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Abstract

Expected returns, risk premia, and volatility surfaces

implicit in option market prices

This article presents a pure exchange economy that extends Rubinstein (1976) to show how

the jump-diffusion option pricing model of Merton (1976) is altered when jumps are correlated with

diffusive risks. All correlations are statistically different from zero. In equilibrium, the equity risk

premium depends not only on the risk premium factors of the traditional jump-diffusion models

with systematic jump and diffusion risks, but also on both the covariance of the diffusive pricing

kernel with price jumps and the covariance of the jumps of the pricing kernel with the diffusive

price. These two covariances are positive, and they help to explain the sneers that we observe

in the marketplace. The expected stock return is not given by the sum of the diffusive expected

return and the expected return due to jumps, but it takes also into account the covariance between

the diffusive return and price jumps. Our evidence is consistent with a negative covariance, which

leads to a nonmonotonic term structure of implied volatilities. This leads to an asset pricing model

and an option pricing model where the level of the market prices is correlated with the size of the

jumps.



1. Introduction

The pathbreaking article of Merton (1976) on jump-diffusion option pricing motivated a series

of empirical studies and theoretical extensions. The earlier papers by Jarrow and Rosenfeld (1984),

Ball and Torus (1985), and Jorion (1988) provide empirical evidence that there are jumps in asset

market prices. Our evidence is consistent with slightly less than two jumps per calendar year.

The Merton (1976) model assumes that jumps are idiosyncratic risk which can be diversified away

and, therefore, is not rewarded. This work was extended among others by Naik and Lee (1990),

Ahn (1992), and Amin and Ng (1993) who derived option pricing formulae of the Merton’s type

assuming that jump risk is systematic risk. Recently, theoretical advances to the model have been

made by Duffie, Pan, and Singleton (2000) who extend the theory by allowing jumps in volatility,

Kou (2002) who assumes that jumps have a double exponential distribution, and Santa-Clara and

Yan (2006) who allow the jump intensity to follow its own stochastic process.1

The strand of the literature represented by Naik and Lee (1990), Ahn (1992), and Amin and

Ng (1993) assumes that systematic jump risk results from correlated jumps in the asset price and

the pricing kernel that results from simultaneous jumps in the asset price and the pricing kernel.

In these models, systematic diffusive risk results from the covariance of the stock price Brownian

motion with the pricing kernel Brownian motion. One drawback of this previous literature is that

it ignores the possibility that the covariance between the diffusive pricing kernel and price jumps

and the covariance between jumps in the pricing kernel and the diffusive price might be important

for explaining risky equity returns and option prices. Kou (2002, p. 1087) stresses that the usual

assumption that the Brownian motion and jumps are independent “can be relaxed”. This suggests

that new factors of systematic equity risk can be added to option pricing models. For example,

1Other recent contributions on jump-diffusions include Anderson, Benzoni, and Lund (2002), Eraker, Johannes,

and Polson (2003), Kou and Wang (2004), Maheu and McCurdy (2004), Liu, Pan, and Wang (2004), and Ramezani

and Zeng (2007).
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the systematic jump risk that results from simultaneous jumps in the stock price and the pricing

kernel only accounts for 55 percent of our systematic jump risk.

We investigate the effects of the covariance structure of the underlying uncertainty to aggre-

gate consumption and stock price on expected returns, equity risk premia and option prices. In

our model, the equity risk premium can be decomposed in diffusive risk premium and jump risk

premium. The diffusive risk premium arises from both the covariance of the diffusive price with

the diffusive pricing kernel, and the covariance of the diffusive price with the jumps of the pric-

ing kernel. The new term, that takes into account the covariance of the diffusive price with the

jumps of the pricing kernel, adds 4.9 percent to the annual diffusive risk premium. The jump risk

premium arises from both the covariance of price jumps with the jumps of the pricing kernel, and

the covariance of price jumps with the diffusive pricing kernel. Our evidence is consistent with an

annual equity jump risk premium of 12.12 percent. In equilibrium, all these four sources of the

equity risk premium affect asset prices, and the two new factors play a determinant role in the

shape of the smiles and sneers that we observe in the options market.

Empirical evidence that investors require a jump risk premium in addition to the diffusion

risk premium is provided by Pan (2002), Eraker (2004), Santa-Clara and Yan (2006), and Broadie,

Chernov, and Johannes (2007), but these authors ignore the risk premium born with the correla-

tion between Brownian motions and jumps. According to our empirical results, the effect of the

covariance between the diffusive pricing kernel and price jumps represents around 45 percent of the

jump risk premium.

A standard assumption of all previous jump-diffusion literature is that the Brownian motions

and the jumps are independent. The assumption that the correlation between the diffusive pricing

kernel and jumps in the pricing kernel as well as the correlation between the stock price level and

the size of price jumps are unimportant for option pricing is at odds with the recent empirical and

theoretical research. For example, Santa-Clara and Yan (2006) present empirical evidence showing
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that jump risk is correlated with the stock index. This suggests that the stock price level is not

independent of the size of the price jump. Duffie, Pan, and Singleton (2000) also remark that one

potential explanation for some stylized facts in option markets might be the fact that option pricing

models unnecessarily restrict the correlations of the state variables. These works help to motivate

our assumption that Brownian motions and jumps are correlated in our model. In our general

model, equilibrium option prices also depend on the correlation between the diffusive pricing kernel

and the jumps of the pricing kernel, and on the correlation between the diffusive stock price and

the jumps of the stock price. The correlation between the diffusive pricing kernel and the jumps

of the pricing kernel is positive, while the correlation between the diffusive stock price and price

jumps is negative.

This article assumes that there is a representative agent with a power utility function of con-

sumption who sets prices in equilibrium, and that aggregate consumption and the stock price follow

jump-diffusion processes with simultaneous random jumping times. Our evidence is consistent with

a coefficient of proportional risk aversion of 6.55, which is within the range of estimated parameter

values by Bliss and Panigirtzoglou (2003). In equilibrium the pricing kernel also follows a jump-

diffusion process with the same random jumping times. The equilibrium interest rate is determined

not only by the usual parameters of the traditional jump-diffusion models with systematic jump

and diffusion risks, but also by the covariance between the diffusive pricing kernel and the jumps

of the pricing kernel. This, in general, leads to a non-flat term structure of interest rates.

We derive a consumption capital asset pricing model for our jump diffusion model. We ob-

tain this relationship in closed form which, due to its nonlinear nature, tells us implicitly that the

expected rate of return of the stock in equilibrium is given by the interest rate plus the stock risk

premium. This equity risk premium has four distinct factors as previously remarked. Our general

jump-diffusion model, which considers a full covariance structure of the underlying uncertainty to

the pricing kernel and stock price, applies the technique of pricing by substitution in equilibrium
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introduced by Rubinstein (1976) to extend the Merton’s (1976) option pricing model and derive

formulae of the Merton’s type. This means that first we derive the price of the call option in

equilibrium, and then use our consumption capital asset pricing equation in the equilibrium valu-

ation equation of the call to eliminate one of the four sources of risk premium. Our general option

pricing equation depends not only on the parameters of the traditional option pricing models with

systematic diffusion risk and systematic jump risk, but also on the covariance between the diffusive

price and price jumps, the covariance between the diffusive pricing kernel and price jumps, the

covariance between the diffusive price and jumps in the pricing kernel, and the covariance between

the diffusive pricing kernel and jumps in the pricing kernel. All these covariances are statistically

significant at the 1 percent level.

The covariance between the diffusive price and price jumps plays an important role in the

model that is not shared by any existing jump-diffusion option pricing model. It makes the model

able to generate increasing, decreasing, and non-monotone term structures of implied volatilities

of at-the-money options. This is relevant since the term structure of implied volatilities of at-the-

money forward options in the traditional jump-diffusion models is always an increasing function

of the time-to-maturity. This fact, as mentioned by Das and Sundaram (1999) puts traditional

jump-diffusion option pricing models at odds with the data, since decreasing and non-monotone

term structures of implied volatilities of at-the-money options frequently arise in practice. In our

sample period, January 1996 through April 2006, the covariance between the diffusive price and

price jumps is negative which generates a nonmonotonic term structure of implied volatilities. This

negative correlation means that higher prices are associated with price jumps down. This result

is timely and of significant interest since recently on February 27, 2007, the Chinese stock market

jumped down 8.84 percent, less than 24 hours after the Shanghai stock index had reached a new

record high.

The remainder of the paper is organized as follows. Section 2 presents the standard Euler
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equations. Section 3 derives our general jump-diffusion model. Section 4 presents the empirical

tests and links the empirical results to the theoretical model.

Our general set-up contemplates several special cases of particular interest. For example,

it is possible to construct a model of asset prices with systematic jump risk even if aggregate

consumption and the pricing kernel do not jump. Section 5 specializes the model by restricting

the covariance structure of the underlying uncertainty to aggregate consumption and the stock

price into two different directions, and assumes that aggregate consumption follows a geometric

Brownian motion while the stock price follows a jump-diffusion process. In this section, we study

the roles played by the covariance between the diffusive pricing kernel and price jumps. Section

6 specializes the model by restricting the covariance structure of the underlying uncertainty to

aggregate consumption and the stock price into two other different directions, and assumes that

aggregate consumption follows a jump-diffusion process while the stock price follows a geometric

Brownian motion. In this section, we investigate the roles played by the covariance between the

jumps of the pricing kernel and the diffusive price. Section 7 extends the Merton (1976) option

pricing model assuming that the stock price level and stock price jumps are correlated. Here we

illustrate the roles played by the covariance between the price level and price jumps. In section 8,

we present the conclusions of the paper.

2. The Euler equation

The results of this paper are obtained in economies that extend the pure exchange economy of

Rubinstein (1976). There is a representative agent who maximizes his expected utility of consump-

tion when he makes his consumption and investment decisions. We assume that this representative

agent is nonsatiated and risk averse. Then, from the first order conditions of the representative

agent, we can derive the valuation equations of the assets of the economy. These well known results

are presented in this short section, and later used in the proofs of our results.
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The representative investor maximizes:

E

[

T
∑

t=0

Ut(Ct) | F0

]

, (1)

where E is the expectation operator, Ut(Ct) is the utility function of consumption at date t, and

F0 is the information set available to the investor at date t = 0.

In this article, we price a riskless bond, a stock, and a call option, with terminal payoffs at

time T of $1, ST , and (ST −K)+, where K is the exercise price of the option.2 The current price

of an arbitrary asset, P0, is given by the following valuation equation:

P0 = E

[

U
′
(CT )

U
′
(C0)

φ (ST ) | F0

]

, (2)

where the marginal rate of substitution U
′
(CT )

U
′
(C0)

is the pricing kernel or stochastic discount factor,

and φ (ST ) is the terminal payoff of the arbitrary asset. Equation (2) is the Euler equation.

Throughout this article we assume that the representative agent has a power utility function

given by:

Ut(Ct) = ρtC1−b
t /(1 − b), (3)

where ρ is the time discount factor, and b is the coefficient of proportional risk aversion. In this

case, the pricing kernel is given by:

ψ(C) =
U

′
(CT )

U
′
(C0)

= ρT
(

CT

C0

)−b

. (4)

3. General jump-diffusion option pricing model

This section presents our general jump-diffusion option pricing model. It is assumed that both

aggregate consumption and stock price follow jump-diffusion processes with simultaneous random

2The price of the put can be obtained either using the call-put parity or following similar steps to the ones that

lead to the price of the call.
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jumping times. Let CT and ST be the aggregate consumption and stock price with jump–diffusion

processes from n–dimensional Brownian motions:

CT = exp(ac(T ) + βc · Bc(T ) + Yc), (5)

ST = exp(a(T ) + β · B(T ) + Y ), (6)

where ac(T ) and a(T ) are drifts processes, βc = (βc,1, · · · , βc,n) and β = (β1, · · · , βn) are diffusion

processes of the logarithms of aggregate consumption and stock price,

Bc(T ) = {Bc,1(T ), · · · , Bc,n(T )} and B(T ) = {B1(T ), · · · , Bn(T )}

are n–dimensional Brownian motions vectors, and Yc =
∑N(T )

i=1 Yc,i and Y =
∑N(T )

i=1 Yi are logarithms

of aggregate consumption jumps and stock price jumps respectively, where N (T ) is the Poisson

process of both aggregate consumption and stock price with intensity λ. For every i with 1 ≤ i ≤ n,

the pairs Bi(T ) and N (T ), Bc,i(T ) and N (T ), Yi and N (T ), and Yc,i and N (T ) are independent.

We assume that:

1. The covariance between aggregate consumption Brownian motion Bc,i and aggregate con-

sumption jump Yc,j is given by cov(Bc,i(T ), Yc,j) = γcρcyc

√
T for each i, j = 1, 2, · · · , n.

2. The covariance between aggregate consumption Brownian motion Bc,i and stock price jump

Yj is given by cov(Bc,i(T ), Yj) = γρcy

√
T for each i, j = 1, 2, · · · , n.

3. The covariance between stock price Brownian motion Bi and aggregate consumption jump

Yc,j is given by cov(Bi(T ), Yc,j) = γcρsyc

√
T for each i, j = 1, 2, · · · , n.

4. The covariance between stock price Brownian motion Bi and stock price jump Yj is given by

cov(Bi(T ), Yj) = γρsy

√
T for each i, j = 1, 2, · · · , n.

5. The covariance between aggregate consumption jump Yc,i and stock price jump Yj is given

by cov(Yc,i, Yj) = vsc for each i, j = 1, 2, · · · , n.
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Then, the mean and covariance matrix of the underlying random variables, Bc(T ),B(T ), Yc,i

and Yi to aggregate consumption and stock price are given by:3
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√
T1 γρsy

√
T1

γ2
c vsc

γ2

















































, (7)

where Yc,i ∼ N (αc, γc), Yi ∼ N (α, γ), ΣcsT is the covariance matrix between the n–dimensional

Brownian motions Bc(T ) and B(T ), Σc and Σs are the covariance matrices of Bc(T ) and B(T )

respectively, 1 is the 1×n vector with every coordinate 1, and the covariance matrix is a symmetric

matrix.

In the case of 1–dimensional Brownian motions, we have

ac(T ) = ln(C0) + µcT − σ2
c

2
T, βc = σc;

a(T ) = ln(S0) + µT − σ2

2
T, β = σ.

Therefore the aggregate consumption and stock price in (5) and (6) are given by:

CT = exp



ln(C0) + µcT − σ2
c

2
T + σcBc(T ) +

N(T )
∑

i=1

Yc,i



 , (8)

ST = exp



ln(S0) + µT − σ2

2
T + σB(T ) +

N(T )
∑

i=1

Yi



 , (9)

where C0 is the current level of aggregate consumption, µc is the instantaneous expected growth

rate of consumption conditional on the fact that the Poisson event does not occur, σc is the volatility

of consumption, Bc(T ) ∼ N (0, T ) is the 1-dimensional consumption Brownian motion, S0 is the

current stock price, µ is the instantaneous expected stock return conditional on the fact that the

3The technical appendix A shows that the Brownian motion and the IID jump sizes normally distributed are in

general correlated, and that the covariance structure summarized in equation (7) is robust and reasonable.
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Poisson event does not occur, σ is the stock volatility, B(T ) ∼ N (0, T ) is the stock price Brownian

motion. Note that we have

cov(σcBc(T ), Yc,i) = σccov(Bc(T ), Yc,i) (10)

= σcγcρcyc

√
T = σcyc

√
T ,

for every i = 1, 2, · · · , n. Similarly,

cov(σcBc(T ), Yi) = σcy

√
T, cov(σB(T ), Yc,i) = σsyc

√
T , cov(σB(T ), Yi) = σsy

√
T . (11)

Then, the mean and covariance structure of the underlying uncertainty to aggregate consumption

and stock price in the 1–dimensional Brownian motions case are given by:
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Yc,i

Yi

























∼ N
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cT σcsT σcyc

√
T σcy

√
T

σ2T σsyc

√
T σsy

√
T

γ2
c vcs

γ2

















































, (12)

where the covariance matrix is reduced from (7) by the specifications of equations (10) and (11).

The last sections will investigate important special cases of our general model by restricting in

different ways the structure of covariances.

The novelty of these assumptions consists of the structure of correlations between jump sizes

and Brownian motions, which brings a completely new dimension to option pricing under jump-

diffusions. All previous research has assumed that jumps sizes are independent of the level of the

Brownian motions. The next result yields the process followed by the pricing kernel obtained in

equation (4).

Lemma 1. (The pricing kernel) Assume that the representative agent has a power utility

function of consumption given by equation (3) and that aggregate consumption is given by equation

(5). Then the pricing kernel is given by:

ψ(C) = ρT exp(−b(ac(T ) − ac(0))− bβc ·Bc(T )− bYc). (13)
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When Bc(T ) is 1–dimensional, we have

ψ(C) = exp



ln(ρ)T − bµcT + b
σ2

c

2
T − bσcBc(T ) +

N(T )
∑

i=1

(−bYc,i)



 . (14)

Proof: See Appendix B.

The general pricing kernel follows a jump–diffusion process with the same intensity and jump-

ing times of aggregate consumption and stock price which were defined by equations (5) and (6) or

equations (8) and (9). The role of the pricing kernel given in equations (13) or (14) is to discount

the risky payoffs taking into account their risk and the time value of money. The use of a pricing

kernel to discount assets avoids arbitrage opportunities to arise in the economy.

In Lemma 2, we obtain the interest rate of this economy by evaluating the expectation of

the pricing kernel, and equating the result to the bond price. Since the consumption Brownian

motion is correlated with consumption jump, we can not use the traditional method of proof given

in jump–diffusion models which is based in the independence of Bc(T ), N(T), and Yc,i. Instead of

breaking the expectation of the pricing kernel into the product of two expectations, we evaluate

only one expectation and use the law of iterated expectations and the definition of the power series

of the exponential function to obtain the following expression for the interest rate.

Lemma 2. (The interest rate) Assume that the representative agent has a power utility

function of consumption given by equation (3) and that aggregate consumption follows the jump–

diffusion process given by equation (5) or (8). Let the current price of the riskless bond be B0 =

e−rT , where r is the riskless interest rate. Then the equilibrium interest rate is given by:

r = − lnρ+ b
ac(T ) − ac(0)

T
− b2

2
βcΣcβ

T
c − λ(e−bαc+

1
2
b2γ2

c +b2〈βc,1〉γcρcyc

√
T − 1), (15)

where 〈·, ·〉 is the dot product between vectors in Rn and 1 in the dot product stands for the vector

with every coordinate 1.4 Furthermore, if Bc(T ) is 1–dimensional,

r = −ln(ρ) + bµc −
1

2
bσ2

c −
1

2
b2σ2

c − λ

[

e−bαc+b2
γ2
c
2

+b2σcyc

√
T − 1

]

. (16)

4Therefore 〈βc,1〉 = βc,1 + βc,2 + · · · + βc,n.
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Proof: See Appendix B.

As we can see the equilibrium interest rate given by equation (15) or (16) differs from previous

equilibrium interest rate relations, obtained in jump–diffusion models with systematic jump risk,

because now the interest rate also depends on the covariance of the pricing kernel Brownian mo-

tions with the pricing kernel jump size b2〈βc, 1〉γcρcyc

√
T , or b2σcyc

√
T for the 1–dimensional case.

Equations (15) and (16) show that, in general, the term structure of interest rates is not flat in our

economy. It is flat when the correlation of the diffusive pricing kernel and the jumps of the pricing

kernel is zero or when µc or σc are deterministic functions of other parameters including T such

that the effect of T on r cancels out.5 We use the equilibrium interest rate given by equation (15)

or (16) to eliminate some preference parameters from the pricing kernel given by equation (13) or

(14). Hence, after using equation (15) into (13), we rewrite the pricing kernel as

ψ(C) = exp



−rT − b2
βcΣcβ

T
c

2
T − λT

(

e−bαc+b2
γ2
c
2

+b2〈βc,1〉γcρcyc

√
T − 1

)

− bβc · Bc(T ) +

N(T )
∑

i=1

(−bYc,i)



 ,

(17)

and the pricing kernel for the 1–dimensional Brownian motion case as

ψ(C) = exp



−rT − b2
σ2

c

2
T − λT

(

e−bαc+b2
γ2
c
2

+b2σcyc

√
T − 1

)

− bσcBc(T ) +

N(T )
∑

i=1

(−bYc,i)



 . (18)

The next result evaluates the stock price in equilibrium to obtain our general consumption

capital asset pricing model (CCAPM) under jump–diffusion. This relation is obtained in closed–

form as we can see in the Proposition.

Proposition 1. (The consumption capital asset pricing model under jump-diffusion

) Assume that the representative agent has a power utility function of consumption given by equation

5We could write rT = −ln(ρ) + bµc −
1
2
bσ2

c − 1
2
b2σ2

c − λ

[

e−bαc+b2
γ
2
c

2
+b2σcyc

√
T − 1

]

instead of (16) to stress that

the interest rate depends on T. When T = 0 then r0 = −ln(ρ) + bµc − 1
2bσ2

c − 1
2b2σ2

c − λ

[

e−bαc+b2
γ
2
c

2 − 1

]

. Then

rT = r0 − λe−bαc+b2
γ
2
c

2

[

eb2σcyc

√
T − 1

]

. This expression is useful to explain that the interest rate does not explode

when T increases. Indeed if σcyc
> 0 then there is a T∗ where rT∗ = 0 and if σcyc

< 0 then lim rT = r0+λe−bαc+b2
γ
2
c

2

when T → ∞. In the paper, we write r instead of rT to simplify the notation.
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(3), and that aggregate consumption and the stock price follow the jump-diffusion processes given

by equations (5) and (6) or equations (8) and (9) with the covariance structure given by formula

(7) or (12). Then the equilibrium expected stock return is given, in an implicit form, by the riskfree

interest rate plus the stock risk premium:

r =
a(T ) − a(0)

T
+

1

2
βΣsβ

T − bβcΣcsβ
T (19)

+λe−bαc+
1
2
b2γ2

c +b2〈βc,1〉γcρcyc

√
T (eα+ 1

2
γ2+(−b〈βc ,1〉γρcy−b〈β,1〉γcρsyc+〈β,1〉γρsy)

√
T−bvsc − 1).

When both Bc(T ) and B(T ) are 1–dimensional, the formula is given by

r = µ− bσcs + λ

[

e−bαc+
b2

2
γ2

c +b2σcyc

√
T+α+γ2

2
+σsy

√
T−bσsyc

√
T−bσcy

√
T−bvsc − 1

]

(20)

−λ
[

e−bαc+
b2

2
γ2

c +b2σcyc

√
T − 1

]

.

Proof: See Appendix B.

Equations (19) and (20) tell us implicitly that the expected stock return is equal to the risk–

free rate of return plus its risk premium. They can be seen as our general consumption capital asset

pricing model (CCAPM). There are two main novelties in the equilibrium relations (19) or (20).

First, the expected stock return takes into account the covariance between stock price jumps and

the stock price Brownian motions. That is, the stock price level might affect the jumps of the stock

price. As it can be seen, the expected stock return is composed of diffusive return a(T )−a(0)
T +1

2βΣsβ
T

in (19) or µ in (20), jump return α + γ2

2 , and the covariance between diffusive return and jump

return 〈β, 1〉γρsy

√
T in (19) or σsy

√
T in (20). Second, the equity risk premium takes into account

all potential interactions between jumps and diffusions. The equity risk premium is composed of

diffusive risk premium and jump risk premium, and those interactions lead to new ways of defining

the diffusive equity risk premium and the jump equity risk premium. The diffusive risk premium

depends both on the covariances between the stock price diffusions and the pricing kernel diffusions

bβΣcsβ
T in (19) or bσcs in (20) and on the covariances between the stock price diffusions and
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the jump of the pricing kernel b〈β, 1〉γcρsyc

√
T in (19) or bσsyc

√
T in (20). The equity jump risk

premium depends both on the covariances between the jump of the stock price and the jump of the

pricing kernel bvsc and on the covariances between the jump of the stock price and the diffusions of

the pricing kernel b〈βc, 1〉γρcy

√
T in (19) or bσcy

√
T in (20). The intensity of the Poisson process

λ also affects the relation to take into account all the random jumps. The expected growth of the

pricing kernel due to jumps −bαc + b2

2 γ
2
c + b2〈βc, 1〉γcρcyc

√
T in (19) or −bαc + b2

2 γ
2
c + b2σcyc

√
T

in (20) adds and subtracts in a nonlinear way to the equilibrium relationship, and therefore also

affects the relation given by equation (19) or (20). It should also be noted that if the LHS of (19)

or (20) does not explode, as we showed in footnote 4, then the RHS of (19) or (20) does not explode

either.

The next result derives our general jump–diffusion option pricing model extending the tech-

nique introduced by Rubinstein (1976) of pricing by substitution in equilibrium. This is done in two

steps. First, we derive the equilibrium price of the call that depends on several parameters includ-

ing a(T )−a(0)
T + 1

2βΣsβ
T or µ in the 1-dimensional case, and bβΣcsβ

T or bσcs in the 1-dimensional

case. Second, we use the equilibrium relation given by equation (19) or (20) to eliminate these two

parameters from the option pricing formula. While this second step does not affect equilibrium

option prices, it allows us to obtain interesting corollaries in the last sections.

Theorem 1. (The general jump–diffusion option pricing model) Assume that the

representative agent has a power utility function of consumption given by equation (3), and that

aggregate consumption and the stock price follow the jump-diffusion processes given by equations

(5) and (6) with covariance structure (7) or equations (8) and (9) with the covariance structure

given by formula (12). Then the general jump–diffusion option pricing model is given by:

Pc =
∞
∑

n=0

(λ
′
T )ne−λ

′
T

n!

(

S0N (d1(n)) −Ke−rnTN (d2(n))
)

, (21)
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where d1(n), d2(n), rn and λ
′
are given by the following:

d1(n) =
ln
(

S0
K

)

+ (rn + σ2
n

2 )T

σn

√
T

, d2(n) = d1(n) − σn

√
T ,

σ2
nT = Max

{

nγ2 + 2n〈β, 1〉γρsy

√
T + βΣsβ

TT, 0
}

,

rnT = rT + λT (β2 − 1) − λT (β1 − 1) + nln

(

β1

β2

)

,

λ
′

= λβ1,

β1 = e−bαc+
b2

2
γ2

c +b2〈βc,1〉γcρcyc

√
T+α+γ2

2
+〈β,1〉γρsy

√
T−b〈βc,1〉γcρsyc

√
T−b〈βc,1〉γρcy

√
T−bvsc ,

β2 = e−bαc+
b2

2
γ2

c +b2〈βc,1〉γcρcyc

√
T .

If both Bc(T ) and B(T ) are 1–dimensional, then the jump–diffusion option pricing model is

given by:

Pc =
∞
∑

n=0

(λ
′
T )ne−λ

′
T

n!

(

S0N (d1(n)) −Ke−rnTN (d2(n))
)

, (22)

with the following data

d1(n) =
ln
(

S0
K

)

+ (rn +
σ2

n

2 )T

σn

√
T

, d2(n) = d1(n) − σn

√
T ,

λ
′

= λβ1,

σ2
n = Max

{

nγ2/T + 2nσsy/
√
T + σ2, 0

}

,

rn = r + λ (β2 − 1) − λ (β1 − 1) +
n

T
ln

(

β1

β2

)

,

β1 = e−bαc+ b2

2
γ2

c +b2σcyc

√
T+α+γ2

2
+σsy

√
T−bσsyc

√
T−bσcy

√
T−bvsc ,

β2 = e−bαc+ b2

2
γ2

c +b2σcyc

√
T .

Proof: See Appendix B.

Equations (21) and (22) are our general option pricing formulas. They are of the Merton’s

(1976) type. Like the Black-Scholes (1973) model, equation (22) depends on S0, K, T , r, and σ.

Like the jump-diffusion model of Merton (1976), the equation also depends on λ, α, and γ. Like

the jump–diffusion models with systematic jump risk of Naik and Lee (1990), Ahn (1992), and
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Amin and Ng (1993), the equation also depends on bαc, b
2γc, and bvcs. Equation (22) has four new

parameters that do not affect any other existing option pricing formula σsy, bσsyc , bσcy, and b2σcyc .

These parameters play potentially interesting roles as we will see in the next sections.

Equation (21) extends (22) to multivariate Brownian motions which are correlated among

themselves and with aggregate consumption jump and stock price jump. In the Black-Scholes

case, the extension from univariate to multivariate Brownian motions is a trivial extension, since

the resulting option pricing equation is the original Black–Scholes (1973) model with the volatility

given by

σ =

√

√

√

√

n
∑

i=1

σ2
i +

n
∑

i6=j

σij,

for i, j = 1, 2, · · · , n. However, our multivariate formula (21) is not the trivial extension of (22). We

can see this by considering the special case of equation (21) with Σs = 0 . This is a new multivariate

jump-diffusion option pricing model that has no univariate counterpart. In the univariate case , if

Σs = 0 i.e. if σ = 0 then the price of the call in the Black-Scholes world is the stock price minus the

present value of the strike price, where the discount rate is the riskless rate. In the Merton’s (1976)

model and in our univariate option pricing model given by equation (22) if σ = 0 then we have pure

jump option pricing models as in Cox and Ross (1976). A multivariate extension of Merton’s (1976)

with Σs = 0 also leads to a pure jump option pricing model. In our option pricing model (21) when

Σs = 0, we still have a multivariate jump-diffusion option pricing model since the diffusion process

β affects the covariances between the jump and the Brownian motions. As we highlighted, there

is no univariate jump-diffusion option pricing model analogous to this multivariate jump-diffusion

option pricing model with Σs = 0.

Option pricing models (21) and (22) share an important property that is not present in any

existing jump-diffusion option pricing model, and that results from the fact that the price level

and price jumps are correlated in the model, i.e. ρsy might be different from zero. The option

pricing models (21) and (22) are able to generate increasing, decreasing, and non-monotone term
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structures of implied volatilities of at-the-money options depending on the value taken by ρsy. This

novel aspect of the model is important since, as noted by Das and Sundaram (1999) and reported

by Bakshi, Cao, and Chen (1997), traditional jump-diffusion option pricing models are only able to

generate increasing term structures of implied volatilities of at-the-money options, while in practice

we also observe decreasing and non-monotone term structures. If ρsy is either zero (Merton’s case)

or positive, then σ2
nT increases with the time to maturity T . This results in higher option prices

and higher implied volatilities for at-the-money options when the time to expiration T increases. If

ρsy is negative then, when the time to maturity T increases, σ2
nT might either decrease or display

a U shaped pattern across maturities, which leads to decreasing or non-monotone term structures

of implied volatilities of at-the-money options. This is what we see in our empirical analysis that

we report in the next section. A negative ρsy means that higher prices are associated with jumps

down, and lower prices are associated with jumps up.

The role of a negative ρsy in generating σ2
nT with decreasing or U shaped patterns across

maturities can be seen in the following way. If the correlation between the level of the stock price

and the price jump is negative (ρsy < 0) then there is a diffusion vector β 6= 0 with βΣsβ
T > 0

positive definite and n〈β, 1〉2ρ2
sy − βΣsβ

T ≥ 0, such that for those n there are special times

T (n, 0) =





−2n〈β, 1〉γρsy −
√

4n2〈β, 1〉2γ2ρ2
sy − 4nγ2βΣsβT

2βΣsβT





2

(23)

T (n, 1) =





−2n〈β, 1〉γρsy +
√

4n2〈β, 1〉2γ2ρ2
sy − 4nγ2βΣsβT

2βΣsβT





2

which are the solutions of

σ2
nT = nγ2 + 2n〈β, 1〉γρsy

√
T + βΣsβ

TT = 0.

Since σ2
nT ≥ 0 and σ2

nT = nγ2 + 2n〈β, 1〉γρsy

√
T +βΣsβ

TT for all real σn and nonnegative T ≥ 0,
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we have

σ2
nT = max{nγ2 + 2n〈β, 1〉γρsy

√
T + βΣsβ

TT, 0}.

When T (n, 0) ≤ T ≤ T (n, 1), we have nγ2 + 2n〈β, 1〉γρsy

√
T + βΣsβ

TT ≤ 0, so σ2
nT = 0 on this

interval of times, i.e. σn = 0 on this interval. Therefore we have

σ2
n =































nγ2/T + 2n〈β, 1〉γρsy/
√
T + βΣsβ

T if 0 < T ≤ T (n, 0)

0 if T (n, 0) ≤ T ≤ T (n, 1)

nγ2/T + 2n〈β, 1〉γρsy/
√
T + βΣsβ

T if T (n, 1) ≤ T.

(24)

Equation (24) tell us that, for a given n, if ρsy < 0 then σn first decreases with T until the

special time T (n, 0), then σn becomes zero between the special time T (n, 0) and the special time

T (n, 1), and then σn increases after the special time T (n, 1), where T (n, 0) and T (n, 1) are given

by (23). As we see in (23), T (n, 0) and T (n, 1) depend on several parameters including ρsy.

If ρsy is negative and small enough, then σn has a U -shaped pattern across maturities but

never reaches zero for all exchange traded options. This statement can be proved in the following

way. From theorem 1, we have:

σ2
n =

n

T
γ2 + 2

n√
T
〈β, 1〉γρsy + βΣsβ

T . (25)

In order to see the periods of time when σn decreases, it reaches a stationary point or date,

and increases we obtain from (25):

d(σ2
n)

dT
= − nγ

T 3/2

(

γ√
T

+ 〈β, 1〉ρsy

)

. (26)

Note that d(σ2
n)

dT = 0 when
√
T = − γ

〈β,1〉ρsy
, and define

√
T ∗ = − γ

〈β,1〉ρsy
where T ∗ is the

stationary date.6 As we can see from (26) if T < T ∗ then σ2
n is decreasing and if T > T ∗ then σ2

n is

6If ρsy ≥ 0 then
d(σ2

n
)

dT
< 0 always, meaning that neither is there a stationary date nor that σ2

nT can display a

U shaped pattern across maturities. This explains the numerical findings reported by Das and Sundaram (1999) for

the term structure of implied volatilities of at-the-money options generated by the jump–diffusion model of Merton.
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increasing. Furthermore, from the definition of stationary date T ∗, we see that if ρsy is a negative

number then
√
T ∗ is positive and large enough. Evaluating σ2

n at T ∗ yields:

σ2∗
n = − n

T ∗ γ
2 + βΣsβ

T , (27)

which is positive since T ∗ is large enough.

4. Empirical results

In this section we discuss the sample data and the empirical tests of the theoretical model

presented in section 3. Then we see how the estimated parameter values yield expected returns,

risk premia, and volatility surfaces.

4.1 Methodology and data

We examine the time series of implied parameters produced by fitting the nested equilibrium

option pricing models of (22) to a non-overlapping sample of S&P 500 index option quotes. We ob-

tain estimates of the covariance of the diffusive pricing kernel with price jumps bσcy, the covariance

of the jumps of the pricing kernel with the diffusive price bσsyc , the covariance between diffusive

price with price jumps σsy, the covariance of the jumps of the pricing kernel with price jumps

bvsc, the covariance of diffusive pricing kernel with jumps in the pricing kernel b2σcyc as implied

parameters of the general jump diffusion equilibrium option pricing model. We show that these

five covariances are statistically different from zero, and therefore important for asset and option

pricing.

We obtain implied parameters values by minimizing the option pricing errors between the

quote mid-point and model values. Because the distribution of pricing errors is unknown the

sampling distribution is unknown. Therefore we can not use standard parametric hypothesis tests

that rely on known distributions to determine if these covariances are different from zero. Broadie,
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Chernov, and Johannes (2007) handle this issue using a nonparametric bootstrapping procedure.

Our strategy for attacking this problem is different and based on sampling design. We construct

a nonoverlapping sample of index option quotes with the same time to expiration in order to

eliminate the problems that arise with serial and cross-sectional correlation in the option pricing

errors. We use nonparametric tests to draw conclusions about the statistical significance of the

implied parameters.

For a given observation date, the sample is constructed from quotes for S&P 500 index options

that expire in the next calendar month. During the sample period, January 1996 through April

2006, the CBOE S&P 500 index options traded with a third Friday of the month last day of trad-

ing/expiration cycle. Cash settlement for these European options takes place Saturday morning

following the third Friday of each month. The first sample observation consists of quotes from

Friday, January 19th, 1996 for index options with expiration date Saturday, February 17th, 1996,

the second observation of quotes from Friday February 16th , 1996 for index options expiring Sat-

urday March 16th, 1996, and so on. All quotes were obtained from OptionMetrics. Index dividend

yield and risk free rate for each observation date were also obtained from OptionMetrics. The risk

free rate for a given observation date is interpolated from that dates LIBOR term structure and

dividend yield is estimated from the put call parity relationship as described in the OptionMetrics

Reference Manual. Screens were applied to eliminate options from the sample with price quotes

less than $3/8, quotes that violate lower option pricing boundaries, and options with no trading

volume or no open interest.

The sample produced in this fashion contains 124 observation dates and quotes from 6,430

index options. The number of index option quotes on a given observation date ranges from 22 on

July 20th, 2001 to 142 on March 17th 2006. Table I contains the average quote mid point and

bid/ask spread for “moneyness” categories, where “moneyness” is defined as the ratio of index

value S0 divided by the strike price K. The sample contains more puts than calls with twice as
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many quotes for deep out-of-the-money puts, S0/K > 1.06, than for at-the-money calls, 0.97 <

S0/K < 1.00.

Serially independent implied parameter values are generated with a minimization routine that

calibrates option pricing models to the bid/ask midpoints of call and put quotes on a given obser-

vation date. Implied parameter values are generated separately in this fashion for each observation

date j. Subject to parameter restrictions imposed for a given option pricing model, implied pa-

rameter values minimize the sum of squared error objective function for the Nj option quotes of a

given observation date:

fvalj =

Nj
∑

i=1

(

P̂i − 0.5 (bidi + aski)
)2

where P̂i is the model value for option i, which is given by the nested equilibrium option pricing

models of (22).

4.2. Estimates

In the proof of Theorem 1 of this paper, we substitute the equilibrium equity price in the

equilibrium price of the option to eliminate the diffusive expected return µ and the diffusive risk

premium bσsc from option prices. Since all assets (i.e. the bond, equity, and options) are in

equilibrium there are no arbitrage opportunities in the system, and the call-put parity holds. Since

we price by substitution, the implied parameter values estimated from market option prices are also

the parameter values of the actual or objective distributions obtained from the process of aggregate

consumption (8), the process of the stock price (9), and the mean and covariance structure of

the underlying uncertainty to aggregate consumption and stock price (12). This contrasts with

the option pricing approach of other authors (e.g. Broadie, Chernov and Johannes (2007), Eraker

(2004), and Pan (2002)) who change measure to value options. As a result of their methodological

approach, their risk-neutral parameters obtained from option market prices are a combination

of actual parameters, and it becomes impossible to recover actual parameter values from option
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market prices for some parameters. Therefore, somewhat in an arbitrary way, they estimate the

risk premium as the difference between the actual and the risk neutral parameter values. Since we

are able to recover actual parameter values from option prices and we have the underlying CCAPM

of the economy (20), we are able to plug into an approximation of the CCAPM (20) the implied

parameter values from option market prices in order to estimate the risk premia.7

Equation (20) is exact and holds for any arbitrary period of time. However, it gives the

expected equity return as an implicit nonlinear function of the riskless return and risk premia. In

order to provide estimates of expected returns and risk premia we approximate equation (20) in

the next proposition. Since these are approximations, it should be noted that the results of the

next Proposition only hold for short holding periods of time.

Proposition 2. (Expected return and risk premia) Assume that the CCAPM given by

equation (20) holds. Then the following relationships hold up to the linear order:

E(RS(T )) = rT +EJRP (T ) +EDRP (T ) (28)

where:

E(RS(T )) = µT + λT [eα+0.5γ2+σsy

√
T − 1], (29)

EJRP (T ) = −λT [e−bvsc−bσcy

√
T − 1], (30)

EDRP (T ) = bσcsT − λT [e−bσsyc

√
T − 1], (31)

and E(RS(T )) is the expected equity return during the period T , EJRP (T ) is the equity jump risk

premium during the period T , and EDRP (T ) is the equity diffusion risk premium during the period

T .
7In the Black-Scholes (1973) model the difference between the actual expected diffusive return µ and the risk-

neutral expected diffusive return r is the diffusive risk premium bσsc. Therefore the diffusive risk premium is exactly

given by the difference between the actual and the risk-neutral parameter values. When systematic jump risk is

introduced the relation between risk premia, actual, and risk-neutral parameters is no longer a simple linear equation

as we demonstrate in equation (20).
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Proof: See Appendix B.

The proposition shows that, in approximated terms, the expected stock return is equal to the

risk free rate plus the jump risk premium plus the diffusive risk premium. It should be highlighted

that even in these approximations the expected stock return, the jump risk premium, and the

diffusive risk premium are nonlinear functions of time. Hence, in general, the annual expected stock

return and the annual equity risk premia are not 12 times the monthly expected stock returns and

the monthly equity risk premia.

Medians for implied parameter values and goodness of fit measure produced by calibrating

the general jump-diffusion (GJD) option pricing model (22) are presented in Table II.8 Statistical

significance of implied parameter values is assessed with the large sample Wilcoxon signed rank

test.9 The z-statistic for this test, always negative in sign, is reported in parentheses below sample

medians. If the z-statistic for this test is below its critical value then the null hypothesis that the

median is zero is rejected. In order to verify if a parameter value is either positive or negative, we

need to assess the sum of ranks for positive and negative sample values.

For the implied covariance between diffusive price level and price jumps, σsy, the null hypoth-

esis of zero median is rejected in favor of the alternative hypothesis since the z-statistic is -8.797,

and therefore below its critical value at the 1 percent significance level. For this implied covariance

the sum of ranks for positive values is 347.50 and the sum of ranks for negative values is 7,402.50.10

Since the sum of ranks for negative sample values is greater than the sum of ranks for positive sam-

ple values, we conclude that the median of the sampling distribution of σsy is negative. Therefore

we conclude that the correlation between diffusive price level and price jumps is negative, which

8Constraints imposed on the optimization when calibrating the GJD model: λ ≥ 0, σ > 0, γ ≥ 0, γc ≥ 0, b > 0,

|vcs/(γcγ)| ≤ 1, and |ρi| ≤ 1 where i = sy, syc.
9Implied parameter values for parameters constrained in the calibration process are necessarily different from zero.

Test statistics for constrained parameter values are reported for comparison purposes only.

10The sums of ranks are not reported in the tables, but they are available upon request.
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is also reported in table II. This is important for three reasons: first, we see that when market

prices are high then jumps down are more likely and when market prices are low then jumps up are

more likely; second, we demonstrate in (29) that this covariance is a significant component of the

expected return of equity; third, we illustrate that nonmonotonic term structures of Black-Scholes

implied volatilities result from a negative value of σsy. Figure 1 illustrates the time series of implied

covariance, σsy. The preponderance of negative implied values reinforces the conclusion that this

covariance is negative.

Equation (29) approximates the expected return on equity, E(RS(T )). Using the values of

table II and T = 1, we see that if we do not take into account the covariance between diffusive

return and price jumps we erroneously overestimate the expected return of equity as E(RS(1)) =

µ− 0.00699 when it is really E(RS(1)) = µ− 0.02525 since σsy = −0.0103. By other words, if we

do not take into account the covariance between diffusive return and price jumps we overestimate

the annual expected return of equity, E(RS(1)) by approximately 1.83 percent.

The equation of the expected return on equity, E(RS(T )), shows that this expected return on

equity is a nonlinear function of time or holding period of the stock. Using the values of table II

we estimate the monthly expected returns on equity as E(RS((t+ 1)/12))− E(RS(t/12)), where

t = 0, 1, ..., 11 and E(RS(0/12)) = 0 by convention. Figure 2 reports the twelve monthly non-

diffusive expected returns for the first year of investment.11 As we can see from the figure, the

monthly non-diffusive expected returns are not constant which contrasts with the traditional case of

independent price jumps and diffusive returns ρsy = 0. Figure 2 shows that the weight of monthly

non-diffusive expected returns on annual non-diffusive expected returns is smaller for the nearest

months and larger for the furthest months.

Table III gives the Black-Scholes implied volatility surface for the GJD option pricing model

11The non-diffusive expected return is given by λT
[

eα+0.5γ2+σsy

√
T − 1

]

.
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(22) using the implied parameter values of table II, S0 = 100, and r = 2 percent.12 These values

generate a nonmonotonic term structure of implied volatilities of at-the-money options consistent

with the observed in other studies (e.g. Bakshi, Cao, and Chen (1997)). This effect is also illustrated

in Figure 3, where Black-Scholes implied volatilities of at-the-money options resulting from the

GJD option pricing model (22) are plotted against Black-Scholes implied volatilities of at-the-

money options resulting from the Merton’s (1976) jump-diffusion model. We plug into both option

pricing models the implied parameter values of table II in order to find the Black-Scholes implied

volatilities.

Table II presents median estimates of the five covariances implicit in the GJD option pricing

model (22). These five covariances are all statistically different from zero at the 1 percent sig-

nificance level. While the covariance between diffusive return and price jumps is negative as we

reported, all the other four are positive. Covariances between aggregate consumption and equity

prices are important determinants of the jump and diffusive risk premiums.

Equation (30) approximates the equity jump risk premium, EJRP (T ). Using the values of

table II and T = 1, we see that the estimate of the annual EJRP(1) is 12.1 percent. If we do not take

into account the jump risk premium that arises with the covariance between the diffusive pricing

kernel and equity jumps, bσcy, then we would estimate the annual EJRP(1) as 6.8 percent, meaning

that we would erroneously underestimate the annual EJRP(1) by approximately 5.3 percent. Pan

(2002) estimates an annual mean price jump risk premium of 18.4 percent in the context of an

option pricing model with price jumps and stochastic volatility. Eraker (2004) estimates an annual

mean price jump risk premium of 6 percent using an option pricing model with stochastic volatility

in price and jumps in both prices and volatility. Broadie, Chernov and Johannes (2007) in a similar

model estimate an annual mean price jump risk premium between 2 and 4 percent. Santa-Clara

12We assume S0 = 100, and r = 2 percent to maintain consistency of the analysis of this table with tables presented

in the next sessions.
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and Yan (2006) in a model with stochastic jump intensity estimate an annual mean price jump risk

of 6.9 percent.

In the studies of Pan (2002), Eraker (2004), Broadie, Chernov and Johannes (2007), and

Santa-Clara and Yan (2006) the annual equity jump risk premium is implicitly 12 times higher

than the monthly equity jump risk premium since they do not take into account any correlation

between Brownian motions and jumps. In their studies equity jump risk premia are implicitly a

linear function of time. This contrasts with our model where the equity jump risk premium depends

on the covariance of the diffusive pricing kernel with equity jumps bσcy

√
T , which makes the equity

jump risk premium a nonlinear function of the holding period of the stock which coincides with

the time to expiration of the option. Using the values of table II we estimate the monthly jump

risk premia as EJRP ((t+ 1)/12) − EJRP (t/12), where t = 0, 1, ..., 11 and EJRP (0/12) = 0 by

convention. Figure 4 reports the twelve monthly jump risk premia for the first year of investment.

As we can see from the figure, the monthly jump risk premia are not constant which contrasts with

the traditional case of independent price jumps and diffusive consumption ρcy = 0. The annual

equity jump risk premium EJRP (1) is 17.43 times the first monthly equity jump risk premium

and 9.98 times the last monthly equity jump risk premium. From the figure we conclude that the

weight of monthly jump risk premia on the annual jump risk premium is smaller for the nearest

months and larger for the furthest months.

Equation (31) approximates the equity diffusion risk premium, EDRP (T ). Using the values of

table II and T = 1, we see that when we take into account the covariance between diffusive return

and jumps in the pricing kernel the annual equity diffusive risk premium EDRP (1) increases

by 4.9 percent. If T = 1/12 we see that when we take into account the covariance between

diffusive return and jumps in the pricing kernel the first monthly equity diffusive risk premium

EDRP (1/12) increases by 0.12 percent. The estimates of the monthly diffusion risk premia are

given by EDRP ((t + 1)/12) − EDRP (t/12), where t = 0, 1, ..., 11 and EDRP (0/12) = 0 by
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convention. Our equity diffusive risk premium is also nonlinear on T . Figure 5 shows how monthly

diffusive risk premia change due to the fact that ρsyc is different from zero. The figure shows that

the non-linear part of the monthly diffusive risk premiums increases during the year.13

We explain the slope of the implied volatility surface with respect to the option strike price as

the result of the covariance between the diffusive pricing kernel and price jumps and the covariance

between the diffusive equity and jumps in the pricing kernel. Our explanation of the sneer effect

observed in market prices contrasts with other authors who tried to explain the sneer e.g. as a result

of market imperfections such as transaction costs (Dennis (2001)), market illiquidity (Pena, Rubio

and Serna (1999)), or as a result of stochastic volatility and jump-diffusions (Das and Sundaram

(1999)).

Throughout our sample period, January 1996 through April 2006, the Black-Scholes implied

volatilities exhibit a pronounced sneer. Figure 6 illustrates the Black-Scholes implied volatilities

computed from option quote mid points for three pricing dates in our sample: January 19, 1996,

January 19, 2001 and January 20, 2006. Many other studies document this pattern of implied

volatilities in equity index option markets (e.g. Dumas, Fleming and Whaley (1998)).

Figures 7 and 8 present Black-Scholes implied volatilities of one-month options generated by

the GJD option pricing model (22) evaluated for the implied parameter values of Table II, S0 = 100,

and r = 2 percent. Figure 7 shows that the shapes of the sneers observed in the marketplace can be

reproduced when the covariance between diffusive return and jumps in consumption is σsyc = 0.0038

obtained from Table II. Figure 7 also illustrates the impact of alternative values of the covariance

between diffusive return and jumps in consumption on Black-Scholes implied volatility sneers. As

we can see from figure 7, the ability to reproduce the sneers of figure 6 vanishes if we assume that

the diffusive return and jumps in the pricing kernel are uncorrelated. Figure 8 shows that the

shapes of the sneers observed in the marketplace can be reproduced when the covariance between

13The non-linear part of the equity diffusive risk premium is given by −λT [e−bσsyc

√
T − 1].
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the diffusive consumption and equity jumps is σcy = 0.0048 obtained from Table II. Figure 8 also

illustrates the impact of alternative values of the covariance between the diffusive consumption and

equity jumps on Black-Scholes implied volatility sneers. As we can see from figure 8, the ability to

reproduce the sneers of figure 6 vanishes if we assume that the diffusive pricing kernel and equity

jumps are uncorrelated.

The median value of the jump intensity, λ, is consistent with less than two jumps per calendar

year. The median values of λ, α, and γ indicate that an equity jump of -10 percent or less is

expected to occur once every 3.03 years, and that an equity jump of -20 percent or less is expected

to occur once every 24.76 years. Based on their estimates of average jump intensity and jump

size, Santa-Clara and Yan (2006) report similar implications for market crashes, and state that

“the stock market should experience market crashes with a magnitude of 9.8 percent once every

1.26 years”. Although our estimate of expected time to market crash is more than the double the

expected time to market crash estimated by Santa-Clara and Yan (2006), the implied parameter

values of the GJD option pricing model (22) seem to embody market participant’s expectations

of ex-ante risk exposures encompassing risks in excess of those revealed by the historic record of

index returns. Our results are consistent with the existence of the “peso problem” as examined for

example by Brown, Goetzmann, and Ross (1995) and Veronesi (2004).

Bliss and Panigirtzoglou (2003) report a range for the estimated values of the power utility

function’s coefficient of proportional risk aversion for an investor with one-month horizon. The

median value of the implied coefficient, b, reported in Table 2 is within the range of their estimated

parameter values. Although larger than their estimated median, the degree of proportional risk

aversion implied by fitting the GJD model to our sample is not by itself large enough to account

for the equity risk premium puzzle in the sense of Mehra and Prescott (1985, 2003).

The average sum of squared pricing error, ”fval” in Table II, from fitting the GJD model to

the sample is consistent with an average absolute pricing error, $0.117. For the sample of 6,430
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options, 45.38% of GJD model values are within bid/ask spread.

5. A jumping stock in diffusion economies

This section specializes our general jump-diffusion option pricing model by restricting in two

different directions the covariance structure of the underlying uncertainty to aggregate consumption

and stock price given in formula (12). Throughout the section we assume that the representative

agent has a power utility function of consumption, that aggregate consumption follows a geometric

Brownian motion, and that the stock price follows a jump-diffusion process. The first subsection

presents the pricing kernel that discounts all assets throughout the section. The second subsection

gives new sufficient conditions for the Merton (1976) jump-diffusion model to hold in equilibrium.

The third subsection obtains a new option pricing model assuming that price jumps are correlated

with aggregate consumption.

5.1. The pricing kernel with diffusive consumption

This subsection presents the stochastic process followed by the pricing kernel, and the equi-

librium interest rate of the economies studied in the next two subsections.

The section assumes that aggregate consumption and the stock price follow respectively a

geometric Brownian motion and a jump-diffusion process given by the following two equations:

CT = exp

(

ln(C0) + µcT − σ2
c

2
T + σcBc(T )

)

, (32)

ST = exp



ln(S0) + µT − σ2

2
T + σB(T ) +

N(T )
∑

i=1

Yi



 . (33)

Equation (32) means that aggregate consumption follows a geometric Brownian motion, and

has a lognormal distribution at the end of each period. Equation (33) is identical to equation (6) of

Merton (1976), and implies that the stock price follows a jump-diffusion process, where the jumps

are IID lognormal variates.
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The next result yields the process followed by the pricing kernel of the economies where we are

going to derive option prices. The result is obtained as a special case of Lemma 1 when aggregate

consumption does not jump.

Corollary 1. (The pricing kernel) Assume that the representative agent has a power utility

function of consumption given by equation (3), and that aggregate consumption is given by equation

(32). Then the pricing kernel is given by:

ψ(C) = exp

(

ln(ρ)T − bµcT + b
σ2

c

2
T − bσcBc(T )

)

. (34)

It can easily be seen that the pricing kernel given by equation (34) has a standard lognormal

distribution:

ψ(C) ∼ Λ

(

ln(ρ)T − bµcT + b
σ2

c

2
T, b2σ2

cT

)

, (35)

where E(ln(ψ(C))) = ln(ρ)T−bµcT +bσ2
c

2 T and V ar(ln(ψ(C))) = b2σcT . It is well known that the

pricing kernel is lognormally distributed when aggregate consumption is lognormal and the investor

has a power utility (See e.g. Cochrane (2003)). We use this pricing kernel to obtain two distinct

option pricing models, one with idiosyncratic jump risk and the other with systematic jump risk.

Naik and Lee (1990), Ahn (1992), and Amin and Ng (1993) assume that consumption follows a

jump-diffusion process in economies where investors have log or power utility functions to study

jump-diffusion option pricing models with systematic jump risk.

The equilibrium interest rate is obtained as a special case of Lemma 2 when aggregate con-

sumption does not jump. The result is presented in the next corollary.

Corollary 2. (The interest rate) Assume that the representative agent has a power utility

function of consumption given by equation (3), and that aggregate consumption follows the geometric

Brownian motion given by equation (32). Let the current price of the riskless bond be B0 = e−rT ,

where r is the riskless interest rate. Then the equilibrium interest rate is given by:

r = −ln(ρ) + bµc −
1

2
bσ2

c −
1

2
b2σ2

c . (36)
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5.2. The Merton model in a diffusion economy

This subsection obtains new sufficient conditions for the jump-diffusion option pricing model

of Merton (1976) to hold in an equilibrium economy by assuming that the representative agent has

a power utility function, aggregate consumption follows a geometric Brownian motion, and that

the stock price follows a jump-diffusion process. In this subsection, we also assume that aggregate

consumption and stock price are correlated with Cov[σcBc(T ), σB(T )] = σcsT . There is no other

source of correlation in the economy. As highlighted by Merton (1976), his option pricing model

assumes that jumps are idiosyncratic, i.e. nonsystematic. In our economy, this assumption means

that the jumps of the stock are not correlated with the process followed by aggregate consumption.

First, we present the underlying equilibrium relation of the economy which is obtained as a

special case of Proposition 1 when aggregate consumption does not jump, and the only source of

covariance in the economy is the covariance between diffusive consumption and diffusive price σcs.

Corollary 3. (The expected stock return in equilibrium) Assume that the repre-

sentative agent has a power utility function of consumption given by equation (3), that aggregate

consumption follows the geometric Brownian motion given by equation (32), and that the stock price

follows the jump-diffusion process given by equation (33). Assume that aggregate consumption and

stock price are correlated with Cov[σcBc(T ), σB(T )] = σcsT , and that there is no other source of

correlation in the economy. Then the expected stock return in equilibrium is given by:

µ+ λ

[

eα+γ2

2 − 1

]

= r+ bσcs. (37)

Equation (37) has a simple interpretation. It tells us that the expected stock return in equi-

librium is equal to the riskless return plus a risk premium. The expected stock return is given by

the expected stock return due to the diffusion µ and the expected stock return due to the jumps

λ

[

eα+γ2

2 − 1

]

. The risk premium of the stock is given by the instantaneous covariance between the

diffusions of the stock and the pricing kernel, bσcs. The risk premium of the stock is positive if the
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stock and consumption are positively correlated since the coefficient of proportional risk aversion,

b, is positive. There is no risk premium associated with the jumps since the price jumps are not

correlated with aggregate consumption. This equation (37) can be seen as a version of the CCAPM

under the jump-diffusion process.

Corollary 4. (The jump–diffusion model of Merton (1976) as a RNVR) Assume

that the representative agent has a power utility function of consumption given by equation (3),

that aggregate consumption follows the geometric Brownian motion given by equation (32), and that

the stock price follows the jump–diffusion process given by equation (33). Assume that aggregate

consumption and stock price are correlated with Cov[σcBc(T ), σB(T )] = σcsT , and that there is

no other source of correlation in the economy. Then the jump–diffusion option pricing model of

Merton (1976) holds.

Corollary 4 is an important result, and it shows that the Merton (1976) model can be obtained

in an economy where the pricing kernel is lognormal. This Corollary is obtained as a special case

of Theorem 1 when aggregate consumption does not jump, and the only source of covariance in

the economy is σcs. In their jump-diffusion model with systematic jump-risk, Naik and Lee (1990,

p. 504) argue that their “formulas price the risk in option cash-flows ...by restricting investor’s

preferences. This is the reason why the risk aversion parameter enters the option pricing formulas”.

Corollary 4 provides a counterexample to this argument by showing that even with restrictions in

preferences the preference-free model of Merton (1976) might hold.

The Black-Scholes (1973) formula was obtained as a risk-neutral valuation relationship (RNVR)

by Rubinstein (1976), Brennan (1979), Stapleton and Subrahmanyam (1990), Camara (2003) and

many others assuming that the representative agent has a power utility function, that aggregate

consumption has a lognormal distribution, and that the stock price has a lognormal distribution.

Camara (2003) also shows that the Black-Scholes (1973) model holds with HARA utility when ag-

gregate consumption has a displaced lognormal distribution. We highlight that the Merton (1976)
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model also holds when we replace power utility with HARA utility and consumption lognormally

distributed with consumption displaced lognormally distributed, which provides a range of new suf-

ficient conditions for this model. All these equilibrium economies, where the Black-Scholes model

was derived, had a lognormal pricing kernel. Therefore, corollary 4 shows that different option

pricing formulas (i.e. the Black-Scholes (1973) model and the jump-diffusion option pricing model

of Merton (1976)) can be obtained with the same pricing kernel (i.e. a lognormal pricing kernel).

5.3. Rewarded stock price jumps in a diffusion economy

This subsection extends the jump-diffusion option pricing model of Merton (1976) in an equi-

librium economy by assuming that the representative agent has a power utility function, aggregate

consumption follows a geometric Brownian motion, and that the stock price follows a jump-diffusion

process. While in the previous subsection it was assumed that the only source of correlation be-

tween aggregate consumption and stock price was the correlation between the Brownian motions of

aggregate consumption and stock price, in this section we also assume that price jump is correlated

with aggregate consumption. In this way, jump risk becomes systematic risk since it is correlated

with the pricing kernel. Jump risk is priced or rewarded in equilibrium, and this jump risk pre-

mium affects the price of the assets in equilibrium. This analysis is in sharp contrast with previous

jump-diffusion option pricing models with systematic jump risk, where it is always assumed that

systematic jump risk arises with a simultaneous jump in consumption and the stock price. In our

economy, aggregate consumption does not jump. The literature on jump-diffusion option pricing

models with systematic jump risk includes Naik and Lee (1990), Ahn (1992), and Amin and Ng

(1993).

The subsection assumes that aggregate consumption and the stock price follow respectively

a geometric Brownian motion and a jump–diffusion process given by equations (32) and (33). In

this subsection, we also assume that aggregate consumption and stock price are correlated with
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Cov[σcBc(T ), σB(T )] = σcsT , and Cov[σcBc(T ), Yi] = ρc,yγσc

√
T = σcy

√
T where σcy

√
T denotes

the covariance between the aggregate consumption diffusion and the stock price jump. There is no

other source of correlation in the economy. Under these assumptions, the results of Corollaries 1

and 2 are still valid in this economy. However, the results of Corollaries 3 and 4 are no longer valid.

First, we extend Corollary 3, which is obtained as a special case of Proposition 1.

Corollary 5. (The expected stock return in equilibrium) Assume that the repre-

sentative agent has a power utility function of consumption given by equation (3), that aggregate

consumption follows the geometric Brownian motion given by equation (32), and that the stock price

follows the jump-diffusion process given by equation (33). Assume that aggregate consumption and

stock price are correlated with Cov[σcBc(T ), σB(T )] = σcsT , Cov[σcBc(T ), Yi] = σcy

√
T , and that

there is no other source of correlation in the economy. Then the equilibrium expected stock return

is given, in an implicit form, by the riskfree interest rate plus the stock risk premium:

µ− bσcs + λ

[

eα+γ2

2
−bσcy

√
T − 1

]

= r. (38)

Corollary 5 offers a new way to look at the systematic jump risk of the stock in an economy

where both types of equity risk are systematic, diffusion risk and jump risk. Intuitively, equation

(38) tells us that the expected stock return over the risk premium of the stock is equal to the risk-

free rate of return. The expected stock return over the risk premium of the stock has two parts, a

part associated with the diffusion of the stock and a part associated with the jumps of the stock.

The part associated with the diffusion of the stock is µ− bσcs. It is the expected stock return due

to the diffusion over the diffusion risk premium. The part associated with the jumps of the stock

is λ

[

eα+γ2

2
−bσcy

√
T − 1

]

. We interpret this term as the expected return of the jumps over the risk

premium of the jumps since the expected return of a single jump is ln(E[eYi]) = α+ γ2

2 and the risk

premium of a single jump is bσcy

√
T . Since, in this economy, we have a compound Poisson process

where the jump is correlated with a Brownian motion, we can not present the equilibrium relation

of the economy in the traditional way where the expected return of the stock is given by the riskless
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return plus the risk premium. However, this is also the meaning of equation (38) which can be seen

as a version of the CCAPM under jump-diffusion when consumption diffusion is correlated with

stock price jump.

Corollary 6. (Option prices with ‘visible’ systematic jump risk premium) Assume

that the representative agent has a power utility function of consumption given by equation (3),

that aggregate consumption follows the geometric Brownian motion given by equation (32), and that

the stock price follows the jump-diffusion process given by equation (33). Assume that aggregate

consumption and stock price are correlated with Cov[σcBc(T ), σB(T )] = σcsT , Cov[σcBc(T ), Yi] =

σcy

√
T , and that there is no other source of correlation in the economy. Then the jump–diffusion

option pricing model with ‘visible’ systematic jump risk premium is given by:

Pc =
∞
∑

n=0

(λ
′
T )ne−λ

′
T

n!

(

S0N (d1(n)) −Ke−rnTN (d2(n))
)

, (39)

where:

d1(n) =
ln
(

S0
K

)

+ (rn +
σ2

n

2 )T

σn

√
T

, d2(n) = d1(n) − σn

√
T ,

λ
′

= λeα+γ2

2
−bσcy

√
T ,

σ2
n = nγ2/T + σ2,

rn = r − λ

[

eα+γ2

2
−bσcy

√
T − 1

]

+ n

(

α+
γ2

2
− bσcy

√
T

)

/T.

In order to write equation (39), first one obtains the price of the call in equilibrium. The

equilibrium option pricing formula depends on several parameters including the expected return on

the stock due to the diffusion µ, the risk premium associated with the diffusion of the stock bσcs,

the expected return of a single jump α+ γ2

2 , and the risk premium of a single jump bσcy. Second,

one uses the equilibrium expression of the underlying asset (i.e. equation (38) to eliminate two

parameters, µ and bσcs from the option pricing formula. The result is equation (39) which extends

the jump-diffusion option pricing model of Merton (1976) to an economy with systematic diffusion

risk and systematic jump risk.
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Previous work on the systematic jump risk has assumed that there is a systematic jump risk

when there are simultaneous jumps in aggregate consumption and stock price, and the jump sizes

in aggregate consumption and the stock price are correlated. See e.g. Naik and Lee (1990), Ahn

(1992), and Amin and Ng (1993). These important models deeply contrast with this application of

our general model since in this economy aggregate consumption does not even jump.

To understand the isolated effect of the covariance between the diffusive pricing kernel and

stock price jumps bσcy on option prices, we provide a sample of call option prices given by equation

(39) as a percentage of Merton’s (1976) jump-diffusion option prices for a representative set of

parameter values in Table IV. Option prices given by (39) are generated by assuming that S0 = 100,

r = 2 percent, σ = 25 percent, λ = 2, γ = 15 percent, α = −γ2

2 = −0.01125, b = 3.72, σc = 15

percent, and ρcy = 0.75 (or ρcy = 0 in Merton’s case).

From Table IV we notice that the systematic jump risk arising from the covariance between the

diffusive pricing kernel and price jumps is more important for short-term deep-out-of-the-money

options. The short-term deep-out-of-the-money call options become less expensive than under

Merton’s model because when ρcy is positive the intensity λ
′
decreases. The fact that the “number

of jumps” decreases in the model makes short-term deep-out-of-the-money calls less attractive and

cheap. The long term options become more expensive relatively to the Merton’s (1976) model since

the systematic jump risk increases with the square root of time. This maturity effect makes long

term options more expensive than under the Merton’s (1976) model. Option prices given by (39),

and implicit in Table IV, generate a smile effect for the Black-Scholes implied volatilities.

6. Stock price diffusions in jumping economies

This section specializes our general jump-diffusion option pricing model by restricting in two

other directions the covariance structure of the underlying uncertainty to aggregate consumption

and stock price given in formula (12). Throughout the section we assume that aggregate consump-
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tion follows a jump-diffusion process, and that the stock price follows a geometric Brownian motion.

The first subsection presents the pricing kernel that is going to be used to discount assets through-

out the section. The second subsection gives new sufficient conditions for the Black-Scholes (1973)

model to hold in equilibrium. The third subsection gives a new option pricing model assuming that

the stock price diffusion is correlated with aggregate consumption jumps.

6.1. The pricing kernel with jump–diffusion consumption

This subsection presents the stochastic process of the pricing kernel, and the equilibrium

interest rate of the two economies studied in this section.

The section assumes that aggregate consumption and the stock price follow respectively a

jump-diffusion process and a geometric Brownian motion given by the following two equations:

CT = exp



ln(C0) + µcT − σ2
c

2
T + σcBc(T ) +

N(T )
∑

i=1

Yc,i



 , (40)

ST = exp

(

ln(S0) + µT − σ2

2
T + σB(T )

)

. (41)

Equation (40) means that aggregate consumption follows a jump-diffusion process, which

contrasts with all previous representative agent economies where the Black-Scholes model has been

derived.14 Equation (41) is identical to the assumption made by Black-Scholes (1973), and implies

that the stock price follows a geometric Brownian motion, and therefore is lognormal at the end of

each period. In our economy, this particular stock does not jump. We make the following remark

to have a self-contained section.

Remark 1. (The pricing kernel) In this section, assume that the representative agent has

a power utility function of consumption given by equation (3) and that aggregate consumption is

given by equation (40). Then the pricing kernel is given by equation (14) of Lemma 1.

As it can be seen, the pricing kernel given by equation (14) is not lognormal, but instead

14See Camara (2003) for a review.
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follows a jump-diffusion process. All previous equilibrium literature that obtained the Black-Scholes

model made joint assumptions on the utility function of the representative agent and on aggregate

consumption that always implied a lognormally distributed pricing kernel. See e.g. Rubinstein

(1976), Brennan (1979), Stapleton and Subrahmanyam (1990), and Camara (2003). It should

be stressed that the no-arbitrage literature on the Black-Scholes model also assumes a lognormal

pricing kernel. See e.g. Cox and Huang (1989) and Duffie (2001). The pricing kernel of this section

is clearly not lognormal. This contrasts our work with previous literature on sufficient conditions

for the Black-Scholes model to hold.

The interest rate in equilibrium is obtained as a special case of Lemma 2 when the aggregate

consumption Brownian motion Bc(T ) and aggregate consumption jumps Yc,i are independent.

Corollary 8. (The interest rate) Assume that the representative agent has a power utility

function of consumption given by equation (3) and that aggregate consumption follows the jump-

diffusion process given by equation (40) with Bc(T ) independent of Yc,i. Let the current price of the

riskless bond be B0 = e−rT , where r is the riskless interest rate. Then the equilibrium interest rate

is given by:

r = −ln(ρ) + bµc −
1

2
bσ2

c −
1

2
b2σ2

c − λ

[

e−bαc+b2
γ2
c
2 − 1

]

. (42)

Equation (42) yields the equilibrium interest rate of the economy which, as we see, depends

on the jump parameters of consumption.

6.2. The Black-Scholes model in an economy with jumps

This subsection obtains new sufficient conditions for the Black-Scholes model (1973) to hold

in an equilibrium economy by assuming that the representative agent has a power utility function,

aggregate consumption follows a jump-diffusion process, and that the stock price follows a geometric

Brownian motion. In this subsection, we also assume that aggregate consumption and stock price

are correlated with Cov[σcBc(T ), σB(T )] = σcsT . There is no other source of correlation in the
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economy. We start by presenting the underlying equilibrium relation between expected return, risk

premium and interest rate.

Corollary 9. (The expected stock return in equilibrium) Assume that the repre-

sentative agent has a power utility function of consumption given by equation (3), that aggregate

consumption follows the jump-diffusion process given by equation (40), and that the stock price fol-

lows the geometric Brownian motion given by equation (41). Assume that aggregate consumption

and stock price are correlated with Cov[σcBc(T ), σB(T )] = σcsT , and that there is no other source

of correlation in the economy. Then the expected stock return in equilibrium is given by:

µ = r + bσcs. (43)

Equation (43) is identical to the CCAPM obtained by Rubinstein (1976) in an economy where

both aggregate consumption and the stock price are lognormally distributed. This equation tells

us that the expected stock return in equilibrium is equal to the riskless return plus a risk premium.

The risk premium of the stock is given by the instantaneous covariance between the diffusions

of the stock and the pricing kernel, bσcs. The risk premium of the stock is positive if the stock

and consumption are positively correlated since the coefficient of proportional risk aversion, b, is

positive.

We now state formally that the Black-Scholes model holds in this economy.

Corollary 10. (The Black-Scholes model) Assume that the representative agent has a

power utility function of consumption given by equation (3), that aggregate consumption follows

the jump-diffusion process given by equation (40), and that the stock price follows the geometric

Brownian motion given by equation (41). Assume that aggregate consumption and stock price are

correlated with Cov[σcBc(T ), σB(T )] = σcsT , and that there is no other source of correlation in the

economy. Then the Black-Scholes (1973) model holds.

Corollary 10 allows us to conclude that a given option pricing formula (i.e. the Black-Scholes

valuation equation) can be obtained with different pricing kernels (i.e. a lognormal pricing kernel
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and a jump-diffusion pricing kernel). Therefore, we withdraw the important conclusion that a

lognormal pricing kernel is not a necessary condition for the Black-Scholes model to hold. We could

extend this result for when aggregate consumption has multiple independent compound Poisson

processes uncorrelated with the Brownian motion. The jump-diffusion model of Merton (1976)

would also hold under such assumptions if the only source of correlation in the economy arises with

the Brownian motions of aggregate consumption and stock price. In the next subsection, we study

what happens to the Black-Scholes (1973) model if stock price diffusion is correlated with aggregate

consumption jumps.

6.3. Rewarded stock price diffusions in an economy with jumps

This subsection extends the Black-Scholes option pricing model (1973) in an equilibrium econ-

omy (see Rubinstein (1976)) by assuming that the representative agent has a power utility function,

aggregate consumption follows a jump-diffusion process, and that the stock price follows a geometric

Brownian motion. While in the previous subsection it was assumed that the only source of corre-

lation between aggregate consumption and stock price was the correlation between the Brownian

motions of aggregate consumption and stock price, in this subsection we also assume that the stock

price diffusion is correlated with the jumps of aggregate consumption. In this way, the systematic

diffusion risk of the stock has two distinct sources, one that arises from the frictions between price

diffusion and the diffusion of the pricing kernel and another that arises from the frictions between

price diffusion and the jumps of the pricing kernel. The rewarded diffusion risk of the stock is a

nonlinear two factor model, where the factors arise from the frictions of the diffusive price with

the diffusion and the jumps of the pricing kernel. This analysis is in sharp contrast with previous

jump-diffusion literature since diffusion risk premium arising from the covariance between stock

price diffusion and jumps in the pricing kernel was not, to the best of our knowledge, previously

investigated.
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The section assumes that aggregate consumption and the stock price follow respectively a

jump-diffusion process and a geometric Brownian motion given by equations (40) and (41). In

this subsection, we also assume that aggregate consumption and stock price are correlated with

Cov[σcBc(T ), σB(T )] = σcsT , and Cov[σB(T ), Yc,i] = ρs,ycγcσ
√
T = σsyc

√
T where σsyc

√
T denotes

the covariance between the aggregate consumption jump and the stock price diffusion. There is

no other source of correlation in the economy. Under these assumptions, the results presented in

Remark 1 and Corollary 8 are still valid in this economy. However, the results of Corollaries 9 and

10 are no longer valid. First, we extend Corollary 9.

Corollary 11. (The expected stock return in equilibrium) Assume that the representa-

tive agent has a power utility function of consumption given by equation (3), that aggregate consump-

tion follows the jump-diffusion process given by equation (40), and that the stock price follows the

geometric Brownian motion given by equation (41). Assume that aggregate consumption and stock

price are correlated with Cov[σcBc(T ), σB(T )] = σcsT , Cov[Yc,i, σB(T )] = ρsycγcσ
√
T = σsyc

√
T ,

and that there is no other source of correlation in the economy. Then the expected stock return in

equilibrium is given by:

µ = r + bσcs + λ

[

e−bαc+
b2

2
γ2

c − 1

]

− λ

[

e−bαc+
b2

2
γ2

c−bσsyc

√
T − 1

]

. (44)

Corollary 11 offers a new way to look at the systematic diffusive risk of the stock. Equation

(44) shows that the expected rate of return on the stock is equal to the risk-free rate of return plus

the risk premium of the stock. The risk premium of the stock has two factors. The first factor

results from the covariance between the stock diffusion and the diffusion of the pricing kernel, and

is given by bσcs. The second factor results from the covariance between the stock diffusion and the

jumps of the pricing kernel, and is given by λ

[

e−bαc+
b2

2
γ2

c − 1

]

− λ

[

e−bαc+
b2

2
γ2

c−bσsyc

√
T − 1

]

.

Corollary 12. (The diffusion option pricing model) Assume that the representative

agent has a power utility function of consumption given by equation (3), that aggregate consump-

tion follows the jump-diffusion process given by equation (40), and that the stock price follows the
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geometric Brownian motion given by equation (41). Assume that aggregate consumption and stock

price are correlated with Cov[σcBc(T ), σB(T )] = σcsT , Cov[Yc,i, σB(T )] = σsyc

√
T , and that there

is no other source of correlation in the economy. Then the diffusion option pricing model is given

by:

Pc =
∞
∑

n=0

(λ
′
T )ne−λ

′
T

n!

(

S0N (d1(n)) −Ke−rnTN (d2(n))
)

, (45)

where:

d1(n) =
ln
(

S0
K

)

+ (rn + σ2

2 )T

σ
√
T

, d2(n) = d1(n) − σ
√
T ,

λ
′

= λe−bαc+b2
γ2
c
2
−bσsyc

√
T ,

rn = r − bnσsyc/
√
T + λ

[

e−bαc+ b2

2
γ2

c − 1

]

− λ

[

e−bαc+ b2

2
γ2

c−bσsyc

√
T − 1

]

.

The option pricing formula (45) is of the Merton’s (1976) type, and depends on preference and

consumption parameters. It depends on the part of the risk premium of the stock that arises due to

the frictions of the price diffusion with the jumps of the pricing kernel. We have used the expected

rate of return on the stock obtained in equilibrium to eliminate the part of the risk premium of the

stock that arises due to the frictions of the price diffusion with the diffusion of the pricing kernel.

Hence, the option pricing formula (45) shows clearly that prices depend on the risk premium that

arises from jumps in the pricing kernel.

To understand the isolated effect of the covariance between the diffusive stock price and the

jumps of the pricing kernel bσsyc on option prices, we provide a sample of call option prices given

by equation (45) as a percentage of Black-Scholes (1973) option prices for a representative set of

parameter values in Table V. Option prices given by (45) are obtained by assuming that S0 = 100,

r = 2 percent, σ = 25 percent, λ = 2, γc = 12.5 percent, αc = −γ2
c

2 = −0.00781, b = 3.72, and

ρsyc = 0.75 (or ρsyc = 0 in the Black-Scholes case). Since there are jumps in the pricing kernel,

and those jumps are correlated with the stock price, the distribution implicit in the option pricing

formula (45) becomes more leptokurtic than the distribution implicit in the Black-Scholes model.
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Hence, options become more expensive under the option pricing model (45) than under the Black-

Scholes model as we can see in Table V. Option prices given by (45) when bσsyc > 0 generate a

sneer, with implied volatilities decreasing with the strike price, since the distribution implicit in

equation (45) becomes negatively skewed. While this factor contributes for the sneer observed in

equity option markets, there might be other factors that also affect the sneer observed in market

data. See e.g. Rubinstein (1994).15

7. Correlated jump–diffusion option pricing model

This section provides another interesting application of our general model by specializing yet

into another direction the covariance structure of the underlying uncertainty to aggregate con-

sumption and stock price given in formula (12). Suppose that aggregate consumption follows the

geometric Brownian motion given by equation (32), and that the stock price follows the jump-

diffusion process given by equation (33). Aggregate consumption and the stock price are only

correlated via the Brownian motions, where Cov[σcBc(T ), σB(T )] = σcsT . The stock price Brow-

nian motion and stock price jumps are correlated where Cov[σB(T ), Yi] = σsy

√
T . There are no

further correlated variates in this economy. This is an extension of the Merton (1976) model for

when the size of the jumps depends on the stock price level.

The pricing kernel and the interest rate are given by equation (34) and equation (36), respec-

tively. The expected return of the stock in equilibrium is given by the following equation:

µ+ λ

(

eα+γ2

2
+σcy

√
T − 1

)

= r + bσcs. (46)

This equation tells us that the expected rate of return of the stock in equilibrium is equal

to the riskless return plus the risk premium of the stock. The expected return of the stock has

15Option prices given by (45) when bσsyc
< 0 yield a sneer with implied volatilities increasing with the strike price,

since the distribution implicit in equation (45) becomes positively skewed.
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three parts, one due to the diffusion, other due to the jumps, and the third due to common

shocks. However we can not disentangle the expected return due to the Brownian motion from

the expected return due to the jumps since the term σsy represents precisely the expected return

due to the covariance between the diffusion of the stock and the jump of the stock.16 The risk

premium of the stock represents the reward of the systematic risk of the stock which is diffusive in

this particular application.

The price of the call option in this application of the general model is given by the following

valuation equation:

Pc =
∞
∑

n=0

(λ
′
T )ne−λ

′
T

n!

(

S0N (d1(n)) −Ke−rnTN (d2(n))
)

, (47)

where:

d1(n) =
ln
(

S0
K

)

+ (rn + σ2
n

2 )T

σn

√
T

, d2(n) = d1(n) − σn

√
T ,

λ
′

= λeα+γ2

2
+σsy

√
T ,

σ2
n = nγ2/T + 2nσsy/

√
T + σ2,

rn = r− λ

(

eα+γ2

2
+σsy

√
T − 1

)

+
n

T

(

α +
γ2

2
+ σsy

√
T

)

.

This option pricing model differs from Merton (1976) since the covariance between the level

of the stock price and the jumps of the stock price σsy affects three parameters, the “intensity”

λ
′
, the “volatility” σn, and the “riskless return” rn. When this σsy is zero then Merton (1976)

option pricing formula obtains. It is interesting to observe that equation (47) does not depend on

preference parameters.

To understand better the isolated effect of the covariance between the diffusive stock price

and stock price jumps σsy on option prices, we provide a sample of call option prices given by

equation (47) as a percentage of Merton’s (1976) jump-diffusion option prices for a representative

16Ait-Sahalia (2004) shows that it is possible to perfectly disentangle Brownian noise from jumps in an economy

where the Brownian motion and the jumps are independent.
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set of parameter values in Table VI. Option prices given by (47) are generated by assuming that

S0 = 100, r = 2 percent, σ = 25 percent, λ = 2, γ = 15 percent, α = −γ2

2 = −0.01125, and

ρsy = −0.25 (or ρsy = 0 in Merton’s case). In this application of our model, since ρsy < 0, an

higher level of prices is associated with price jumps down and a lower level of prices is associated

with price jumps up. In the Merton’s model the level of prices is independent of the size of the

jumps, a characteristic of the model that seems counter-intuitive as the recent crash of the Chinese

stock market demonstrates.

From Table VI we notice that the effect arising from the covariance between the diffusive

price and price jumps is more important for out-of-the-money options, and long-term options. The

short-term out-of-the-money call options are less expensive than under Merton’s model because

when ρsy is negative the intensity λ
′
decreases. The fact that the number of jumps decreases in

the model makes short-term out-of-the-money calls less attractive and cheap. When ρsy < 0, long

term options are less expensive relatively to the Merton’s model since σ2
nT tends to be smaller for

the model (47) than it is for the Merton’s model when the time to maturity T increases. This effect

was explained in some detail for the multivariate case in section 3. Option prices given by (47)

with ρsy = −0.25 generate a nonmonotonic term structure of implied volatilities of at-the-money

options.
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8. Conclusion

In this paper, we extend the analysis of Rubinstein (1976) on the Black-Scholes (1973) model

to the Merton (1976) jump-diffusion option pricing model in several directions. For example,

we assume that the pricing kernel follows a jump-diffusion process and the stock price follows a

geometric Brownian motion, and we ask the following question: does the Black-Scholes (1973)

model hold under such conditions? Surprisingly, our answer is that it depends. The Black-Scholes

model holds if the diffusion of the pricing kernel and the diffusion of the stock price are correlated,

and the jumps of the pricing kernel are independent of the diffusive stock price. However, the

Black-Scholes model does not hold anymore if the jumps of the pricing kernel are correlated with

the diffusive stock price. In this case, option prices are given by a new option pricing formula of

the Merton’s (1976) type. This result is surprising because the literature has been unanimous in

linking the Black-Scholes (1973) model with a lognormal pricing kernel.

We invert the above argument to ask if the Merton (1976) model holds when the pricing

kernel is lognormal, and the stock price follows a jump-diffusion process. Once again we reach the

conclusion that the model holds if the diffusive pricing kernel and stock price jumps are independent,

but that it does not hold anymore if they are correlated. In this last case, we get a new option

pricing model with systematic jump risk in an economy where the pricing kernel does not jump.

The above models are special cases of our general jump-diffusion option pricing model that

fully takes into account the covariance structure of the underlying uncertainty to the pricing kernel

and the stock price. Our general option pricing formula is affected, among other parameters, by

the covariance between the diffusive stock price and the stock price jumps, the covariance between

the diffusive stock price and the pricing kernel jumps, the covariance between the stock price jumps

and the diffusive pricing kernel, and the covariance between the diffusive pricing kernel and the

jumps of the pricing kernel. These four covariances do not affect any other existing option pricing

formula, and they are all statistically different from zero. The covariance between the diffusive
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price and price jumps is negative in the sample, and it plays a novel role in jump-diffusion models.

It generates a non-monotonic term structure of implied volatilities of at-the-money options similar

to the observed in the marketplace. This reflects the fact that when market prices are high then

it is more probable to observe jumps down. This negative correlation between diffusive return and

price jumps has a negative effect of 1.83 percent on the annual expected equity return.

Our general jump diffusion option pricing model has implicit an annual equity jump risk

premium of 12.1 percent, but our monthly equity jump risk premiums are not constant. The

covariance between the stock price jumps and the diffusive pricing kernel is responsible for 45

percent of this annual equity jump risk premium. The fact that we take into account the covariance

between the diffusive stock price and the jumps of the pricing kernel increases the annual diffusive

equity risk premium by 4.9 percent. We see these two new risk premium factors explaining the

sneers that arise in options market prices.
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Appendix A

In general, any two stochastic processes are correlated. This statement follows from Feller

(1971, p. 82).17 The uncorrelated stochastic processes are very special processes. The Brownian

motion and the compound Poisson processes are correlated in general if the size of the jump has

a continuous distribution. We first show that the Brownian motion and the compound Poisson

process with i.i.d jump sizes normally distributed are indeed correlated. Then, when we fix a given

time T , the Brownian motion at this time is correlated with the size of jumps, for every jump. We

also show that equation (7) on page 7 is mathematically valid.

First we give an explicit construction to show that the correlation does indeed exist between

the Brownian motion and the compound Poisson process, where the i.i.d jump sizes are normally

distributed.

Let B(t) be a Brownian motion. Define the maximal process M(t) = sups≤t B(s). Let T1 =

inf{s : M(s) = B(s)+1}. Using induction to define Ti+1 = inf{s > Tn : supTi≤u≤s B(u) = B(s)+1},

we can define

Y (t) = sup
Ti≤u≤t

B(u); Ti ≤ t < Ti+1.

Now the process Y (t) is an increasing process with jumps and the jump sizes are i.i.d with normal

distributions. Then there is a way to manage the time-change Y by using the fact that T1, T2 −

T1, · · · , Ti+1 − Ti, · · · are i.i.d exponential random variables. The idea of the construction of the

compound Poisson process Y (t) follows Revesz (1981).

The Y (t) is an integrable compound Poisson process with i.i.d for the size of the jump, where

Y (t) is given by
∑N(t)

i=1 Yi with the counting process N (t) defined by Ti’s and Yi by B(u)’s in the

construction. There exists a time-change such that one has the representation Y (t) = B(T (t)). Now

17The independent random variables have the positive diagonal covariance matrix. The covariance matrix of any

non-degenerate probability distribution is positive definite (see Feller 1971, p. 82, line 12). The positive definite

matrices are much more general than those positive diagonal matrices.
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we define a time-shift compound Poisson process Y
′
(T (t)) = Y (t) for each t. The new compound

Poisson process Y
′
is correlated with B(T (t)), and Cov(B(T (t)), Y

′
(T (t))) = T (t). Until now, we

have shown that the Brownian motion B(t) and the compound Poisson process Y (t) are correlated

if the jump sizes are normally distributed. This proves that the Brownian motion B(t) and the

compound Poisson process Y (t) are correlated at all the time. This construction also follows from

Khoshnevisan (1993).

We now give a second proof of the correlation between the Brownian motion B(T ) and the

compound Poisson process Y (T ) where the size of jumps are i.i.d normal random variables by using

the imbedding method in stochastic theory. Let Z be a compensated compound Poisson process.

Then we can define

Zn(t) = Z(nt)/(γ
√
n),

where n is an integer number and γ is the standard deviation of the jump size. The well-known

result in probability is that the compound Poisson process Zn converges to the Brownian motion

in the weak convergence with the equipped Skorohod topology (Corollary 3.7 of Khoshnevisan

(1993)). The explicit construction of Z(t) is also give in section 2 of Khoshnevisan (1993) and the

size of jumps for the process Z satisfies the i.i.d in Lemma 2.1 of Khoshnevisan (1993).

Therefore we have a compound Poisson process Y = Zn for large enough n and

Cov(Y (T ), B(T )) = Cov(B(T ) + Zn(T )− B(T ), B(T ))

= Cov(B(T ), B(T )) +Cov(Zn(T )− B(T ), B(T )) = T,

and the proof is complete.

Now we show that when we fix the time T , the Brownian motionB(T ) at this time is correlated

with the size of jumps Yi, i.e., Cov(B(T ), Yi) 6= 0 for every i. Since the construction for each Yi is

identical with different time-change, we can show this by using the contradiction method. Suppose

Cov(B(T ), Yi) = 0 for one of the size of jumps. Note that the Brownian motionB(T ) is uncorrelated
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with the counting process N (t). From the i.i.d property, we have Cov(B(T ), Yi) = 0 for all i. Then

using the law of iterated expectation for the compound Poisson process, we have

Cov(B(T ), Y (T )) =
∞
∑

n=0

(λT )ne−λT

n!
E

(

B(T ) · (
n
∑

i=1

Yi)|N (T ) = n

)

=
∞
∑

n=0

(λT )ne−λT

n!
E

(

B(T ) · (
n
∑

i=1

Yi)

)

=
∞
∑

n=0

(λT )ne−λT

n!

(

n
∑

i=1

Cov(B(T ), Yi)

)

= 0.

which contradicts what we have proved, that is the correlation between the Brownian motion B(t)

and the compound Poisson process. Therefore we have shown that the size of jump Yi and the

Brownian motion B(T ) at time T are correlated.

Now we show that the covariance structure summarized in equation (7) is indeed correct. It

is enough to show that Cov(B(T ), Yi) = γρsy

√
T since the other covariance entries are obtained in

the same way. This follows from the standard definition of covariance

Cov(B(T ), Yi) = σB(T )σYi
ρB(T )Yi

,

where Cov(B(T ), Yi) is the covariance between the Brownian motion and the jump size, σB(T ) is

the standard deviation of the Brownian motion B(T ), σYi
is the standard deviation of the jump size

Yi, and ρB(T )Yi
is the correlation between B(T ) and Yi. Since σB(T ) =

√
T , σYi

= γ, ρB(T )Yi
= ρsy,

our equation (7) on page 7 is mathematically valid.

49



Appendix B

Proof of Lemma 1: Note that ψ(C) = ρT (CT

C0
)−b for ρ > 0. The result follows from the

definition of CT and the pricing kernel. The 1–dimensional case follows from the identifications on

ac(T ) = ln(C0) + µcT − σ2
c

2 T and βc = σc. 2

Proof of Lemma 2: By equation (2) and φ(ST ) = 1, e−rT = E(ψ(C)|F0) = E(ψ(C)). By

Lemma 1, we have

E(ψ(C)) = ρT e−b(ac(T )−ac(0)) · E(e−bβc·Bc(T )−bYc),

with Yc =
∑N(T )

i=1 Yc,i and Yc,i ∼ N (αc, γc) for 1 ≤ i ≤ n.

E(e−bβc·Bc(T )−bYc) =
∞
∑

n=0

(λT )ne−λT

n!
E(e−bβc·Bc(T )+

∑n

i=1
(−bYc,i)|N (T ) = n) (48)

=
∞
∑

n=0

(λT )ne−λT

n!
e−bαcn+ b2

2
βcΣcβT

c ·T+ 1
2
b2γ2

c n+b2〈βc,1〉γcρcyc

√
Tn

= e−λT+ b2

2
βcΣcβT

c ·T eλT (e−bαc+
1
2 b2γ2

c +b2〈βc,1〉γcρcyc

√
T−1),

where the first equality follows from the law of iterated expectations for the Poisson process and

the second from E(eξ·X) = eξ·E(X)+ 1
2
ξΣXξT

for the normal distributions of X , and the last from

the basic identity of the exponential series. Our equilibrium interest rate follows from the above

identities. The 1–dimensional case follows from the identification ac(T ) = ln(C0) + µcT − σ2
c

2 T and

βc = σc. 2

Proof of Proposition 1: By using equations (2) and (4), we have 1 = E
(

ψ(C)ST

S0

)

. By

Lemma 1 and ST ,

ψ(C)
ST

S0
= ρT exp (−b(ac(T ) − ac(0))− bβc · Bc(T )− bYc) · exp(a(T )− a(0) + β · B(T ) + Y )

= exp (lnρ · T − b(ac(T )− ac(0)) + a(T )− a(0)− bβc · Bc(T ) + β · B(T ) + (−b)Yc + Y ) .

Using the law of iterated expectations for the Poisson process, one gets

E

(

ψ(C)
ST

S0

)

=
∞
∑

n=0

(λT )ne−λT

n!
E
(

eX |N (T ) = n
)

, (49)
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where X = ln ρ · T − b(ac(T )− ac(0))+ a(T )− a(0)− bβc ·Bc(T ) +β ·B(T )+ (−b)Yc + Ys from the

normal distributions. Note that

E(X) = ln ρ · T − b(ac(T )− ac(0)) + a(T )− a(0) − bαcn+ αn,

V ar(X) = b2βcΣcβ
T
c T + βΣsβ

TT + b2γ2
cn+ γ2n− 2bβcΣcsβ

T + 2b2〈βc, 1〉γcρcyc

√
Tn

−2b〈βc, 1〉γρcy

√
Tn− 2b〈β, 1〉γcρsyc

√
Tn+ 2〈β, 1〉γρsy

√
Tn − 2bvscn.

By the same method of the proof of Lemma 2, we have, from (49),

E

(

ψ(C)
ST

S0

)

=
∞
∑

n=0

(λT )ne−λT

n!
eE(X)+ 1

2
V ar(X)

=
∞
∑

n=0

(λT )ne−λT

n!
ex+yn

= ex+λT (ey−1),

where x and y are given by

x = ln ρ · T − b(ac(T )− ac(0)) + (a(T )− a(0)) +
1

2
b2βcΣcβ

T
c T +

1

2
βΣsβ

TT − bβcΣcsβ
TT ; (50)

y = −bαc+α+
1

2
b2γ2

c+
1

2
γ2+b2〈βc, 1〉γcρcyc

√
T−b〈βc, 1〉γρcy

√
T−b〈β, 1〉γcρsyc

√
T+〈β, 1〉γρsy

√
T−bvsc.

(51)

Hence x + λT (ey − 1) = 0 from 1 = ex+λT (ey−1). By Lemma 2 and equations (50) and (51), the

result (19) follows.

In the case of 1–dimensional Bc(T ) and B(T ), we have a(T ) = µT − σ2

2 T , βc = σc, β = σ and

r = µ− bσcs + λe−bαc+
1
2
b2γ2

c +b2σcyc

√
T (eα+γ2

2
−bσcy

√
T−bσsyc

√
T+σsy

√
T−bvsc − 1).

The result (20) follows. 2

Proof of Theorem 1: We write equation (2) for the call option, understanding that the

expectation is taken conditional on the information available at the current time using the definition

of the pricing kernel given by equation (4):

Pc = E

[

ρT
(

CT

C0

)−b

(ST −K)+
]

. (52)
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By Lemma 1, ψ(C) = ρT exp(−b(αc(T )− αc(0))− bβc · Bc(T )− bYc) = ev for

v = lnρ · T − b(αc(T )− αc(0))− bβc · Bc(T ) − bYc (53)

= −rT − b2

2
βcΣcβ

T
c · T − λT

(

e−bαc+b2
γ2
c
2

+b2〈βc,1〉γcρcyc

√
T − 1

)

−bβc · Bc(T ) +
n
∑

i=1

(−bYc,i) ,

where the second identity follows from Lemma 2. By the definition of ST , let ez = ST

S0
for

z = a(T ) − a(0) + β · B(T ) + Y. (54)

The first two moments of v and z are given by the followings:

µv = −rT − b2

2
βcΣcβ

T
c T − λT

(

e−bαc+b2
γ2
c
2

+b2〈βc,1〉γcρcyc

√
T − 1

)

− nbαc, (55)

σ2
v = b2βcΣcβ

T
c T + b2nγ2

c + 2nb2〈βc, 1〉γcρcyc

√
T , (56)

µz = a(T )− a(0) + nα, (57)

σ2
z = βΣsβ

TT + nγ2 + 2n〈β, 1〉γρsy

√
T , (58)

σvz = −bβcΣcsβ
TT − nb〈βc, 1〉γρcy

√
T − nb〈β, 1〉γcρsyc

√
T − nbvcs. (59)

Hence we have

Pc = E

(

S0e
v
(

ST

S0
− K

S0

)+
)

=
∞
∑

n=0

(λT )ne−λT

n!
S0E

[

ev
(

ez − K

S0

)+

| N (T ) = n

]

.

Note that

E

[

ev
(

ez − K

S0

)+

| N (T ) = n

]

(60)

=

∫ +∞

−∞

∫ +∞

a
ev+zf(v, z)dzdv− K

S0

∫ +∞

−∞

∫ +∞

a
evf(v, z)dzdv

= exp

(

µv + µz +
1

2
σ2

v +
1

2
σ2

z + σvz

)

N (d1) −
K

S0
exp

(

µv +
1

2
σ2

v

)

N (d2) ,
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where d1 =
µz+σvz+ 1

2
σ2

z−a

σz
, d2 = µz+σvz−a

σz
, a = ln(K/S0), f(v, z) is the p.d.f. of the normal variate,

and N (.) is the cumulative distribution function of a standard normal variate.

By Proposition 1, we get

(a(T )− a(0)) +
1

2
βΣsβ

TT − bβcΣcsβ
TT − λT (β2 − 1) = rT − λT (β1 − 1), (61)

where β1 and β2 are given by

β1 = e−bαc+ b2

2
γ2

c +b2〈βc,1〉γcρcyc

√
T+α+γ2

2
+〈β,1〉γρsy

√
T−b〈β,1〉γcρsyc

√
T−b〈βc,1〉γρcy

√
T−bvsc

β2 = e−bαc+ b2

2
γ2

c +b2〈βc,1〉γcρcyc

√
T .

Therefore, by a straightforward calculation from (55) to (60), we obtain

µv + µz +
1

2
σ2

v +
1

2
σ2

z + σvz = −λT (β1 − 1) + n lnβ1,

µv +
1

2
σ2

v = −rT − λT (β2 − 1) + n lnβ2,

Pc =
∞
∑

n=0

(λT )ne−λT

n!
{S0exp [−λT (β1 − 1) + nln (β1)]N (d1(n))

− Kexp [−rT − λT (β2 − 1) + nln(β2)]N (d2(n))} ,

=
∞
∑

n=0

(λβ1T )ne−λβ1T

n!
{S0N (d1(n)) −Ke−rnTN (d2(n))}

=
∞
∑

n=0

(λ
′
T )ne−λ

′
T

n!
{S0N (d1(n))−Ke−rnTN (d2(n))},

where d1(n), d2(n), rn and λ
′
are given by

d1(n) =
ln
(

S0
K

)

+ (rn + σ2
n

2 )T

σn

√
T

, d2(n) = d1(n) − σn

√
T ,

σ2
nT = σ2

z = nγ2 + 2n〈β, 1〉γρsy

√
T + βΣsβ

TT, (62)

rnT = rT + λT (β2 − 1) − λT (β1 − 1) + nln

(

β1

β2

)

,

λ
′

= λβ1.
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Notice that σ2
nT is always nonnegative. The rhs of (62) could be negative. In that case σ2

nT is

defined to be the Max
(

nγ2 + 2n〈β, 1〉γρsy

√
T + βΣsβ

TT, 0
)

. The desired result follows. If both

Bc(T ) and B(T ) are 1-dimensional, then the formula (22) follows from the identification used before

and σc = βc, σ = β. 2

Proof of Proposition 2: First, consider the approximated expected return on equity:

E(RS(T )) = µT + λT
[

eα+0.5γ2+σsy

√
T − 1

]

.

By using the second order Taylor formula ex = 1 + x+ x2/2 +R2(x), we have:

eσsy

√
T = 1 + σsy

√
T +

σ2
syT

2
+ R2(T

3/2).

E(RS(T )) = µT + λT
[

eα+0.5γ2 · eσsy

√
T − 1

]

= µT + λT

[

eα+0.5γ2 · (1 + σsy

√
T +

σ2
syT

2
+ R2(T

3/2))− 1

]

= T
[

µ+ λ(eα+0.5γ2 − 1)
]

+ λeα+0.5γ2
σsyT

3/2 +
1

2
λeα+0.5γ2

σ2
syT

2 + O(T 5/2),

where O(T 5/2) denotes for the order up to T 5/2.

Note that the first term T
[

µ+ λ(eα+0.5γ2 − 1)
]

which is linear in T is the usual expect return

on equity when the jump process is independent of the diffusive stock price.

Second, consider the approximated equity jump risk premium:

EJRP (T ) = −λT
[

e−bvsc−bσcy

√
T − 1

]

.

By the same method of using the second order Taylor formula, we have:

e−bσcy

√
T = 1 − bσcy

√
T +

b2σ2
cyT

2
+ R2(T

3/2).

Thus the jump risk premium EJRP (T ) is given by:

EJRP (T ) = −λT (e−bvsc − 1) + λe−bvscbσcyT
3/2 −

λb2σ2
cye

−bvsc

2
T 2 +O(T 5/2).
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Note that the first term −λT (e−bvsc − 1), again linear in T , is the usual equity jump risk premium

when σcy = 0.

Third, consider the approximated equity diffusive risk premium:

EDRP (T ) = bσcsT − λT
[

e−bσsyc

√
T − 1

]

.

By the second order Taylor formula, we have:

EDRP (T ) = bσcsT + λbσsycT
3/2 −

λb2σ2
syc

2
T 2 +O(T 5/2).

Note that the linear term in T is the usual equity diffusive risk premium when there is no correlation

between the diffusive equity and the jumps of the consumption process.

Fourth, let X1 = α+ 0.5γ2 +σsy

√
T , X2 = −bαc + 0.5b2γ2

c + b2σ2
cyc

√
T , X3 = −bvsc − bσcy

√
T

and X4 = −bσsyc

√
T . With the notations defined, we have:

E(RS(T )) = µT + λT (eX1 − 1), (63)

EJRP (T ) = −λT (eX3 − 1), (64)

EDRP (T ) = bσcsT − λT (eX4 − 1). (65)

Then equation (20) can be rewritten as:

rT = µT − bσcsT + λT (eX1+X2+X3+X4 − 1) − λT (eX2 − 1).

By the definition of r in (20) and (63), (64) and (65), we have:

E(RS(T ))− rT − EJRP (T )− EDRP (T )

= µT + λT (eX1 − 1) − [µT − bσcsT + λT (eX1+X2+X3+X4 − 1)

−λT (eX2 − 1)] + λT (eX3 − 1)− [bσcsT − λT (eX4 − 1)]

= λT [eX1 + eX2 + eX3 + eX4 − eX1+X2+X3+X4 − 3]

= −λT · {X1X2 +X1X3 +X1X4 +X2X3 +X2X4 +X3X4 +O(X3)},
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where the last equality follows from the second order Taylor formula for the function f(X1, X2, X3, X4) =

eX1 +eX2 +eX3 +eX4 −eX1+X2+X3+X4 −3 around the point (0, 0, 0, 0)18, and O(X3) stands for any

third order or above in variables X1, X2, X3, X4. Hence, up to the linear order, our result follows.

2

18Note that f(0, 0, 0, 0) = 0, Df(0, 0, 0, 0) = (0, 0, 0, 0) and D2f(0, 0, 0, 0) =



















0 −1 −1 −1

−1 0 −1 −1

−1 −1 0 −1

−1 −1 −1 0



















. Hence the

second order Taylor formula for f at (0, 0, 0, 0) is

f(X1, X2, X3, X4) = −(X1X2 + X1X3 + X1X4 + X2X3 + X2X4 + X3X4) + O(X3).
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Table I

Average quote midpoints and average bid ask spreads

The sample for this study is constructed from the market quotes of 6,430 one-month CBOE S&P 500

index options observed one-month prior to expiration. The sample period, January 1996 through April

2006, contains 124 dates on which the one-month option quotes are observed. The sample consists of

both call and put option quotes and includes only quotes for options with positive trading volume,

positive open interest and premiums greater than $3/8. All quotes were obtained from OptionMetrics.

Calls

S0/K < 0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 > 1.06 Total

midpoint 2.08 4.90 13.91 31.95 55.78 141.29

bid/ask spread 0.47 0.60 1.07 1.64 1.81 1.89

number of options 350 512 661 561 360 504 2948

Puts

S0/K < 0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 > 1.06 Total

midpoint 128.11 54.04 28.89 14.40 7.50 2.78

bid/ask spread 2.18 1.99 1.64 1.09 0.77 0.47

number of options 134 255 603 608 504 1378 3482
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Table II

Median implied parameter values

general jump-diffusion (GJD) option pricing model (22)

For each of the sample’s 124 observations the structural parameters of the generalized jump diffusion

model (22) are estimated by minimizing the sum of squared pricing errors between the mid point of the

market quotes and model determined value for each option. Median values of the model’s parameters

are reported in this table. Statistical significance of the reported medians is tested with the Large

sample Wilcoxon signed rank test. The z-statistic for this test is reported in parentheses below sample

medians. Medians marked with ** are significantly different from zero at the one percent significance

level.

Parameter Median Correlation Median

λ 1.7885**

(-9.624)

σ 0.1238**

(-9.663)

γ 0.1066**

(-9.663)

γc 0.0682**

(-9.663)

α -0.0096**

(-6.516)

αc -0.0058**

(-5.366)

σsy -0.0103** ρsy -0.891**

(-8.797) (-9.334)

σsyc 0.0038** ρsyc 0.507**

(-6.389) (-6.533)

σcy 0.0048**

(-6.021)

σcyc 0.0042**

(-5.645)

vsc 0.0059** vsc/γγc 0.9623**

(-9.552) (-9.562)

b 6.5585**

(-9.624)

fval 50.204
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Table III

Black-Scholes implied volatility surface generated by the

general jump-diffusion (GJD) option pricing model (22)

This table contains the Black-Scholes implied volatility surface produced from the GJD option pricing

model (22) evaluated for the implied parameter values of table II, S0 = 100, and r = 2 percent. Option

values from the general jump diffusion option pricing model generate a nonmonotonic term structure

of implied volatilities of at-the-money options.

T 15 days 1 month 3 months 6 months 9 months 1 year

K

109 19.23 15.38 15.66 16.43 16.63 16.53

106 16.19 15.10 16.08 16.46 16.53 15.92

103 14.99 15.50 16.58 16.48 16.27 16.72

100 15.88 16.68 17.14 16.43 15.67 17.23

97 19.33 18.87 17.75 16.29 15.80 17.26

94 24.97 21.88 18.38 16.14 16.54 17.21

91 30.14 24.85 19.02 16.20 16.65 17.98

General jump diffusion option values given by (22) are obtained by assuming that S0 = 100, r = 2

percent, λ = 1.7885, σ = 0.1238, γ = 0.1066, γc = 0.0682, α = −0.0096, αc = −0.0058, σsy = −0.0103,

σsyc = 0.0038, σsyc = 0.0038, σcy = 0.0048, σcyc = 0.0042, vsc = 0.0059 and b = 6.5585.
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Table IV

Option prices with ‘visible’ systematic jump risk premium (39)

as a percentage of Merton’s jump-diffusion option prices

T 15 days 1 month 3 months 6 months 9 months 1 year

K

109 92.58 94.62 97.88 100.04 101.48 102.64

106 96.32 97.32 99.10 100.63 101.77 102.76

103 98.86 99.11 99.99 101.06 101.98 102.82

100 100.01 100.09 100.58 101.36 102.10 102.83

97 100.34 100.50 100.92 101.53 102.15 102.79

94 100.34 100.58 101.06 101.59 102.14 102.70

91 100.24 100.50 101.06 101.57 102.06 102.57

Option prices given by (39) are generated by assuming that S0 = 100, r = 2 percent, σ = 25 percent,

λ = 2, γ = 15 percent, α = −

γ2

2 = −0.01125, b = 3.72, σc = 15 percent, and ρcy = 0.75 (or ρcy = 0 in

Merton’s case).
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Table V

Diffusion option prices (45)

as a percentage of Black-Scholes option prices

T 15 days 1 month 3 months 6 months 9 months 1 year

K

109 102.41 103.38 106.49 110.33 113.69 116.74

106 101.64 102.47 105.24 108.77 111.92 114.80

103 101.02 101.71 104.13 107.35 110.27 112.98

100 100.56 101.10 103.17 106.07 108.76 111.29

97 100.26 100.65 102.36 104.93 107.39 109.74

94 100.10 100.35 101.69 103.92 106.15 108.31

91 100.03 100.16 101.16 103.06 105.04 107.01

Option prices given by (45) are obtained by assuming that S0 = 100, r = 2 percent, σ = 25 percent,

λ = 2, γc = 12.5 percent, αc = −

γ2
c

2 = −0.00781, b = 3.72, and ρsyc = 0.75 (or ρsyc = 0 in the

Black-Scholes case).
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Table VI

Correlated jump-diffusion option prices (47)

as a percentage of Merton’s jump-diffusion option prices

T 15 days 1 month 3 months 6 months 9 months 1 year

K

109 88.46 88.51 85.85 82.12 79.14 76.60

106 93.34 92.40 88.59 84.54 81.45 78.86

103 96.61 95.15 90.93 86.76 83.64 81.03

100 98.31 96.94 92.89 88.79 85.70 83.12

97 99.12 98.06 94.49 90.62 87.63 85.10

94 99.50 98.75 95.79 92.25 89.41 86.98

91 99.69 99.18 96.83 93.68 91.04 88.73

Option prices given by (47) are generated by assuming that S0 = 100, r = 2 percent, σ = 25 percent,

λ = 2, γ = 15 percent, α = −

γ2

2 = −0.01125, and ρsy = −0.25 (or ρsy = 0 in Merton’s case).
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                                                                 Figure 1 
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Figure 1 presents the time series of implied covariances, syσ , estimated by minimizing 

the sum of squared pricing errors resulting from fitting the general jump diffusion option 
pricing model, equation (22) to the CBOE S&P 500 index option quotes of the sample. 
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Figure 2 
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    Monthly non-diffusive expected returns when  σsy = -1.03 percent. 
 
    Monthly non-diffusive expected returns when diffusive returns and price jumps are 
independent. 
  
 
Figure 2 shows monthly non-diffusive expected returns using the values of Table II. The 
monthly non-diffusive expected returns decrease during the year since σsy = -1.03 
percent. The figure also shows the traditional case, where price jumps and diffusive price 
are independent, that leads to constant monthly non-diffusive expected returns.   
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Figure 3 
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Figure 3 presents Black-Scholes implied volatilities for at-the-money options produced 
from the GJD option pricing model (22) and Merton’s option pricing model evaluated for 
the implied parameter values of table II, S0 = 100, and r = 2 percent. Since the covariance 
between diffusive price level and price jumps, syσ , is negative, option values from the 

general jump diffusion option pricing model generate a nonmonotonic term structure of 
implied volatilities of at-the-money options. 
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Figure 4 
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    Monthly equity jump risk premiums using values of Table II. 
 
    Monthly equity jump risk premiums when price jumps and the diffusive pricing kernel 
are independent  

 
 

Figure 4 shows monthly equity jump risk premiums using the values of Table II. The 
monthly equity jump risk premiums increase during the year since the covariance 
between the diffusive pricing kernel and price jumps is positive. The figure also shows 
the traditional case, where price jumps and the diffusive pricing kernel are independent, 
which leads to constant monthly equity jump risk premiums.   
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Figure 5 
 

The Non-linear part of the Diffusive Risk Premium 
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Figure 5 shows the monthly non-linear equity diffusive risk premiums using the values of 
Table II. The monthly non-linear equity diffusive risk premiums increase during the year 
since the covariance between the diffusive price and jumps in the pricing kernel is 
positive. The traditional case assumes that the covariance between the diffusive price and 
jumps in the pricing kernel is zero, and therefore adds nothing to the equity diffusive risk 
premium.  
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                                                              Figure 6 
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Figure 6 presents Black-Scholes implied volatilities computed from one-month CBOE 
S&P 500 index call and put quote midpoints on January 19th  1996, January 19th  2001, 
January 20th  2006.  Due to difference in the index level on these dates, the horizontal 
axis is scaled for consistency of presentation, where time adjusted moneyness is defined 

as T
eS

K
Td ÷








−− 1

* *
0

 .  Negative values of time adjusted moneyness correspond to in-

the-money calls and out-of-the-money puts; positive values to out-of-the-money calls and 
in-the-money puts.  
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Figure 7 
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Figure 7 presents Black-Scholes implied volatilities of one-month options produced from 
the GJD option pricing model (22) evaluated for the implied parameter values of Table II, 
S0 = 100 , and r = 2 percent.   The figure shows that a covariance between diffusive return 
and jumps in consumption of 0.0038, obtained from Table II, generates a sneer with a 
shape observed in the market and reported in figure 6. Figure 7 also illustrates the impact 
on Black-Scholes implied volatility sneers of alternative values of the covariance 
between diffusive return and jumps in consumption holding all other parameter values 
constant at their values indicated in Table II. 
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Figure 8 
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Figure 8 presents Black-Scholes implied volatilities of one-month options produced from 
the GJD option pricing model (22) evaluated for the implied parameter values of Table II, 
S0 = 100 , and r = 2 percent.   The figure shows that a covariance between the diffusive 
consumption and equity jumps  of 0.0048, obtained from Table II, generates a sneer with 
a shape observed in the market and reported in figure 6. Figure 8 also illustrates the 
impact on Black-Scholes implied volatility sneers of alternative values of the covariance 
between the diffusive consumption and equity jumps in consumption holding all other 
parameter values constant at their values indicated in Table II. 
 


