
TRACE - A System Wide Diagnostic Tool
Stephen Foulkes, Ron Rechenmacher
Fermi National Accelerator Laboratory

Batavia, IL 60510 USA
Email: sfoulkes@fnal.gov

Abstract— TRACE is a system-wide diagnostic tool that al-
lows one to gather timing information with a minimal impact
on application(s) performance. TRACE supports a variety of
architectures under Linux and VxWorks. This utility instruments
code easily and is controllable through the /proc file system. It has
hooks to be built into a larger monitoring/alarming/debugging
framework as well as supporting architecture-dependent features
such as performance measurement counters or registers.

I. INTRODUCTION

TRACE is a freeware open source logging tool developed
at Fermilab. Its number one goal is to minimize the amount
of overhead that will be added to an application that uses
it. TRACE supports the use of multiple logging backends
as well as allowing the user better control over how and
where messages are stored. TRACE also supports running
on multiple operating systems and processor architectures.
Currently, TRACE is running under Linux on x86, x86 64
and PowerPC. It also runs under VxWorks on PowerPC. This
paper will focus on using TRACE on Linux, and the details
of its implementation there.

II. TRACE ON LINUX OVERVIEW

TRACE is built into the Linux kernel. Configuration and
status information, as well as the contents of the circular
buffer, which is the default logging backend that comes
with TRACE is exported from the kernel through the /proc
pseudo filesystem. Messages can be sent to TRACE from
inside the kernel as well as from userspace. Binaries compiled
with TRACE calls will run on systems that do not have
TRACE support. Currently, TRACE only supports C and C++
applications.

III. INSTALLATION

The TRACE sources can be obtained from the TRACE
website [1], and then unpacked onto the target system. The
user needs to take care of any configuration changes before
installation because most of the parameters are hard codes,
and can’t be updated on a running system. These paraemeters
include the maximum number of applications that can generate
messages at one time, the maximum number of logging
backends, the maximum size of a TRACE message and the
maximum number of parameters that can be sent with a
TRACE message. All of these are located inside trace.c which
sits inside the TRACE source tree at src/init.

Once TRACE has been adequately configured, the TRACE
installer can be run by executing a “make install” command

from inside the TRACE source tree. The installer will try to
locate the Linux kernel sources and also attempt to determine
the version of the kernel. After the kernel sources have been
located, the installer will find a patch that is closet in version
to the kernel installed on the system and apply it. TRACE has
patches for many 2.4.x and 2.6.x kernels, including the ones
distributed with Scientific Linux 3.x and 4.x. If the installer is
unable to locate the kernel sources the –kernel dir parameter
may be passed to the makefile with the correct location. If the
kernel version can’t be determined or is determined incorrectly
the –kernel version parameter may be used to specify the
version. Once the patches have been applied the kernel can
be rebuilt. No other configuration to the kernel is necessary.

On sytem startup, TRACE will post several debugging
messages to the system console as it allocates memory for
its internal buffers. There will also be a trace directory placed
inside /proc that contains several files including control, level,
buffer, raw and version. The TRACE installer also instruments
the kernel with several TRACE calls. The messages these calls
generate will be visible inside /proc/trace/buffer.

IV. THE TRACE CIRCULAR BUFFER

TRACE maintains a circular buffer inside the kernel that
messages can be logged to. This circular buffer is the default
logging backend for TRACE and the data contained within it
does not persist between system restarts. Writes to the circular
buffer will not block and are reentrant, making the circular
buffer a good choice for logging messages from multi threaded
applications or from interrupt service routines.

The circular buffer is accessed from the console, through the
/proc/trace/buffer file. Cat-ing this file is all that is necessary
to see the contents of the buffer:

[˜]$ cat /proc/trace/buffer
PID TraceName lvl message
-----------------------------------------------
12208 KERNEL 24 trace_proc_control_write
12208 KERNEL 27 system call 4
12208 KERNEL 26 system call return 0
12208 KERNEL 27 system call 175
12208 KERNEL 26 system call return 0
[˜]$

There are several parameters that the circular buffer logs,
but does not necessarily display. These include the process ID,
TRACE logging level, time stamp, message, and the name
of the application generating the message. The full list of
parameters that are logged is listed in /proc/trace/control on



the “available heading” line. Changing the parameters that are
displayed when the circular buffer is printed is accomplished
by echoing a string containing the desired parameters to be
displyed to /proc/trace/control:

echo print=timeStamp,PID,lvl,message > \
/proc/trace/control

Executing that command will cause the time stamp, process
ID, TRACE level and messages parameters to be printed
when the TRACE buffer is accessed. The TRACE circular
buffer can be cleared by echoing the reset command to
/proc/trace/control:

echo reset > /proc/trace/control

The TRACE circular buffer can also be cleared progra-
matically with the following function which is defined in the
TRACE header:

void traceControl_Reset()

The current status of the circular buffer is displayed in
/proc/trace/control. Information exported through that file in-
cludes the size, total number of entries in the circular buffer
and the number of entries used. The maximum number of
entries and maximum message size are hard coded inside
src/init/trace.c which is located in the TRACE source tree. The
defaults parameters that come with TRACE are reasonable,
and should not have to be changed.

V. INSTRUMENTING SOURCE CODE WITH TRACE

All that is necessary to start using TRACE in an appli-
cation is to include the TRACE header. The main TRACE
header file resides inside the TRACE source directory at
src/include/linux/trace.h. This file is installed inside the kernel
source tree at include/linux/trace.h.

The TRACE header only has one dependency, which is
trace intr.h. This file is architecture dependent, and is re-
sponsible for passing TRACE messages to the circular buffer
between user space and kernel space. The TRACE installer
will drop the appropriate copy of trace intr.h into the correct
asm directory inside the kernel source tree for each platform
that TRACE supports (asm-i386, asm-ppc, etc). The kernel
build system will symlink the asm directory to the appropriate
architecture specific asm directory that represents the platform
the kernel was built for, which allows trace.h to pickup the
correct trace intr.h.

If an application is going to be distributed with TRACE
messages, the TRACE header file should be included with the
source. This way, it will be possible to build the application
on systems that do not have TRACE. In order to make this
work, the trace.h file will have to be modified to include the
appropriate trace intr.h, which will also have to be distributed
with the application.

A. The TRACE Macro

The TRACE macro is the method that is used to log
messages with TRACE. It has the following prototype:

TRACE(int level, char *format_string,

int param1, int param2,
int param3, int param4,
int param5, int param6);

The level parameter allows the user to group similar mes-
sages together. For example, error messages could be set to
level zero while status message could be set to level one. That
way, if the user only wishes to see error messages they can
turn off all levels except level zero. The format string is similar
to a printf format string and currently only integer parameters
are supported. Integers can be printed with the usual printf()
conversion specifications such as %d and %x. TRACE by
default supports a maximum of six parameters.

VI. FILTERING MESSAGES

It is possible to specify a name for each source of messages
that get passed to TRACE. This is useful in situations where
multiple applications on a system are using TRACE, and
the user wishes to filter messages to those produced by a
specific application. To specify a TRACE name for a particular
application, define the TRACE NAME constant before the
TRACE header is included:

#define TRACE_NAME ‘‘myApplication’’
#include <linux/trace.h>

It is possible to modify the TRACE NAME at any point
in time, which can be useful for giving forked processes
a different name. The following function will reinitialize
TRACE with a new name:

void traceControl_ReInit(char *name)

For each TRACE name, there are thirty two levels that
messages can be posted to. Each level can be turned on and
off individually. This is controlled through the /proc/trace/level
file. That file looks like the following:

0 KERNEL=0x00000000,0x0,0x0,0x0
198 NULL_NAME=0xffffffff,0x0,0x0,0x0
199 FULL=0xffffffff,0x0,0x0,0x0

The number on the far left is the TRACE ID, which is a
unique number that TRACE assigns to each declared name.
The four thirty-two bit numbers across from each TRACE
name are the level masks. Each bit in the mask corresponds
to a level. Having a value of one will enable logging messages
for that level, while a zero will disable logging. For example,
a level mask of 0xF would enable TRACE messages for levels
zero through three. There is one level mask for each TRACE
logging backend. The first level mask always controls the
circular buffer.

There are two ways to enable and disable the levels. The
first is to echo a new level string to the /proc/trace/level file:

echo KERNEL=0xf,0x0,0x0,0x0>/proc/trace/level

That string will enable messages on levels zero through
three for the kernel TRACE name to be sent to the TRACE
circular buffer. Messages going to the other TRACE logging
backends from the kernel TRACE name have been disabled.
Note that TRACE applies filters to messages before they are



logged, so messages that are generated on disabled levels will
not be logged.

It is also possible to modify the levels that are en-
abled/disabled programatically:

void traceControl_LevelSet(int function,
int mask)

int traceControl_LevelGet(int function)

Those two functions are defined in the TRACE header,
and allow the setting and retreiving of TRACE levels for a
particular TRACE function.

VII. USER DEFINED LOGGING BACKENDS

TRACE has the capability to send messages to upto three
user defined logging backends. User defined logging backends
must have the following prototype:

void function_name(struct timeval *time, int lvl,
int id, char *msg, ...);

TRACE is informed about the user defined logging back-
ends through the TRACE FUNCTIONS constant, which must
be defined before the TRACE header file is included:

#define TRACE_FUNCTIONS {user_logger1,
user_logger2}

#define TRACE_NAME ‘‘demo4’’
#include <linux/trace.h>

User defined logging backends are useful in cases where
the user may want to redirect TRACE messages to some
other logging mechanism, like printk() or printf(). The TRACE
header defines a printf() like function already, and this can be
used with the following:

#define TRACE_FUNCTIONS {trace_printf}
#include <linux/trace.h>

Besides the /proc/trace/level file, there is an overall
mask which enables/disables TRACE logging backends. The
TRACE mode, which is contained inside /proc/trace/control
is a bitmask that enables the TRACE logging backends. Its
default value is 0x1, which enables only the circular buffer.
The mode can be changed by echoing a new mode to the
/proc/trace/control file:

echo mode=0x3 > /proc/trace/control

The TRACE mode can also be manipulated programatically
with the following functions:

void traceControl_Mode(int new_mode)
int traceControl_ModeGet()

REFERENCES

[1] http://fermitools.fnal.gov/abstracts/trace/abstract.html


