or system li-
braries; it is highly responsive: an interrupt, such as
a timer interrupt, can trigger a checkpoint in as little
as 2.5µs; and it supports incremental and full check-
points with minimal overhead—less than 6% with full
checkpointing to disk performed as frequently as once
per minute.

1 Introduction

Several projects have been launched by the U.S. De-
partment of Energy, in concert with computer manu-
facturers, to develop computers of unprecedented size

to provide the capability for large high-fidelity physics
simulations. For example, the BlueGene/L initiative,
a research partnership between IBM and the Lawrence
Livermore National Laboratory, is to deliver a system
capable of 360 Tflops [2]. On the horizon are massively
parallel machines intended to deliver petaflop (Pflop)
or multi-Pflop performance, such as the machines en-
visioned by the DARPA HPCS projects [8].

It is clear that future increases in performance will
be achieved, in large part, by increases in parallelism,
and thus component count.1 The large total number of
components of these systems will make any assumption
of complete reliability entirely unrealistic: though the

1That increase may be at different levels of integration: phys-
ical boxes, boards, chips, processor cores, or ultimately, transis-
tors.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is ganted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage, and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC’05 November 12-18, 2005, Seattle, Washington, USA
(c) 2005 ACM 1-59593-061-2/05/0011. . . $5.00

1

mean time between failures for individual components
(e.g., processors, disks, memories, power supplies, net-
work components, and cooling systems) may be very
high, the sheer number of components in the system
will inevitably lead to frequent individual failures.

The growing complexity of managing failures in such
large and sophisticated systems threatens their useful-
ness as capability engines. Ideally such systems would
automatically detect, diagnose, and mitigate localized
software and hardware problems, possibly without any
change to existing application software. However, this
envisioned autonomic system management is still a re-
search area in its infancy.

1.1 Checkpoint/restart

A common approach to guaranteeing an acceptable
level of fault tolerance in scientific computing is check-
pointing—periodically saving the state of an applica-
tion to nonvolatile storage so that if any process of
a parallel application fails, all of its processes may
be rolled back to the last checkpoint and restarted.2

While this approach seems straightforward, capturing
sufficient state of a parallel application in a scalable
and efficient way can have subtle complications. In
general the state of a parallel application at a given
point in real time can be quite complex: messages may
be in flight, memory may be shared between subsets of
processes, individual processes may have signals pend-
ing, local and global files may be open, processes’ mem-
ory may be partially stored to disk (swapped), among
other possibilities.

The most direct approach to checkpointing is to save
the entire state of the application. A well-known opti-
mization is to checkpoint incrementally, where at each
checkpoint only that part of the application’s state
is saved that has changed since the previous check-
point. This requires a mechanism for determining
what has changed and can entail considerable book-
keeping in the general case. A recent feasibility study
obtained on a state-of-the-art cluster showed that effi-
cient, scalable, automatic, and user-transparent incre-
mental checkpointing is within reach with current tech-
nology [12]. Specifically, the study shows that current
standard storage devices and high-performance net-
works provide sufficient bandwidth to allow frequent
incremental checkpointing of a suite of scientific appli-
cations of interest with negligible degradation of appli-
cation performance.

2Checkpointing provides a solution for fail-stop faults only,
a model in which faulty processors simply stop on failure. More
complex models, such as Byzantine, allow other behaviors.

1.2 Scope of problem and contribution

Ideally a checkpointing mechanism is complete in the
sense that all process state is saved. In practice, how-
ever, many, if not most, implementations are pred-
icated on various simplifying assumptions. Because
the most common operating systems (Linux in our
case) and run-time libraries were not designed with
checkpointing in mind, process state can be highly
distributed; besides the memory image of the process
itself the operating system may contain other essen-
tial state: data structures created on behalf of the
process, pending or progressing interrupts or signals,
open files and other communication channels, other
processes with which a process may be interacting via
shared memory, and more. For a parallel application
running on a cluster-like architecture with a commu-
nication network the situation is more complex: the
physical network and communication libraries add yet
more state, and system-wide checkpoints must be con-
sistent.

Our approach is not to attempt to handle all of these
issues with a single solution, rather to apply a natural
factorization of concerns. The primary contribution
of this paper is a description of a checkpoint/restart
mechanism that is applicable on a per-CPU basis. It is
intended to be a truly general-purpose, very-low over-
head basis for a system-wide solution for cluster-like
parallel machines. For example, it could be seamlessly
integrated with a parallel job scheduler or with an MPI
implementation.

The major contributions of our implementation,
TICK (Transparent Incremental Checkpointing at
Kernel-level), are

� Full transparency : TICK doesn’t require any
change to applications or system libraries. A typ-
ical approach to implementing system-level check-
pointing is through signal-based callbacks that ex-
ecute a system call within the context of the check-
pointed process [9]. While this is not a significant
intrusion in a Linux cluster where signals are sel-
dom used, with TICK we seek to eliminate the
need for any change to user software. With TICK
we explore a new design avenue, namely using a
Linux kernel thread that can access the user pro-
cess irrespective of its scheduling status.

� Full or incremental checkpointing : With TICK it
is possible to save just those segments of mem-
ory that have changed since the last checkpoint.
TICK uses an efficient algorithm to compute the
incremental changes, at page granularity, in the
memory geometry of a user process. It also pro-
vides a choice of mechanisms for detecting the

2

changed, or dirty, pages.

� Very low overhead : TICK can fully or incremen-
tally checkpoint a process with modest overhead.
When checkpointing to memory as frequently as
every minute the overhead is less than 4% for all of
the applications tested. For checkpointing to disk
the worst-case overhead is slightly greater, on the
order of 6%.

� High responsiveness: TICK can be triggered by
an external event, such as a timer interrupt or a
global cluster heartbeat, in as little as 2.5µs.

� Flexibility : TICK provides a number of features
that can be easily controlled through a /proc file
system interface, readily supporting more com-
plex, cluster-wide coordinated checkpoint strate-
gies.

1.3 Achieving fault-tolerance in a
large-scale parallel computer

On a parallel computer, to achieve fully-transparent
fault tolerance based on frequent checkpointing, sev-
eral problems need to be adequately addressed. At a
first level of analysis we can identify three important
dimensions:

1. Global orchestration to reach a consistent recovery
line across a large number of processing nodes;

2. Adequate support at the level of the local oper-
ating system to save, restore, and transfer large
amounts of data; and,

3. Adequate hardware support for efficient global
coordination. Elsewhere we have addressed the
functional and performance impact of scalable co-
ordination mechanisms with very encouraging re-
sults [16, 14, 17].

In the absence of explicit program points at which to
checkpoint, the run-time system must identify or in-
duce global recovery lines at which to save the state
of the parallel application. The processes of an appli-
cation may interact by sending messages or signals so
it is necessary to keep track of the outstanding com-
munication to ensure that a checkpoint can be safely
re-played, for example by draining the network before
a checkpoint [11].

We plan to attack the problem of global orches-
tration by using an innovative methodology called
buffered coscheduling (BCS) [25]. The vision behind
BCS is that both the size and complexity of sys-
tem software may be greatly reduced by constraining

system-wide asynchronicity. In brief, the entire cluster
marches to the beat of a global strobe that is issued ev-
ery few hundreds of microseconds. In each timeslice—
the period between strobes—newly-issued communica-
tion calls are buffered until the next timeslice. At every
strobe, nodes exchange information on pending com-
munication so that every node has complete knowledge
of the required incoming and outgoing communication
for the next timeslice. The nodes then proceed to glob-
ally schedule those communications that will actually
be carried out during the timeslice, and proceed to
execute them. The advantage of this model is that
all the communication is controlled and is in a known
state at every timeslice, so that problems arising from
congestion, out of order arrival, and hot spots can be
avoided. We have shown that these constraints result
in minimal performance degradation for our scientific
applications, while obtaining the advantages of a more
deterministic, controllable machine [13]. This global
coordination supports a truly parallel operating system
that combines the instances of the local operating sys-
tems into a single, cohesive system. We have already
demonstrated a scalable resource management system,
called STORM, that achieves performance orders of
magnitude faster than existing production-grade soft-
ware by using the BCS paradigm [18].

One of the major advantages of the global orchestra-
tion strategy of BCS is that it can automatically en-
force global recovery lines—points in time where there
are no messages in transit and where all of the pro-
cesses of the application can be easily checkpointed.
This approach is in contrast to classical techniques
that first stop the processes of a parallel application
and then wait for the network to drain before check-
pointing [11].

Finally, the local operating system of each process-
ing node needs to be augmented with new mechanisms,
for example to transparently checkpoint user processes
or to provide hot swapping of hardware devices. With
TICK we explore the design and technical challenges
that need to be solved to provide fully-transparent
checkpoint and restart for the Linux operating sys-
tem.

2 Background

Checkpointing schemes may be usefully categorized as
being user level or system level. In practice the dis-
tinction between user- and system-level checkpointing
is not clearcut. However, there is a clear dichotomy
between a checkpoint/restart mechanism that is com-
pletely transparent to, and independent of, the appli-
cation, and one that is not.

3

2.1 User-level checkpointing

A typical approach to avoiding many of the complexi-
ties of checkpointing is based on taking an application-
centric point of view, and exploiting knowledge of the
structure and behavior of a given application. In this
approach checkpointing is initiated, and to some de-
gree managed, from within the application. The appli-
cation programmer identifies program points at which
all essential state can be captured from within the ap-
plication. For communication, for example, the state
could be known following a global synchronization.
The saving of state is performed explicitly by the ap-
plication, in most cases with library support [27]. On
restart, restoration of state is similarly explicitly han-
dled. This approach is called user-level because it is
handled in user space rather than by the OS. User-
level checkpointing has some significant attractions.
By knowing, at a given program point, what data is es-
sential for restarting, the programmer can selectively
save only that data, often substantially reducing the
size of the saved state. User-level checkpointing only
requires the availability of a parallel file system, and
therefore can be easily adapted to other parallel ma-
chines.

User-level checkpointing has several drawbacks. Be-
cause the points at which the program is in a suffi-
ciently well-known state may be temporally distant—
on the order of minutes or even hours apart—loss of
progress in the event of a rollback can be substantial.
This may be mitigated by the programmer introduc-
ing ‘artificial’ points at which the state is manage-
able, which results in added runtime, program com-
plexity, and programmer effort. In any case, deter-
mining the optimal frequency for checkpointing may
be non-trivial.

Perhaps most critical is the issue of correctness:
whether sufficient state is recorded, and potential race
conditions are identified, among numerous other con-
siderations. Correctness depends entirely on the pro-
grammer, and the use of user-level checkpointing in-
troduces whole a new dimension of potential bugs that
only appear on restart and so are very difficult to test
for. Finally, all of this effort must be expended for
each application.

2.2 System-level checkpointing

In contrast, in a generally-applicable approach the
checkpoint mechanism is independent of the applica-
tion to be checkpointed—the application is ‘unaware’
that it is being checkpointed and, possibly many times,
rolled back and restarted. This approach is then trans-
parent to the application, and when it is implemented

at the operating system level, it is usually referred to
as system-level.

3 TICK

TICK is designed to be a modular building block for
implementing checkpointing in large-scale Linux clus-
ters. TICK is implemented primarily as a Linux 2.6.11
kernel module, and consists of about 4,000 lines of
code, with an additional 400 lines in the static part
of the kernel. TICK is neutral with respect to where
checkpoint data is saved: its function is to correctly
capture and restore process state. The actual man-
agement of the checkpoint data is handled by one or
more separate agents, which in our prototype imple-
mentation are other Linux kernel modules. For lack
of space this paper will not describe the algorithms for
data movement that can be used to implement a global
checkpointer for parallel applications. The checkpoint
data may be saved locally if a process restart is all that
is needed, for example after a machine crash, or to a
file system when the instances of TICK on each CPU
of a cluster are globally coordinated.

While our primary goal is fault tolerance in large-
scale parallel computers, we believe that TICK could
be useful in other environments such as distributed or
grid computing, and much more directly, for load bal-
ancing via process migration. The essential properties
of TICK are that it is

� Kernel level: TICK is implemented at kernel level
to allow unrestricted access to processor registers,
memory allocation data structures, file descrip-
tors, signals pending, etc.

� Implemented as a kernel module: Writing, debug-
ging and maintaining kernel code can be time con-
suming and non-portable. Most of TICK’s code
is in a kernel module that can be loaded and re-
moved dynamically.

� General purpose: The TICK checkpoint/restart
mechanism works with any type of user process,
and processes may be restarted on any node with
the same operating environment.

� Flexibly initiated: The checkpointing mechanisms
of TICK can be triggered by a local event, such as
a timer, or a remote event, such as a global strobe,
in a very short and bounded time interval.

� User transparent: The user processes are not in-
volved in the checkpointing or restarting and there
is no need to modify existing applications or li-
braries. This implies that TICK can support ex-

4

isting legacy software, written in any language,
without any changes.

� Efficient: TICK tries to minimize degradation of
performance of a user process when checkpoint-
ing its state. TICK also implements fast process
restarts.

� Incremental: TICK can perform frequent incre-
mental checkpointing on demand.

� Easy to use: TICK provides a simple interface
based on the /proc file system that can be used
by a user or system administrator to dynamically
checkpoint or restart a user process on demand.

3.1 Design of TICK

There are several possible approaches to implement-
ing a kernel-level checkpoint/restart mechanism. It is
useful to divide these approaches in two main cate-
gories: internal and external , to distinguish whether
the checkpoint is taken within the context of the user
process or within a possibly different process context.
TICK is implemented as an external checkpoint system
in order to ensure determinism, high responsiveness,
and transparency. The considerations and trade-offs
are briefly discussed.

3.1.1 Internal checkpointing

In an internal checkpoint the kernel code is executed
within context of the checkpointed process via a sys-
tem call or signal handler: this ensures that the check-
pointer uses the correct process address space (because
there is no page table switch when a process makes a
system call or receives a signal). This would be the
easier choice to implement. Unfortunately the system
call method requires source code modification or li-
brary support, which we regard as undesirable. The
signal approach does not require source code modifica-
tion but it would not ensure enough determinism: in
general it is not possible to predict when an application
will receive a signal, and so when the checkpoint signal
handler will be executed. Processes can only receive
signals when they switch from kernel to user mode (for
example when the system is returning from an inter-
rupt or an exception handler), just before resuming
execution of the user code. The fastest case is when
the application is already running on another proces-
sor, then the kernel can send an IPI (Inter-Processor
Interrupt) to that processor and, at the end of the IPI,
the signal handler is executed. In this case the la-
tency is only a few microseconds (the time needed by
the IPI interrupt handler). In contrast, an application

that frequently sleeps (is I/O-bound, for example) may
delay indefinitely before executing the signal handler.
Generally speaking, a running process goes into ker-
nel mode every 1/HZ seconds (typically HZ≈1000 in
a standard Linux kernel, so every 1 ms). On average
the kernel checks for pending signals to a running pro-
cess every 1/(2*HZ) seconds (every 500 µs). Even in
this simple case the variance appears to be too large if
determinism is one of the goals. The Linux scheduler
may introduce further non-determinism: if, when the
signal is generated, the process is not running, it will
wait until the scheduler assigns it to a processor.

3.1.2 External checkpointing

In external checkpointing a separate process check-
points the running application. The obvious choice
of mechanism at kernel level is a kernel thread. In this
case the main problem is to ensure that this thread
is working in the running process’ address space. A
kernel thread is a normal process (with a process de-
scriptor, status, etc.), but it does not have its own
process address space: it uses the page tables of the in-
terrupted process. This means that the kernel thread
may need to change the address space, invalidating the
TLB cache. Having an external process gives better
control of the system and a clean separation of the ap-
plication and the checkpointer, and can help achieve
a greater degree of determinism. A kernel thread is
like any other process: it can sleep, wait, access re-
sources, etc., so it can also be used as a global coor-
dinator of the threads on the other nodes of the clus-
ter. The Linux kernel already provides some interest-
ing scheduling policies for real-time processes that can
be used to avoid processor sharing and to guarantee
that the thread will be executed as soon as it wakes
up. The wake-up time of a kernel thread with the
SCHED FIFO scheduling policy is between 5000 and
7000 clock cycles (that is, between 2.5µs and 3.5µs on
a 2Ghz processor) irrespective of the number of stan-
dard processes running in the system. If other real-
time processes were present a new scheduling policy
could be implemented. This latency is significantly
lower than that of a signal handler, and the variance is
also lower. Moreover, this policy ensures no preemp-
tion from other processes: the thread will run as long
as it needs without sharing the CPU with any other
process in the system.

3.2 The TICK algorithm

TICK is implemented as a kernel thread for each pro-
cessor in a node: if N processes are running on dis-
tinct processors, N parallel checkpoints can be taken

5

at the same time. Each kernel thread is bound to one
CPU, so each checkpointed process must also run on
the same processor using the processor affinity features
provided by the Linux kernel. Because full checkpoint-
ing requires only a subset of the functionality required
for incremental checkpointing we will describe only the
latter.

3.2.1 Checkpointing

In order to checkpoint a process a /proc interface is
used to pass the process ID and the associated proces-
sor ID (which also identifies the kernel thread). When
the kernel thread incrementally checkpoints the pro-
cess, it reconstructs the process history—what files it
opened, how many memory regions it holds or it re-
leased, etc. The thread initially write-protects the rel-
evant sections of the address space so that the first time
the application tries to write to one of these pages the
access can be detected and recorded. During process
execution, if the incremental checkpointing algorithm
is used, events such as file accesses and changes to the
geometry of the address space (for example allocation
or deallocation of segments of mmapped memory) must
also be recorded.

To checkpoint a process the kernel thread performs
the following steps.

1. Stops the running process;

2. Switches to the process address space, if needed;

3. Saves the contents of the registers in the kernel
stack of the process, and some other information
from the process descriptor (such us the floating
point or debug registers);

4. Saves the signal status (signals pending reception
by the process), and the signal handlers defined
by the process;

5. Saves the file descriptors;

6. Saves memory region descriptors and updates (in
case of incremental checkpoint) and (dirty) pages;

7. Restores the address space, if needed;

8. Restarts the process.

The kernel thread stops monitoring the process if it
receives an appropriate command through the /proc
filesystem, is unloaded, or if the process terminates.

3.2.2 Restart

TICK can restart a user process on either the same
node from which it was checkpointed, or on another
node. In the latter case no assumptions can be made
about the memory mapping of the new node. All mem-
ory regions must be re-mapped, both for code and
shared libraries. When a process is started the loader
relocates some memory regions starting from the bi-
nary file, but afterward there is no correlation between
these regions and the files that originated them. In
our approach we fork a container process running the
same binary. After loading the binary image in mem-
ory the process address space is appropriately mod-
ified. It may not be possible to restore exactly the
same state, for example, the parent relationship of the
process in the new node, or the physical location of a
shared library in memory. Creating a container process
is an easy way to avoid this kind of problem. Once this
process is running, we pass further information, such
as the process ID, to the kernel through the /proc file
system. The kernel thread then performs the following
actions.

1. Opens the process checkpoint file. In this file there
may be many sections depending on the algorithm
used for checkpointing; each section Si contains
the information related to a checkpoint. The first
section, the initial state (S0), is a full checkpoint.
Restoring only this section is equivalent to re-
starting the process from the beginning. Subse-
quent sections contain the incremental changes.
(For full checkpointing the file contains only one
section.)

2. Stops the process;

3. Switches the address space, if needed;

4. Deletes all of the process address space except the
regions that map executable code (these regions
are marked as read-only);

5. For each section (in incremental checkpoint):

(a) Restores the registers;

(b) Restores pending signals;

(c) Restores the memory regions and all of the
dirty pages;

6. Switches the address space if necessary;

7. Restarts the process.

6

3.3 Saving Dirty Pages

When the incremental checkpointing option is selected,
TICK provides a choice of three mechanisms to keep
track of the dirty pages.

1. Dirty bit. After a checkpoint, all the writable
pages are marked as clean (non-dirty). When the
application writes to one of those pages the hard-
ware sets the dirty bit in the corresponding page
table entry, with no overhead. At the next check-
point all of the page table entries are examined
to determine whether the page has been changed
since the previous checkpoint. In order to main-
tain the correct kernel functionalities, the original
dirty bit is mirrored by one of the unused bits in
the page table entry. The low-level functions used
by the kernel to access this bit are properly up-
dated.

2. Bookkeeping. After a checkpoint all the
writable pages are marked as read-only. When a
page is overwritten, a page fault exception occurs
and the page fault exception handler saves the ad-
dress of the page in an external data structure. At
the end of the checkpoint interval it is only nec-
essary to scan the data structure that tracks the
dirty pages.

3. Bookkeeping and Saving. This mechanism is
the same as the previous one except that the page
is also copied into a buffer. No copying is needed
at the end of a time slice.

The best choice depends on the algorithm used for
global coordination, the application behavior, and the
checkpoint interval: if the application overwrites many
pages during a checkpoint interval, using the dirty bits
may be the best option because it saves time during the
computational phase, and the number of pages that
need to be examined at the end of the time slice is
almost the same in all of the three cases. If the ap-
plication changes only few pages during the time slice
(for example, because the checkpoint interval is very
short) the bookkeeping (possibly with saving) may be
the best choice.

Depending on the coordination algorithm, only a
subset of these mechanisms may be feasible. In some
cases we might need to save the changes during the
checkpoint interval with the copy-on-write approach
so, irrespective of its performance, we may not be able
to use the dirty bits.

3.4 Saving and restoring memory re-
gions

The most expensive operation of the checkpointing al-
gorithm, both in terms of time and space, is the copy-
ing of the memory pages. With incremental check-
pointing, ideally we would save only the dirty pages
generated between two consecutive checkpoints. How-
ever, because of complications introduced by changes
in the geometry of the memory regions, keeping track
of the dirty pages is not enough.

The memory address space of a process consists of
a sequence of memory regions whose descriptors are
linked in the order of the addresses they represent.
Each region has its own properties, such as access per-
missions. Because a page belongs to a memory re-
gion and is subject to the region properties, opera-
tions such as mmap and munmap affect all the pages
in their scope. In the Linux kernel, unmapping a region
causes all its pages to be discarded. Thus incremental
checkpointing could be very inefficient if regions were
un-mapped and later re-mapped whenever there were
a change in its address space. This would force all of
the pages in the region to be saved.

One way to avoid this problem is to record all of the
memory region operations such as mmap and mun-
map. Then the same sequence of operations can be
replayed on restart. Though this scheme minimizes
the pages to be saved, it can multiply the number of
region operations, many of which might be redundant.
This is because we only need to recreate the mem-
ory region geometry at the next checkpoint, and many
of region operations between the two checkpoints may
not contribute to the final geometry. Such faithful but
wasteful saving and restoring could severely degrade
the efficiency of many applications.

To eliminate the unnecessary saving of pages we keep
track of the address space changes between two consec-
utive checkpoints, and save the address space ranges
that are unchanged from the last checkpoint. By com-
paring the incremental changes in the memory geom-
etry between two temporally adjacent checkpoints we
avoid tracking every change to the memory geometry.

4 Performance Evaluation

The usefulness of a tool such as TICK depends crit-
ically on its performance. We have chosen a set of
scientific applications for our performance evaluation,
BT, LU and SP taken from the NAS Suite of Bench-
marks [3], and Sage [21] and Sweep3D [34], that are
representative of scientific computations performed at
Los Alamos National Laboratory. In previous work,

7

Table 1: Checkpoint Latency
Disk Memory

Memory Footprint Size Time Bandwidth Time Bandwidth

100MB 1.67s 59.8MB/s 0.139s 719MB/s
200MB 3.60s 55.5MB/s 0.286s 700MB/s
300MB 5.38s 55.7MB/s 0.424s 707MB/s

Table 2: Restart Latency
Disk Memory

Memory Footprint Size Time Bandwidth Time Bandwidth

100MB 4.39s 22.7MB/s 0.185s 540MB/s
200MB 8.176s 22.8MB/s 0.361s 554MB/s
300MB 13.18s 22.7MB/s 0.495s 606MB/s

µ1.5 s

µs0.5

User Process

Kernel

User Process

Bookkeping

User Process User Process

Kernel

Bookkeping + copy−on−write

µs5

µs6

Figure 1: Overhead of two basic incremental checkpointing mechanisms

Sage was found to be the most demanding test for
checkpointing algorithms because of its large memory
footprint and lack of data locality [30].

4.1 Experimental Platform

The experimental platform is a dual-processor AMD
Opteron cluster that uses Quadrics QsNetII as the
high-performance interconnection network [1]. Each
processing node contains two AMD Opteron Model 246
processors, 3GB RAM, and a Seagate Cheetah 15K
SCSI disk. The proposed checkpoint/restart mech-
anisms have been implemented in the Linux kernel
version 2.6.11 with the page size configured to 4KB.
This system architecture is representative of large-scale
clusters such as the ASC Lightning, installed at Los
Alamos National Laboratory, that has 2,816 Opteron
processors [22].

4.2 Basic Performance

Tables 1 and 2 report the save and restore latencies
for a sequence of test processes as a function of the
size of the memory footprint. The checkpoint is stored

in main memory and on local disk. In both cases the
asymptotic performance is determined by the speed of
the storage media. These numbers provide the base-
line overhead that will be incurred every time a user
process is saved or restored With a slower local disk
the save and restore times are in the order of a few
seconds, while using main memory brings these delays
down to less than one second.

Figure 1 shows where the time is spent in two of the
three incremental checkpointing mechanisms provided
by TICK when handling a page fault. The mirroring
of the dirty bit, as already discussed, introduces no
overhead during a timeslice, but a delay is incurred at
the end of the timeslice when the list of dirty bits is
scanned.

In the simplest case, when a user process tries to
access a write-protected page, TICK only keeps track
of the page access in a kernel data structure. As shown
in Figure 1 the kernel takes approximately 0.5µs to
perform the bookkeeping, while the application process
is halted for 1.5µs. Adding the copy-on-write of the
user page to a kernel buffer increases the basic delay
to 4.5µs.

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Checkpoint

0

10000

20000

30000

40000

50000

60000

70000

D
irt

y
pa

ge
s

full checkpointing
incremental checkpointing

(a) Number of dirty pages obtained for the application CG
Class C using a checkpointing timeslice of 40s.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Checkpoint

0

10000

20000

30000

40000

50000

60000

70000

80000

D
irt

y
pa

ge
s

full checkpointing
incremental checkpointing

(b) Number of dirty pages obtained for the application Sage
200MB using a checkpointing timeslice of 20s.

Figure 2: Number of dirty pages obtained with full and incremental checkpointing for sequential checkpoints
taken during the execution of the applications CG and Sage. After the initialization, CG overwrites only a small
subset of its address space. In contrast, Sage overwrites a large fraction of its address space.

4.3 Application Performance

Next we evaluate the level of intrusion of TICK on
user applications in two different scenarios: when per-
forming full checkpoints and with incremental check-
points. In both cases the checkpoints are triggered by
a timer interrupt at regular intervals. We intention-
ally choose very small intervals—in all experiments
one minute or less—that may be unreasonably short
for state-of-the-art clusters running scientific applica-
tions. These demanding tests show the performance of
TICK in the extremely disfavorable case of very fre-
quent checkpoints.

In these experiments checkpoints are stored locally
in memory buffers allocated at kernel level or on the lo-
cal SCSI disk. Major differences between the two stor-
age targets are the access bandwidth and the degree of
overlap between computation and data transfer: while
the bandwidth to memory is much higher than to local
disk, writing to disk can overlap with the execution of
the application.

We consider three instances of Sage and Sweep3D
with differing memory footprints. Figure 3 shows that
the overhead introduced by TICK is remarkably low.
When the checkpoints are stored in main memory ev-
ery minute the worst case is only 4% with Sage-300MB.
With disk checkpointing, the worst case is slightly
greater, 6% with BT-C.

The level of intrusion of incremental checkpointing

is strongly influenced by the characteristics of user ap-
plication and can vary widely. Figure 4 compares the
performance of full and incremental checkpointing of a
subset of four applications. In most cases incremental
checkpointing is beneficial with small timeslices; with
large timeslices there is little difference between incre-
mental and full checkpointing. Some applications, such
as CG (Figure 4(a)), overwrite a small fraction of their
address space in each timeslice. Figure 2(a) shows the
number of dirty pages of CG for the first 14 timeslices.
After initialization CG overwrites only a small subset
of its address space.

The situation is different with other applications,
for example Sage (Figure 4(c)): with timeslices larger
than 20s, there is no measurable difference between
incremental and full checkpointing. Figure 2(b) pro-
vides more insight on the properties of the two types of
checkpointing algorithms in this scenario. While with
full checkpointing we need to save a larger number of
pages, disk access can be overlapped with computa-
tion, providing the same performance as the incremen-
tal algorithm.

5 Related Work

The development of system-level checkpoint/restart
functionality for Linux is a relatively recent phe-
nomenon, first appearing around 2001. The first im-

9

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60

R
un

tim
e

O
ve

rh
ea

d
(%

)

Checkpointing Timeslice (s)

BT-B
LU-B
SP-B

(a) Runtime overhead for NAS benchmarks, class B when stor-
ing the checkpoints to main memory.

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60

R
un

tim
e

O
ve

rh
ea

d
(%

)

Checkpointing Timeslice (s)

BT-B
LU-B
SP-B

(b) Runtime overhead for NAS benchmarks, class B when stor-
ing the checkpoints to the local disk.

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60

R
un

tim
e

O
ve

rh
ea

d
(%

)

Checkpointing Timeslice (s)

BT-C
LU-C
SP-C

(c) Runtime overhead for NAS benchmarks, class C when stor-
ing the checkpoints to main memory.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

R
un

tim
e

O
ve

rh
ea

d
(%

)

Checkpointing Timeslice (s)

BT-C
LU-C
SP-C

(d) Runtime overhead for NAS benchmarks, class C when stor-
ing the checkpoints to the local disk.

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

R
un

tim
e

O
ve

rh
ea

d
(%

)

Checkpointing Timeslice (s)

Sweep3D-250cells
Sweep3D-200cells
Sweep3D-150cells

Sage-300MB
Sage-200MB
Sage-100MB

(e) Runtime overhead for Sage and Sweep3D when storing the
checkpoints to main memory.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60

 R
un

tim
e

ov
er

he
ad

 (
%

)

Checkpointing Timeslice (s)

Sweep3D-250cells
Sweep3D-200cells
Sweep3D-150cells

Sage-300MB
Sage-200MB
Sage-100MB

(f) Runtime overhead for Sage and Sweep3D when storing the
checkpoints to the local disk.

Figure 3: Runtime overhead of full checkpointing for various checkpoint intervals when storing the checkpoints
to main memory, and also to the local disk for the NAS benchmarks and Sage and Sweep3D.

10

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

R
un

tim
e

O
ve

rh
ea

d
(%

)

Checkpointing Timeslice (s)

 Full checkpointing
Incremental checkpointing

(a) Runtime overhead for the application CG Class C.

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

R
un

tim
e

O
ve

rh
ea

d
(%

)

Checkpointing Timeslice (s)

 Full checkpointing
Incremental checkpointing

(b) Runtime overhead for the application SP Class B.

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

R
un

tim
e

O
ve

rh
ea

d
(%

)

Checkpointing Timeslice (s)

Full checkpointing
Incremental checkpointing

(c) Runtime overhead for the application Sage 200MB.

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

R
un

tim
e

O
ve

rh
ea

d
(%

)

Checkpointing Timeslice (s)

 Full checkpointing
Incremental checkpointing

(d) Runtime overhead for the application Sweep3D.

Figure 4: Runtime overhead of the full and incremental disk checkpointing for different checkpoint intervals for
the NAS benchmarks, and the applications Sage and Sweep3D.

plementations were deployed primarily to provide pro-
cess migration in clusters. Later, others were released
to provide other advanced functionalities such as gang
scheduling, hibernation, and fault-tolerance.

Early implementations include VMADump [19],
EPCKPT [26], and CRAK [35]. VMADump (Virtual
Memory Area Dumper) provides checkpoint/restart
capabilities to individual Linux processes via system
calls. Applications directly invoke these system calls to
checkpoint themselves by writing the process state to
a file descriptor. One advantage of this tool is that the
relevant data of the process can be directly accessed
through the current kernel macro because VMAD-
ump is called by the process to be checkpointed. How-
ever, this approach lacks transparency and flexibility
of the checkpoint interval. VMADump was designed as
a part of the BProc system [20]. This project aims to

implement single system image and process migration
facilities in clusters.

In EPCKPT the checkpoint/restart operation is also
provided through system calls and is very similar to the
VMADump scheme. EPCKPT provides more trans-
parency than VMADump because the process to be
checkpointed is identified by the process ID rather than
directly by the current macro. A user-defined signal-
ing scheme is used to invoke the checkpoint operation.
Prior to the execution of an application a system call
must be made to initialize the checkpoint and set up
the checkpoint signal handler.

CRAK [35] is a process migration utility imple-
mented as a kernel module, hence it provides more
portability than the previous schemes. Processes
are automatically checkpointed through the ioctl de-
vice file interface of the checkpoint module. The

11

Table 3: Comparison of Linux System-level Checkpoint/Restart Packages
Name Incremental Transparency Stable Initiation

checkpointing storage

VMADump no no local,remote application
BPROC no no none application

EPCKPT no yes local,remote system
CRAK no yes local,remote system
UCLik no yes local system

CHPOX no yes local system
ZAP no yes none system

BLCR no yes local,remote system
LAM/MPI no yes local,remote system
PsncR/C no yes local system

Software Suspend no yes local system
Checkpoint no no local application

process migration operation can also be disabled by
users. In this case, it stores the process’s state lo-
cally or remotely without performing a process mi-
gration. CRAK does not make use of a special sig-
nal like EPCKPT; processes are suspended with the
default signal SIGSTOP. A later development of this
tool is ZAP [24]. ZAP improves on EPCKPT by pro-
viding a virtualization mechanism called Pod to cope
with the resource consistency, resource conflicts, and
resource dependencies that arise when migrating pro-
cesses. However, that Virtualization introduces some
run-time overhead since system calls must be inter-
cepted.

Other checkpoint/restart mechanisms have been
subsequently developed such as the BLCR [9] (Berke-
ley Lab’s Linux Checkpoint/Restart project). This
is a kernel module implementation that, unlike prior
schemes, also checkpoints multithreaded processes.
Users can specify whether the process state is saved
locally or remotely. An initialization phase, as in
EPCKPT, is required. A further development of this
tool, LAM/MPI [31], allows checkpointing of MPI par-
allel applications.

Another checkpoint/restart package is UCLiK [15]
which inherits much of the framework of CRAK, but
additionally introduces some improvements like restor-
ing the original process id, the file contents, and iden-
tifies deleted files during restart. Process states are
saved only locally.

CHPOX [33] is a checkpoint/restart package very
similar to EPCKPT, but it is implemented as a kernel
module that stores the process state locally. This pack-
age has been tested and tuned as part of the MOSIX
project [4].

PsncR/C [23] is a checkpoint/restart package for

SUN platforms. It is implemented as a kernel mod-
ule that saves process state to local disk. Unlike other
packages it does not perform any optimization to re-
duce the size of the checkpoint file, hence the text code,
shared libraries and open files are always included in
the checkpoints.

Software Suspend [7] is a checkpoint/restart package
intended to provide hibernation in Linux. It is invoked
interactively by the user to initiate the hibernation by
sending a user-defined signal to every process to freeze
the execution. When all processes are stopped the
checkpoint can take place, saving each process’ state
to the local disk. At start-up, every process’ state is
restored from the checkpoint file on disk.

Finally, there is a recent proposal for check-
point/restart of multithreaded processes; we will re-
fer to it as Checkpoint [6]. Checkpoint/restart oper-
ations are provided through system calls. The inno-
vation of this approach is that the checkpoint opera-
tions are performed by a thread running concurrently
with the application. The fork mechanism is used to
guarantee the consistency of data between the thread
and the application process. However, this approach
is not transparent—it requires direct invocation of sys-
tem calls.

Table 3 summarizes the main features of these mech-
anisms. As can be seen, most provide full transparency
and system initiation, but the incremental checkpoint-
ing optimization has not yet been implemented in any
of them. Operating systems like Genesis [29] and V-
System [10] provided some basic checkpointing mech-
anisms, but to the best of our knowledge there is no
implementation of incremental checkpointing for Linux
at the time of this writing.

Other related efforts are implementations of process

12

migration mechanisms for distributed operating sys-
tems. A notable example of a kernel-level implemen-
tation is DEMOS/MP [28].

Recently, user-level checkpointing has been com-
bined with a compilative approach in order to over-
come some of the limitations of the user-level approach.
Schulz et. al., and Bronevetsky et. al., describe a sys-
tem that can checkpoint MPI programs [32, 5]. Their
systems have two components: a pre-compiler for
source-to-source transformation of applications, and a
run-time system that implements a global protocol for
coordinating the processes of a parallel application.
The pre-compiler, currently limited to C programs,
transforms the original user program into an interme-
diate form where checkpoint points may be inserted.
Their system, remarkably, is also able to move pro-
cesses across heterogeneous architectures. However,
the transformation introduces a machine-dependent
overhead of 1.7-9.6%.

6 Conclusions

We have described the motivation, design, function-
ality, and performance of the full- and incremental-
checkpoint mechanism TICK. TICK embodies all of
the properties we believe are necessary at node level to
implement an efficient checkpoint/restart mechanism
for parallel computers. TICK provides high respon-
siveness: the checkpoint can be triggered by an ex-
ternal event such as a global heartbeat in as little as
2.5µs. It provides several mechanisms to implement
incremental checkpointing at fine granularity with lit-
tle overhead. It is also very modular, and allows quick
prototyping of distributed checkpointing algorithms.
TICK is implemented as a Linux 2.6.11 kernel module
that will be released as open source.

The experimental results, obtained on a state-of-the-
art cluster, show that TICK can be used as a building
block for various checkpointing algorithms. We have
demonstrated that with TICK it is possible to imple-
ment frequent incremental checkpointing, with inter-
vals of just a few seconds, with a run-time increase
that is less than 10% in most configurations.

7 Future Work

Currently, the checkpoint/restart mechanism devel-
oped has the capability of checkpointing only sequen-
tial applications running on a single process that does
not use interprocess communication (sockets, pipes,
FIFOs, and IPC) or dynamic loaded shared libraries.
We plan to support all of these features as well as
checkpointing of MPI parallel applications.

Acknowledgments

This work was supported by the ASC Institutes pro-
gram and by LDRD ER 20040480ER “Self-Healing
High-Perfomance Parallel Computers” at Los Alamos
National Laboratory.

Los Alamos National Laboratory is operated by the
University of California for the U.S. Department of
Energy under contract W-7405-ENG-36.

References
[1] D. Addison, J. Beecroft, D. Hewson, M. McLaren, and

F. Petrini. Quadrics QsNet II: A Network for Supercom-
puting Applications. In Hot Chips 14, Stanford University,
California, August 18–20, 2003.

[2] N. R. Adiga and et al. An Overview of the BlueGene/L Su-
percomputer. In Proceedings of the Supercomputing 2002,
also IBM research report RC22570 (W0209-033), Balti-
more, Maryland, November 16–22, 2002.

[3] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart,
A. Woo, and M. Yarrow. The NAS Parallel Benchmarks
2.0. NAS 95-020, NASA Ames Research Center, Moffett
Field, California, December 1995.

[4] A. Barak and O. La’adan. The MOSIX Multicomputer Op-
erating System for High Performance Cluster Computing.
Journal of Future Generation Computer Systems, 13(4-
5):361–372, March 1998.

[5] Greg Bronevetsky, Martin Schulz, Peter Szwed, Daniel
Marques, and Keshav Pingali. Application-level Check-
pointing for Shared Memory Programs. In Eleventh Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS XI),
Boston, MA, October 2004.

[6] C. Carothers and B. Szymanski. Checkpointing of Mul-
tithreaded Programs. Dr. Dobbs Journal, 15(8), August
2002.

[7] F. Chabaud, N. Cunningham, and B. Blackham. Software
Suspend for Linux.

[8] High Productivity Computing Systems (HPCS) initiative in
DARPA. Available from http://http://www.darpa.mil/

ipto/programs/hpcs/index.html.

[9] J. Duell, P. Hargrove, and E. Roman. The Design and Im-
plementation of Berkeley Lab’s Linux Checkpoint/Restart.

[10] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. The
Performance of Consistent Checkpointing. In Proceedings
of the 11th Symposium on Reliable Distributed Systems,
Houston, TX, October 5–7, 1992.

[11] Yoav Etsion and Dror G. Feitelson. User-Level Communi-
cation in a System with Gang Scheduling. In Proceedings of
the International Parallel and Distributed Processing Sym-
posium 2001, IPDPS2001, San Francisco, CA, April 2001.

[12] Fabrizio Petrini and Kei Davis and José Carlos Sancho.
System-Level Fault-Tolerance in Large-Scale Parallel Ma-
chines with Buffered Coscheduling. In In 9th IEEE Work-
shop on Fault-Tolerant Parallel, Distributed and Network-
Centric Systems (FTPDS04), Santa Fe, NM, April 2004.

[13] Juan Fernández, Eitan Frachtenberg, and Fabrizio Petrini.
BCS MPI: A New Approach in the System Software De-
sign for Large-Scale Parallel Computers. In Proceedings of
SC2003, Phoenix, Arizona, November 10–16, 2003.

13

[14] Juan Fernández, Eitan Frachtenberg, Fabrizio Petrini, Kei
Davis, and José Carlos Sancho. Architectural Support for
System Software on Large-Scale Clusters. In The 2004 In-
ternational Conference on Parallel Processing, (ICPP-04),
Montreal, Quebec, Canada, August 2004.

[15] M. Foster. Pursuing the AP’s to Checkpointing with
UCLiK. In Proceedings of the 10th International Linux Sys-
tem Technology Conference, Saarbrucken, Germany, Octo-
ber 14–16, 2003.

[16] Eitan Frachtenberg, Kei Davis, Fabrizio Petrini, Juan
Fernández, and José Carlos Sancho. Designing Parallel Op-
erating Systems via Parallel Programming. In Euro-Par
2004, Pisa, Italy, August 2004.

[17] Eitan Frachtenberg, Fabrizio Petrini, Juan Fernández,
Scott Pakin, and Salvador Coll. STORM: Lightning-Fast
Resource Management. In ACM/IEEE SC2002, Baltimore,
MD, November 2002.

[18] Eitan Frachtenberg, Fabrizio Petrini, Juan Fernández,
Scott Pakin, and Salvador Coll. STORM: Lightning-Fast
Resource Management. In Proceedings of SC2002, Balti-
more, Maryland, November 16–22 2002.

[19] E. Hendriks. VMADump. Available from http://cvs.

sourceforge.net/viewcvs.py/bproc/vmadump.

[20] E. Hendriks. BProc: The Beowulf Distributed Process
Space. In Proceedings of the 16th Annual ACM Inter-
national Conference on Supercomputing, New York City,
June 22–26, 2002.

[21] D. J. Kerbyson, H. J. Alme, A. Hoisie, F.Petrini, H. J.
Wasserman, and M. Gittings. Predictive Performance and
Scalability Modeling of a Large-Scale Application. In Pro-
ceedings of the Supercomputing, November 10–16, 2001.

[22] Lightning Linux Cluster. Available from http://www.lanl.

gov/worldview/news/releases/archive/03-107.shtml.

[23] N. Meyer. User and Kernel Level Checkpointing. In Pro-
ceedings of the Sun Microsystems HPC Consortium Meet-
ing, Phoenix, Arizona, November 15-17, 2003. Avail-
able from http://checkpointing.psnc.pl/Progress/sat_

nmeyer.pdf.

[24] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The De-
sign and Implementation of Zap: A System for Migrating
Computing Environments. In Proceedings of the Fifth Sym-
posium on Operating Systems Design and Implementation,
Boston, MA, December 9–11, 2002.

[25] Fabrizio Petrini and Wu-chun Feng. Improved Resource
Utilization with Buffered Coscheduling. Journal of Parallel
Algorithms and Applications, 16:123–144, 2001.

[26] E. Pinheiro. EPCKPT. Available from http://www.

research.rutgers.edu/~edpin/epckpt.

[27] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:
Transparent Checkpointing under Unix. In Proceedings of
the Usenix Winter 1995 Technical Conference, New Or-
leans, Louisiana, January 16–20, 1995.

[28] Michael L. Powell and Barton P. Miller. Process migration
in DEMOS/MP. In ACM symposium on Operating systems
principles, Bretton Woods, New Hampshire, 1983.

[29] J. Rough and A. Goscinski. Exploiting Operating System
Services to Efficiently Checkpoint Parallel Applications in
GENESIS. In Proceedings of the International Conference
on Algorithms and Architectures for Parallel Processing,
Beijing, China, October 23-25, 2002.

[30] J. C. Sancho, F. Petrini, G. Johnson, J. Fernández, and
E. Frachtenberg. On the Feasibility of Incremental Check-
pointing for Scientific Computing. In Proceedings of the
18th International Parallel & Distributed Processing Sym-
posium, Santa Fe, New Mexico, April 26–30, 2004.

[31] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine,
J. Duell, P. Hargrove, and E. Roman. The LAM/MPI
Checkpoint/Restart Framework: System-Initiated Check-
pointing. In Proceedings of the LACSI Symposium, Santa
Fe, New Mexico, October 12-14, 2003.

[32] Martin Schulz, Greg Bronevetsky, Rohit Fernandes, Daniel
Marques, Keshav Pingali, , and Paul Stodghill. Im-
plementation and Evaluation of a Scalable Application-
level Checkpoint-Recovery Scheme for MPI Programs. In
ACM/IEEE SC2004, Pittsburgh, PA, November 10–16,
2004.

[33] O. O. Sudakov and E. S. Meshcheryakov. Process Check-
pointing and Restart System for Linux. Available from
http://www.cluster.kiev.ua/eng/tasks/chpx.html.

[34] The ASCI Sweep3D Benchmark. Available from http://

www.llnl.gov/asci_benchmarks/asci/limited/sweep3d/.

[35] H. Zhong and J. Nieh. CRAK: Linux Checkpoint/Restart
as a Kernel Module. Technical Report CUCS-014-01, De-
partment of Computer Science, Columbia University, New
York, November 2001.

14

