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Abstract

A number of recent papers have used nonparametric density estimation or non-

parametric regression to study the instantaneous spot interest rate, and to test term

structure models. However, little is known about the performance of these methods

when applied to persistent time-series, such as U.S. interest rates. This paper uses

the Vasicek [1977] model to study the performance of kernel density estimates of the

ergodic distribution of the instantaneous spot rate. The model's tractability allows me

to analyze the MISE of the kernel estimate as a function of persistence, variance of

the ergodic distribution, span of the data, sampling frequency, and kernel bandwidth.

Our principle result is that persistence has an important impact on optimal bandwidth

selection and on �nite sample performance. We also �nd that sampling the data more

frequently has little e�ect on estimator quality. We also examine one of Ait-Sahalia's

[1996a] new nonparametric tests of parametric continuous-time Markov models of the

instantaneous spot interest rate. The test is based on the distance between parametric

and nonparametric (kernel) estimates of the ergodic distribution of the interest rate

process. Our principal result is that the test rejects too often when using asymptotic

critical values and 22 years of data. The reason for the high rejection rate is probably

because the asymptotic distribution of the test does not depend on persistence, but the

�nite sample performance of the estimator does. After critical values are adjusted for

size, the test has low power in distinguishing between the Vasicek and Cox-Ingersoll-

Ross models when compared with a conditional moment based speci�cation test.
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I Introduction.

A number of recent papers (Stanton [1995], Ait-Sahalia [1996a,1996b,1996c], Siddique[1994])

have used nonparametric density estimation or nonparametric regression to study the behav-

ior of the instantaneous spot interest rate, and to test theories of the term structure. These

nonparametric methods have potential to enhance our understanding of the term structure

because they may capture features of term structure dynamics which are missed or misspeci-

�ed in parametric approaches. Although nonparametric methods have advantages over more

parametric approaches, they also have important drawbacks including: (1) They require

very large amounts of data; (2) most results are based on asymptotics; relatively little is

known about �nite sample properties; (3) little is known about their performance (except

asymptotically) when applied to persistent time series of the type encountered in interest

rate studies; and (4) the methods require a choice of bandwidth (smoothing parameter), but

most results on optimal bandwidth selection have only been worked out for i.i.d. data, or

asymptotically for time series data. Choosing the bandwidth optimally with �nite sample

time series data is far more di�cult.

As noted in Ball and Torous [1996] drawbacks one through three also apply to parametric

estimation methods when time series processes (such as interest rates) contain a root that

is close to unity.1 The purpose of this paper is to begin an examination of the importance

of near unit root behavior for nonparametric kernel density estimation. More speci�cally,

in this paper we examine the �nite sample performance of kernel density estimation when

the spot rate follows a continuous time AR(1) (Ornstein-Uhlenbeck process) as in Vasicek.

We chose to focus on Vasicek's model not because it is fully realistic, but rather because

it is highly tractable. This tractability allows us to study the role of non-i.i.d. data and

persistence in kernel density estimation of the process' ergodic distribution in a �nite sample

setting. In particular, the tractability allows us to analytically solve for the �nite sample

Bias, Variance, Covariance, and Mean Integrated Squared Error (MISE) of the kernel density

estimate as a function of the persistence of the data generating process, variance of the

ergodic distribution, span of the data, the frequency with which the data is sampled, and

the kernel bandwidth. We also solve (not analytically) for the kernel bandwidth which

minimizes the Mean Integrated Squared Error.

The second contribution of this paper is that we use the insights gained from studying

kernel density estimation of the Vasicek process in order to examine the properties of one

1It is well known that interest rates are highly persistent. Using monthly data from McCulloch and
Kwon [1993], Pagan, Hall, and Martin [1995], estimate that one-month zero coupon rates have a �rst order
autocorrelation coe�cient of 0.98. They fail to reject the null hypothesis that one month zero coupon rates
are integrated, and conclude that nominal interest rates are integrated or nearly integrated.
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of Yacine Ait-Sahalia's [1996a] tests of parametric continuous time Markov models of the

spot interest rate. This test is based on the distance between parametric and nonparametric

estimates of the ergodic distribution of the interest rate process. When this distance is

too large, the parametric model is rejected. Ait-Sahalia derived the distribution of his test

statistic asymptotically. In this paper we examine the small sample properties of the test.

The remainder of the paper contains three sections. Section II discusses kernel estimation

and bandwidth selection in general. This section also presents our results on kernel estima-

tion and bandwidth selection for the Vasicek model. Section III describes Ait-Sahalia's test,

and describes our results on the size and power of the test in �nite samples. Section IV

concludes.

II Kernel Density Estimation.

A. The kernel estimation problem.

Suppose the instantaneous spot rate of interest r follows a stationary Markov di�usion pro-

cess of form:

dr = �(r)dt+ �(r)dw:

For times t and s, t < s, denote the probability that r at time s is equal to r(s) given

r at time t is equal to r(t) by the transition density �(r(s); sjr(t); t), and assume �(r) and

�(r) satisfy regularity conditions su�cient to guarantee the existence of joint distribution

function �(r(s); s; r(t); t), and long run ergodic distribution �(u) where �(u) represents the

unconditional probability that r is equal to u.

A kernel density estimate of �(u) is a smoothed estimate of the ergodic density of r at

point u. With N discrete observations of the interest rate process, the kernel density estimate

has form:

�̂(u) =
1

Nh

NX
i=1

K(
u� r(i)

h
)

where K is the kernel function and h ,the kernel bandwidth, is a parameter set to choose the

degree of smoothing in the kernel density estimate.

For time series estimation, the quality of the kernel density estimate will depend on the

span of the data(T) and the sampling frequency (�T ). To explicitly incorporate these factors

in the kernel density estimate, suppose there are T years of data which are sampled every

�T years. Then there are N = T
�T

observations, and the kernel density estimate can be
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expressed as:

�̂(u) =
1

Th

N�TX
s=�T

K(
u� r(s)

h
)�T: (1)

For a given span of data, it may be possible to improve the kernel density estimate by

sampling more frequently. In the limit, the best one could do is sample continuously. This

corresponds to allowing �T ! 0 which causes the density estimate in (1) to converge to the

continuous sampling kernel density estimate:

�̂(u) =
1

Th

Z T

0
K(

u� r(s)

h
)ds (2)

I will present theoretical results below for both the discrete and continuous sampling kernel

estimates.2

The most important element of kernel density estimation is choice of bandwidth. Asymp-

totic results on kernel density estimation place restrictions on the rate at which the band-

width shrinks with sample size. In a sample with �xed size, all bandwidth choices produce

boni�ed density estimates. This leaves the choice of bandwidth to the discretion of the

econometrician. For data description purposes, an extra element of discretion is �ne since

choosing di�erent bandwidths emphasize di�erent aspects of the data.3, but for some pur-

poses, such as hypothesis testing, a single density estimate is desirable.4 Moreover, in order

to scienti�cally replicate the testing method, it is important to choose the bandwidth in a

non-subjective way that can be implemented by other researchers. This requires choosing

the bandwidth by some criterion, such as minimizing a statistical loss function. The most

common loss function considered is the Mean Integrated Squared Error (MISE) of the density

estimate:

MISE = E

Z
u
[�̂(u)� �(u)]2 du

= E

Z
u
[�̂(u)� E�̂(u)]2 du+ E

Z
u
[E�̂(u)� �(u)]2 du

2The continuous sampling kernel estimate is a theoretical abstraction, but it is a very useful one because it
provides an upper bound on the performance of kernel density estimates with discrete sampling. In addition,
it is very tractable, and sometimes provides a good approximation for the behavior of kernel density estimates
that involve frequent discrete sampling.

3When estimating �(u); larger bandwidths involve more averaging of data across observations far from u.
The averaging reduces the variance of �̂(u) and emphasizes more \global" features of the density. However,
by smoothing across realizations of r that are relatively far from u, local features of the data are lost; this
introduces bias. Smaller bandwidths have the opposite e�ect. Silverman [1986] and Scott [1992] suggest
examining density estimates using several di�erent bandwidths since each reveals di�erent aspects of the
data.

4Multiple density estimates may generate con
icting tests which need to be reconciled based on some
criterion.
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= MIV AR +MISB:

The MISE is the expected squared di�erence between the estimated and true densities inte-

grated over the range of r, and is one measure of the distance between the true and estimated

densities. As shown in the second and third lines, the Mean Integrated Squared Error is the

sum of the Mean Integrated Variance (MIVAR) and the Mean Integrated Squared Bias

(MISB).

Many bandwidth selection methods are designed to choose the bandwidth to minimize

a constructed proxy for MISE.5 One common method assumes the data is drawn from a

particular parametric distribution (such as all draws are i.i.d. Gaussian) and chooses an

optimal bandwidth based on parametric estimates of the parameters of the distribution.6

Other methods, such as least squares cross-validation, construct a proxy for MISE, and

then choose the bandwidth to minimize that proxy.7 In �nite samples, the �rst of these

methods is only appropriate for i.i.d. data; the second method is valid asymptotically, but is

known to generate downward biased bandwidth estimates in �nite samples with dependent

observations. We will investigate the performance of these bandwidth selection methods in

more detail for the speci�c case of the Vasicek model.

B. Kernel estimation and the Vasicek model.

Vasicek [1977] used the absence of arbitrage to solve for bond prices when interest rates

evolve according to the continuous time AR(1):

dr = �(� � r)dt+ �dw: (3)

Under this process, r has ergodic distribution:

�(r) =
1q
2� �2

2�

exp

2
64�:5

0
@(r � �)q

�2

2�

1
A
2
3
75 ; (4)

5MISE is not observable.
6For example, the MISE minimizing bandwidth for i.i.d. draws using Gaussian data is 1:06�N�1=5. The

bandwidth that is used in practice would be 1:06�̂N�1=5, where �̂ is a parametric estimate of �:
7This procedure is appealing because Stone[1984] showed for i.i.d. data that the bandwidth chosen by

least squares cross validation converges to one that minimizes the mean integrated squared error of the
density estimate as sample size grows. However, Park and Marron [1990] show that it produces very noisy
estimates of optimal bandwidth in small samples.

4



and r has conditional distribution:

�(r(s); sjr(t); t) =
1q

2�V (r(s)jr(t))
exp

2
64�:5

0
@(r � �(r(s)jr(t)))q

V (r(s)jr(t))

1
A
2
3
75 (5)

where:

�(r(s)jr(t)) = � + (r(t) � �)e��(s�t)

V (r(s)jr(t)) =
�2

2�
(1� e�2�(s�t)):

The Vasicek model has three convenient properties. The �rst is that the ergodic and

conditional distributions of r given in equations (4)and (5) are gaussian. When the kernel

is also gaussian, this greatly simpli�es computation of the expected kernel density estimate

and MISE. The second and third properties are that the ergodic distribution is homogenous

of degree 0 in �2 and �; and the conditional distribution is homogenous of degree 0 in �;

�2; and 1
t�s

. As I will show below, these features make it possible to study the interaction

of persistence, sampling frequency, and span of the data on kernel estimation while holding

the ergodic distribution �xed.

Our results on the theoretical properties of kernel estimation in the Vasicek model are

broken into two subsections. The �rst summarizes our �nite sample results on kernel density

estimation; the second contrasts the �nite sample properties with the asymptotic properties.

Finite sample results.

This section provides analytical or near analytical �nite sample expressions for the Bias,

Variance, Covariance, and Mean Integrated Squared Error of the kernel density estimate

as a function of the data generating process, span of the data, frequency with which it is

sampled, and the kernel bandwidth. These analytical expressions are then used to study

how MISE and the optimal bandwidth change with sampling frequency, span of the data,

and persistence of the data generating process.

Proposition I presents analytical expressions for the bias, and MISE for kernel estimates

of the ergodic distribution of the Vasicek process when the process is sampled at N discrete

intervals each of length �t: The expression for MISE was derived earlier by Wand[92] using

a technique that is di�erent than the one used here. Expressions for the �nite sample

variance and covariance of the kernel density estimate are contained in appendices C and D

respectively.

Proposition I. If r(0) is drawn from the ergodic distribution of the Vasicek process given in

equation (4), and r then evolves according to the di�usion (3), and �̂(u) = 1
Nh

PN�t
s=�tK(

u�r(s)
h

);
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where K(.) is the standard Gaussian kernel then:

E�̂(u) =
1p
2�

1p
h2 + VE

exp

2
4�:5

 
u� �p
h2 + VE

!2
3
5 ; (6)

MISB(�̂(u)) =
1p
2�

0
@ 1p

2h2 + 2VE
+

1p
2VE

� 2q
(h2 + 2VE)

1
A ; (7)

MIV AR(�̂(u)) =
1

N2
p
2�

2
4 Np

2h2
+ 2

NX
l=2

l�1X
m=1

1q
2h2 + 2VE(1� e��(l�m)�t)

� N2

p
2h2 + 2VE

#
(8)

MISE(�̂(u)) = MISB(�̂(u)) +MIV AR(�̂(u)); (9)

where, VE = �2

2�
:

Proof: See the appendix.

More information about the Vasicek process is learned if the data is sampled at more

frequent intervals for a given span of data. An upper bound of the information in the sample

comes from a kernel density estimate with continuous sampling. Expressions for the bias

and MISE for kernel estimation with continuous sampling are below; results on variance and

covariance are in appendices C and D respectively.

Proposition II. If r(0) is drawn from the ergodic distribution of the Vasicek process given in

equation (4), and r then evolves according to the di�usion (3), and �̂(u) = 1
Th

R T
0 K(

u�r(s)
h

)ds;

where K(.) is a Gaussian kernel, then E�̂(u) and MISB are as in equations (6) and (7),

and:

MIV AR(�̂(u)) =
1p
2�

1p
2h2 + 2VE

4

�T 2

Z T

0
ln

2
4 1 +

q
1�  (t)

1 +
q
1�  (0)

3
5 dt; (10)

MISE(�̂(u)) = MISB(�̂(u)) +MIV AR(�̂(u)); (11)

where, VE = �2

2�
, and  (t) =

�
VE

h2+VE

�
exp(��t):

Proof: See the appendix.

The expression for MISE in propositions I is analytical and very easy to compute. The

expression for MISE in proposition II is not closed form, but can be computed easily.8 This

tractability shows that in this case the form of the bias of the kernel density estimate9 is

8The expected kernel density estimate and its mean integrated squared bias (MISB) are typically not
available in closed form, but they are for the Vasicek model. Similarly, the general expression for mean inte-
grated variance (MIVAR) in proposition II is a �ve dimensional integral, but it reduces to a one-dimensional
integral for the Vasicek model.

9Kernel density estimates produce biased estimates of the true density in �nite samples.
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that the expected kernel density estimate (see equation (6)) has a larger variance than the

true distribution.10

This tractability is especially useful for analyzing the MISE and the choice of optimal

bandwidth as a function of mean reversion (�), data span (T ), sampling frequency (�T ),

and variance of the ergodic distribution (VE). Let MISE(�; T;�T; VE) represent the MISE

as functions of these parameters, and let h� be the MISE minimizing bandwidth. Some of

the properties of MISE(.) and h� are summarized in proposition III:

Proposition III. Under the conditions of proposition I, for �xed N and VE;:

1. MISE(�; T;�T; VE) and h
� are homogenous of degree 0 in �, 1

�T
and 1

T
.

2. lim�!1MIV AR( ^�(u)) = N�1(2�)�:5[(2h2)�:5 � (2h2 + 2VE)
�:5]:

3. lim�!0MIV AR( ^�(u)) = (2�)�:5[(2h2)�:5 � (2h2 + 2VE)
�:5]:

Proof. Result 1 follows from inspection of equation (8) and results 2 and 3 follow from taking

limits.

Proposition III examines the role of mean reversion, as measured by � on the quality of

the kernel density estimate while holding the ergodic distribution �xed. The �rst result is

useful for thinking about the span of data necessary to achieve reasonable estimates. My

natural intuition says that if the span of the data is very long and N is large, then the

estimates will probably be reasonable. It is well understood that this intuition is wrong.

This result provides an additional illustration of the problem. Speci�cally, suppose for N

observations (N could be very large), a given dependence between the data, and a given

span of data, a kernel density estimate contains an unacceptably high MISE. By repeatedly

halving the mean reversion, doubling the time between observations, and doubling the span

of the data, it is possible to generate arbitrarily long spans of data which also generate

identically poor density estimates.

Results 2 and 3 examine the quality of the kernel density estimate in extreme cases. Both

of these results are intuitive. In result 2, as � goes to in�nity, the rate of mean reversion

goes to in�nity and the correlation between the interest rate observations goes to zero. In

this limiting case, because the interest rate observations are gaussian and their correlations

go to 0, the observations become i.i.d. gaussian random variables. Moreover, my expressions

for MIVAR and MISE converge to known expressions (see Silverman 1986) for MIVAR and

MISE when there are N i.i.d. gaussian observations and a gaussian kernel is used. In result

3, as � goes to zero, mean reversion goes to 0 and the correlation between discretely spaced

observations of the process approaches 1. This means, in the limit, additional observations

beyond the �rst don't contribute any new information. Therefore, mean integrated variance

in this case approaches the same limit for every sample size N.

10This result is contained in DeHeuvels [1977] for i.i.d. data.
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For the continuous sampling kernel density estimate, the �rst result in proposition III

does not apply since it is not possible to meaningfully halve or double the sampling frequency

in this case. The second and third results are sort of replicated for the continuous sampling

case. When � goes to in�nity while VE is held �xed, the MIVAR goes to 0. Intuition for this

result is that as � goes to in�nity, the continuous sampling kernel estimate uses a continuum

of i.i.d. observations. This should generate an MIVAR of 0. I have not been able to generate

limiting results as � goes to 0 in the continuous sampling case. However, in the analysis

below I computed the e�ects of reducing � while holding VE �xed. I found that this increases

MISE.

To further examine the role of persistence in the quality of kernel estimates, and in

bandwidth selection, I used the formulas in proposition II to compute the optimal (MISE

minimizing) bandwidth, and resulting Mean Integrated Squared Error, Mean Integrated

Variance, and Mean Integrated Squared Bias of kernel density estimates for 5 di�erent pa-

rameterizations of the Vasicek model using 22 years of continuously sampled data.11 Table 1

reports the results for all �ve sets of Vasicek parameter values. The primary, or baseline case

is contained in the row labeled model 0, and used parameters � = :85837; � = :089102; and

�2 = .0021854.12 These parameters are baseline because they are actual GMM estimates of

the Vasicek parameters reported in Ait-Sahalia [1996b] and hence provide a set of param-

eters that are relevant to real world analysis of interest rate processes. The rows labeled

models (-2), (-1), (1), and (2) provide results in which the baseline � and �2 were doubled,

quadrupled, halved, and quartered respectively. Models towards the top of the table involve

less persistence, but all models have the same ergodic distribution.

Table 1 contains two basic insights. First, the slower is the mean reversion, the higher is

the mean integrated squared error, mean integrated squared variance, and mean integrated

squared bias. This shows we should put less faith in our density estimates when persistence

is high. From proposition I we know that the mean integrated squared bias does not depend

directly on persistence. Therefore, if mean integrated squared bias goes up with persistence

it must happen because the optimal response to more persistence is a higher bandwidth. This

is the second insight from table 1 because it shows explicitly that the optimal bandwidth

is increasing in persistence. This is an important result because it shows that the optimal

bandwidth does not just depend on the sample size, and on the ergodic distribution of the

data, but it also depends on a time series property of the data generating process. This

shows that kernel density estimation should be guided by the time series properties of the

data generating process.

1122 years of data were used in this table to replicate the sample size used in Ait-Sahalia [1996a].
12All parameters are at an annual rate.
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Tables 2 and 3 expand these insights by examining kernel density estimation for both

continuous and discrete sampling for six di�erent spans of data and six di�erent sampling

frequencies. Table 2 presents results on optimal bandwidth choice when the bandwidth is

chosen to minimizeMISE. Table 3 presents results on the resulting MISE when the bandwidth

is chosen optimally. The Vasicek parameters and models used in tables 2 and 3 are identical

to those used in table 1.13

Two important stylized facts are immediately apparent from table 2: For the amounts of

mean reversion considered in the table, the choice of optimal bandwidth is highly insensitive

to the frequency with which the data is sampled, and is very sensitive to the persistence of

the data generating process. If either of these facts is ignored in bandwidth selection, the

selected choice of bandwidth could be quite poor.

More speci�cally, if the bandwidth selection rule for i.i.d. gaussian observations was

followed, then someone who sampled the data every 30 days would choose the bandwidth

as 1:06
p
VEN

(�1=5) where N is the number of time series observations that are spaced 30

days apart and VE is an estimate of the variance of the ergodic distribution. Someone who

followed the same rule but sampled the data every day would have chosen a bandwidth that

is roughly half as large although the results here indicate the appropriate bandwidth for

daily sampling should be roughly the same as for thirty day sampling in our baseline case.

Similarly, the table shows that the optimal bandwidth increases by 50% or more when

moving from Model (-2), the least persistent model, to Model (2), the most persistent model.

If the bandwidth is chosen without accounting for persistence, this shows there is the possi-

bility the bandwidth could be chosen quite poorly.

The last stylized fact from table 2 is that the span of the data matters for bandwidth

selection. This is not a surprise. In addition, the table shows that the MISE minimizing

bandwidth holding sampling frequency �xed shrinks at an average rate of about N�:3.14

Table 3 shows that MISE is not very sensitive to sampling frequency, but is very sensitive

to the amount of persistence in the data. This result is very important for analyzing the

behavior of interest rates nonparametrically, especially when the series is short. For example,

for the baseline case and 20 years of data, sampling the data daily instead of monthly reduces

the MISE by 0.25%; i.e. sampling daily instead of monthly produces almost no reduction in

MISE. For 50 years of data in the baseline case, sampling the data daily instead of monthly

13Tables 2 and 3 assume there are 240 business days per year. This is a bit short of 250, but in order to
obtain an even number of evenly spaced discrete observations, I needed a number of days that is divisible
by all of the sampling frequencies. 240 does this and 250 does not.

14Computation shows this rate of bandwidth shrinkage is consistent with the asymptotic rate of shrinkage
necessary to implement Ait-Sahalia's test that is based on the ergodic distribution. If this shrinkage rule
is used to choose the bandwidth, it implies that the unnormalized test statistic converges in probability to
zero at a rate of about N :15 under the null.
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reduces the MISE by 0.53%, which is also very small.

While changing the sampling frequency has minimal e�ects on MISE, changing the span

of the data has large e�ects which appear to be nonlinear in the span of the data. For the

baseline model (model 0), doubling the span of the data from 5 years to 10 years decreases

MISE by an average of 31%. Doubling the span from 10 to 20 years decreases MISE by 37%;

and doubling the span from 50 to 100 years decreases MISE by 43%.

A �nal insight that can be gleaned from these results concerns choosing the bandwidth

using automatic methods such as least squares cross-validation. The basic principle behind

cross validation is to estimate the kernel density while omitting some observations, and then

use the quality of the �t for the omitted observations in choosing the kernel bandwidth. In

i.i.d. data this type of procedure is intuitive: if the bandwidth is too small, the data will be

over �tted, and the omitted data will be �tted poorly; conversely, if the bandwidth is too

large, the data will be over smoothed and the �t for the omitted data will also be poor.

The key to the i.i.d. reasoning is that the cross-validated data adds signi�cant new in-

formation to the estimation problem. Table 3 shows that for our baseline case, data which

is sampled daily adds almost no new information above and beyond that for data which is

sampled monthly. In e�ect, this means the observations from persistent data sampled at a

high frequency will be clustered very close together, but will not necessarily provide signif-

icant information about the long run ergodic distribution. The cross validation algorithm

will interpret the clustering as �ne detail in small samples, and will �t this spurious �ne

detail by choosing a bandwidth which is too small. This downward bias phenomenon is also

documented in Hart and Vieu [1994]; they propose a �x which involves cross-validating on

observations which are spread less closely in time. Silverman [1986] also notes the possi-

bility of severe downward bias in bandwidths chosen by cross-validation when the data has

been rounded or when there are large numbers of observations that are nearly identical to

other observations in the data. I will also discuss least squares cross-validation below in the

context of Ait-Sahalia's ergodic distribution based test.

Finite Sample vs. Asymptotic Results.

In this section I will contrast the �nite sample and asymptotic properties of kernel density

estimates of the ergodic distribution of interest rates in the Vasicek model.

Robinson[1983] provides conditions on the kernel function, time series dependence, true

ergodic density, and the rate of bandwidth shrinkage, such that the distribution of the

kernel density estimates at n discretely separated points u1; :::un are asymptotically unbiased,

normally distributed, and uncorrelated. Moreover, this asymptotic distribution is the same

as that from a kernel density estimate that uses i.i.d. draws from the ergodic distribution of

10



the interest rate process. Robinson[1983] emphasizes that these asymptotic results should not

be taken too seriously because in �nite samples, the quality of the asymptotic approximation

will depend on both serial dependence and the size of the bandwidth.

Our results here show that the asymptotic approximation of the �nite sample properties

understate both the bias and variance of the kernel density estimate. Figure 1 plots the

true and expected kernel density estimates for the �ve models from table 1. The di�erence

between the true and expected densities is the bias. Although this bias is zero asymptoti-

cally, the �gure shows the �nite sample bias appears to be important. One measure of this

importance is the extent to which the bias a�ects statistical inference in asymptotic testing

procedures that ignore it.

To illustrate the e�ect of the bias, �gure 1 contains asymptotic plus or minus 1 standard

deviation con�dence bands around the true distribution function.15 If the points of an

estimated distribution function lie mostly outside of this con�dence band, a test based on

the asymptotic distribution will almost always reject. Because the �nite sample bias is

much larger than this con�dence band, most density estimates will lie mostly outside of the

asymptotic con�dence bands when the null is true. This will cause the null to be rejected

too often.16

Figure 2 illustrates that the asymptotic distribution not only understates the �nite sample

bias, it also severely understates the �nite sample variance of the kernel density estimate.

The dashed lines in the �gure are the true �nite sample plus or minus 1 standard deviation

con�dence bands based on daily sampling. The dotted lines are the asymptotic plus or minus

1 standard deviation con�dence bands. Based on the �gure the true density estimates are

far more variable than implied by the asymptotic distribution. This will cause the null to be

15The con�dence band in the �gure uses the unnormalized asymptotic standard deviation, which is equal

to (Nh)�:5
q

1

2
p
�
�(u). It is important to emphasize the asymptotic con�dence bands are not true con�dence

bands.
16Formally, let r1; :::rM be a set of evenly spaced r values on [-.02,.20]. The asymptotic approximation to

the �nite sample distribution of kernel estimate �̂ implies:

�̂(ri)� �(ri) � independentlyN (0; �2(ri));

where �2(ri) is the variance of the kernel density estimate at ri: This implies for large M under the null the
test statistic

1p
2M

MX
i=1

"�
�̂(ri)� �(ri)

�(ri)

�2

� 1

#
� N (0; 1)

But this ignores the �nite sample bias. If it is taken into account, the mean of the above distribution is
1p
2M

PM
i=1[

b(ri)

�(ri)
]2 where b(ri) is the bias of the kernel density estimate at point i. From �gure 1 it is clear

for models 0, 1, and 2, that [ b(ri)
�(ri)

]2 > 1 for nearly all i. Therefore the mean of the bias corrected distribution

is approximately
p
M=2: If this bias adjustment is not made, the null will be erroneously rejected most of

the time using the asymptotic distribution theory.
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rejected far too often using the asymptotic variance. Figure 3 shows this remains a problem

even with 100 years of data. Both �gures show the understatement of variance worsens with

the persistence of the data generating process.

An additional feature of the asymptotic distribution is that kernel estimates at di�erent

points of the support of the distribution are asymptotically uncorrelated. To contrast this

result with �nite sample experience, �gures 4 and 5 present contour plots of the correlation

function of the kernel density estimate for Models -2 through Model 2 when the data is

sampled daily. In both �gures, the contours represent gradations of 0.2 in correlation. For

example, the white band down the center of each graph represents the points that have

correlations of at least 0.8. The band just below this one has correlations from 0.6 to 0.8,

and so on. The lowest correlation shown in �gures 4 and 5 is -0.8 and the highest is 0.8. Both

�gures show that the density estimates at di�erent points of the support of the distribution

are highly correlated, even in samples with 100 years of data.

Figures 4 and 5 have two additional interesting features. First, density estimates above

the mean of the distribution of the short rate are usually negatively correlated with density

estimates below the mean, and positively correlated with density estimates above the mean.

An intuitive explanation for this feature of the correlation function is that starting points

matter in small samples. For example, in the Vasicek model if the starting value of the

process is above the mean of the distribution, future values are expected to stay above the

mean as well. In small samples this will cause too much probability mass to be assigned to

observations above the mean and too little to observations below it. This is consistent with

the observed correlation pattern. The second interesting feature of the �gures is that the size

of the region with relatively high correlations grows in persistence and shrinks in the span

of the data. This feature is probably also related to small sample biases due to dependence

on starting values because it is well known that starting values tend to be more important

in processes that have more persistence.

Finally, �gures 6 and 7 plot the variance-covariance function for the kernel density es-

timate. Each contour in the �gures corresponds to gradations of 0.4 in covariance. The

neutral gray in the corners of each contour plot correspond to a covariance of zero. Covari-

ances are negative in areas with darker shading and positive in areas with lighter shading.

The dominant feature in the �gures is that the absolute magnitude of the variance-covariance

function appears to increase with persistence and decrease with the span of the data; this

is as expected. The other interesting feature of �gures 6 and 7 is that the variance function

(i.e. the covariance function along the 45 degree line) is bimodal. Finite sample variance

has a local minimum near �, the mean of the interest rate process; variance then rises on

either side of � before falling again. By contrast, the asymptotic variance is proportional

12



to the ergodic density. Since the ergodic density is unimodal so is the asymptotic variance.

Therefore, the bimodality is an interesting �nite sample feature of the variance function. It

is not clear why the distribution is bimodal in �nite samples. The bimodality of the variance

does not occur with i.i.d. draws from the ergodic distribution. Therefore, the bimodality is

somehow related to the time series properties of the interest rate process in �nite samples.

I conjecture the reason for the higher variance away from the mean is related to the small

sample problems caused by the choice of starting value. However, since the process reverts

to the mean from above and below, the small sample problem at the mean may be less severe

than at other points in the support of the distribution. This is just conjecture however. It

de�nitely remains a topic for further research.

This concludes my discussion of the �nite sample properties of kernel density estimates

in the Vasicek model. Because these results are analytical, or nearly analytical, they should

prove to be very useful for gauging the performance of other nonparametric methods. The

next section examines the �nite sample behavior of Yacine Ait-Sahalia's [1996a] nonpara-

metric test of parametric models of the short term interest rate.

III Ait-Sahalia's test.

Ait-Sahalia [1996a] introduced a test of the null hypothesis that the instantaneous spot

interest rate is generated by a parametric class of markov models. The test is based on the

distance between two estimates of the ergodic distribution of the spot interest rate. The

�rst is a nonparametric kernel estimate which is consistent over a wide class of continuous

time models. The second is the closest density that could have been generated under the

parametric null. The null is rejected whenever the distance between the density estimates

is too large. Using this test, Ait-Sahalia rejected virtually every major single factor model

of the instantaneous short term interest rate, but failed to reject a more general alternative

single factor model.

Ait-Sahalia reached his conclusions using 22 years of daily data on short term interest

rates, however the critical values for his tests come from asymptotic theory. The purpose

of this and the next section is to examine the �nite sample size of the test when data is

generated under the Vasicek model, and to examine the �nite sample power of the test when

the data is generated under a plausible parameterization of the Cox-Ingersoll-Ross model.

Again I want to emphasize that I am focusing on these models because they are relatively

tractable, and this tractability aids in interpreting the results from the test.

It is possible that the �nite sample size of the test will di�er from its asymptotic size. As

we will see below, this is because the asymptotic distribution of the test statistic depends on

13



the ergodic distribution of the interest rate process, but not on its persistence. By contrast,

in a 22 year span of data, Tables 1 and 3 show that, holding the ergodic distribution �xed, the

distance (as measured by MISE) between the true Vasicek density and the MISE minimizing

kernel estimate is increasing in the persistence of the process. Since the test is based on a

measure of this distance17, it is reasonable to conjecture that the persistence of the interest

rate series that we observe may bias the asymptotic test towards rejection in a sample that

only contains 22 years of data. This latter point is especially poignant since the results in

table 3 for the baseline case show that sampling every day or sampling once every 30 days

generates kernel results of nearly the same quality as measured by MISE. However, 22 years

of data sampled once every 30 business days is only about 185 observations. This would be

considered a small N for the purposes of nonparametric estimation. The remainder of this

section proceeds in three parts. Part A provides a description of Ait-Sahalia's test, part B

presents our results on the size of the test, and part C presents our results on the power of

the test.

A. Description of Ait-Sahalia's test.

Ait-Sahalia tests the null hypothesis that the instantaneous short rate follows the single

factor parametric di�usion:

dr = �(r; �)dt+ �(r; �)dw

where � is an element of a parameter set �, against the alternative that dr is generated by

a more general single factor di�usion of form:

dr = �(r)dt+ �(r)dw:

The null restricts r's ergodic distribution to have functional form �(u; �), while the ergodic

distribution under the alternative has the more general functional form �(u): Ait-Sahalia's

test is based on the weighted squared distance between the two distributions:

M =
Z
u
(�(u; �)� �(u))2�(u)du;

where the weighting function is �(u): A normalized estimate of this distance is:

M̂ = NhN

Z
u
(�(u; �̂)� �̂(u))2�̂(u)du:

17The test is actually based on the distance between the kernel density estimate and the closest density
consistent with a particular parametric family. As we will see later, in a special case it is possible for the dis-
tance between the true and nonparametric densities to grow, but for the distance between the nonparametric
density and the closest member of the parametric family to shrink.
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whereN is the number of interest rate observations in the sample, hN is the kernel bandwidth,

�̂(u) is a second order nonparametric kernel density estimate of �(u) which is consistent under

both the null and alternative, and �(u; �̂) is that estimate of �(u) which is closest to �̂(u),

but is restricted to satisfy the null.18 Under the null hypothesis, �̂(u) and �(u; �̂) are both

consistent and thus their distance will shrink to zero as the sample size grows. Under the

alternative hypothesis, the parametric restrictions will bind, preventing the distance from

shrinking.

Ait-Sahalia uses this feature of the distance metric to create a test statistic. In particular,

he shows that under the null hypothesis and certain regularity conditions, if the bandwidth

hN is chosen so that limN!1NhN =1 and limN!1Nh
4:5
N = 0; then

h
�1=2
N (M̂ � EM )

d�! N (0; VM);

where,

EM =
�Z +1

�1
K2(x)dx

� Z x

x
�2(u)du

!
;

and

VM = 2

 Z +1

�1

�Z +1

�1
K(u)K(u+ x)du

�2
dx

! Z x

x
�̂4(u))du

!
;

and x and x represent the upper and lower bounds of the observed interest rates.

As indicated earlier, the test is based on a measure of the distance between two estimates

of the ergodic distribution of the interest rate process. The most important point for our

analysis is that the asymptotic distribution depends on the choice of kernel, the true ergodic

distribution, and the rate at which the bandwidth shrinks, but it does not depend on the

persistence of the process. However, as indicated in Tables 1 and 3, persistence has an

important in
uence on the distance (as measured by MISE) between the nonparametric

estimate and the true distribution. Because this �nite sample property is not accounted for

in the asymptotics, the mean asymptotic distance under the null probably understates the

mean distance in �nite samples. Intuitively, this makes it likely that the test will reject too

often in �nite samples when there is large amounts of persistence in the data.

To implement the test and examine this it is necessary to construct consistent estimators

of M, VM , and EM . There are many ways to do this. To do so we computed the kernel density

18Formally, �̂ is the solution to:

min
�2�

Z
u

(�(u; �̂)� �̂(u))2�̂(u)du:
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estimate �̂(u) and then used it to numerically approximate the following expressions:

M̂ = min
�̂2�

NhN

Z x

x
(�(�̂; u)� �̂(u))2�̂(u)du;

ÊM =
�Z +1

�1
K2(x)dx

� Z x

x
�̂2(u)du

!
; and

V̂M = 2

 Z +1

�1

�Z +1

�1
K(u)K(u+ x)du

�2
dx

! Z x

x
�̂(u)4du

!

Ait-Sahalia suggested using the estimators above or an alternative set of estimators.19 Table

4 contains the results using the estimators above, while Table 4A contains results using the

alternative estimator. Because the results are so similar, we focus only on the results from

table 4 in our discussion below.

B. Test size.

To analyze the size of the test I conducted 500 Monte Carlo simulations for each of the �ve

sets of Vasicek parameters contained in Table 1. Each Monte Carlo used 22 years of data

sampled daily.20 The bandwidth used for each kernel density estimate is the bandwidth

which minimizes the MISE for the given data generating process when the data is sampled

continuously. Based on table 2, I know this is virtually the same as the optimal bandwidth

when the data is sampled daily. Ait-Sahalia [1996a] also chooses the bandwidth in �nite

samples to minimize some proxy for MISE. For purposes of comparison, we also conducted

a Monte Carlo analysis for our baseline Vasicek model in which the bandwidth was chosen

using least squares cross validation.21

19The alternate method estimates �̂(u) using nonparametric kernel density estimation, but then approxi-
mates the other quantities as:

M̂ = min
�̂2�

NhN(1=N)

NX
i=1

(�(�̂; xi)� �̂(xi))
2;

ÊM =

�Z +1

�1
K2(x)dx

�
(1=N)

NX
i=1

�̂(xi)

V̂M = 2

 Z +1

�1

�Z +1

�1
K(u)K(u+ x)du

�2

dx

!
(1=N)

NX
i=1

�̂3(xi)

20I assumed 250 business days per year, for a total of 5500 daily observations.
21Least squares cross validation was used to choose among 10 bandwidths that ranged from .5 to 1.5 times

the optimal bandwidth for the continuous sampling case.
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Under the null hypothesis, as the sample size N goes to in�nity, the test statistic:

V̂ �:5M h�:5N (M̂ � ÊM)
d!N (0; 1):

This asymptotic distribution is the basis of the test statistic. Thus, the �nite sample critical

values for a one sided 5% and 1% test are 1.645 and 2.33, respectively. Table 4, Panels A

and B, present Monte Carlo estimates of the appropriate �nite sample critical values at the

5% and 1% con�dence levels, respectively. Next to each Monte Carlo critical value estimate

are upper and lower bounds of a 95% con�dence interval for the true critical values.22 Panel

A shows that the �nite sample critical values for each data generating process are on the

order of 10x the size of the asymptotic critical values for tests at the 5% level. Panel B

shows that the asymptotic critical values are more than 10x too small for tests at the 1%

level. Finally, panel C shows estimated empirical rejection frequencies with standard errors

when asymptotic critical values are used in the tests. The panel shows the �nite sample size

of the test is very di�erent from the asymptotic size; the test rejects the null far too often,

on the order of 50% of the time for our baseline model at the 5% con�dence level.

Although the results in Panel C show the test rejects too often in small samples, consistent

with our intuition on �nite sample properties and on persistence, the panel also shows that

rejection rates increase with persistence at �rst (in moving from model (-2) to model (-1))

but then perversely tend to move down as the interest rate process becomes even more

persistent. This doesn't mean our basic intuition on size is wrong, but another phenomenon

is occuring at the same time. Basically, as the persistence of the series is increased, the

optimal bandwidth that is used in the test is increased as well. This change in persistence

has two e�ects. The �rst e�ect is that more persistence increases the MISE, MIVAR, and

MISB of the density estimate. This is shown in Table 1 and favors a rejection frequency that

increases with persistence. However, the second implication of persistence in this case is that

it makes the kernel density estimate appear more gaussian, i.e. closer in a distance sense to

the set of gaussian distribution functions. The reasons for this are twofold. First, all else

equal, larger bandwidths make the density estimates more closely resemble the shape of the

kernel, which in this case is gaussian. Second, when persistence is increased while holding

the ergodic distribution �xed, this has the e�ect of concentrating the data more tightly. This

further strengthens the tendency of the density estimate to appear like the kernel.23 Since

Ait-Sahalia's test in this case is actually a test of the distance between the kernel estimate

22The con�dence intervals are based on the order statistics of the Monte Carlo estimates and are fully
nonparametric. Details on how to create these con�dence intervals are contained in David [1981].

23As an extreme example, if all of the data in the sample is concentrated at or very close to the number
5, and the kernel function is gaussian with positive bandwidth h, then the kernel density estimate will be
approximately equal to the gaussian distribution with a mean of 5 and a standard deviation of h.
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and the closest gaussian density, this distance goes down with persistence after a point. This

somewhat strange phenomenon is an artifact of using a gaussian kernel and the Vasicek

model. It in no way invalidates our main point that the test rejects too frequently and that

higher persistence signi�cantly degrades the quality of the density estimate, and biases the

test towards rejection.

It is important to emphasize at this point that all of the results we have presented are

for infeasible bandwidth selectors, i.e. bandwidths that are selected to minimize the mean

integrated squared error when the true data generating process is known. More realistically,

it is useful to examine the size of the test when the true data generating process is not

known. We examined the size of the test when the data is generated under model 0 and the

bandwidth is selected using least squares cross validation.24 The bandwidth choices using

this method were almost always half the size of the optimal bandwidth and probably would

have been lower if we did not constrain the cross validation algorithm. Moreover, the size of

the test was unacceptable. Speci�cally, using least squares cross validation with asymptotic

critical values, the null hypothesis for Model 0 was rejected 91.8% of the time at the 5%

level and 88.2% of the time at the 1% level.25

C. Power.

To investigate the power of the test, we conducted 500 Monte Carlo experiments. In each

experiment, we generated 5500 draws of data under the CIR model:

dr = �(� � r)dt+ �
p
rdw:

with parameters � = :89218; � = :090495; and �2 = 3:2742: These parameters were taken

out of Ait-Sahalia [1996b] and represent GMM estimates of the CIR parameters based on

real data. Therefore, we treat this as the baseline CIR model. We tested the null hypothesis

that the data was generated by our baseline Vasicek model (model 0 in table I) using two

di�erent methods. The �rst method used Ait-Sahalia's test with bandwidth choice .0217661

(see Table 1) and the lower bound �nite sample critical value estimates for model 0 from

panels A and B of Table 2.26 The second test is a conditional moment test that the likelihood

24We've cheated a little bit here by restricting our least squares validation search to bandwidths between .5
times and 1.5 times the optimal bandwidth for continuous sampling. So, this is not a fully feasible bandwidth
selector either, but should give some 
avor for results using least squares cross validation.

25The estimated �nite sample 5% critical value using least squares cross validation is 61.33, with a 95%
con�dence interval of [51.51, 71.83]. The estimated �nite sample 1% critical value is 114.86 with a 95% con-
�dence interval of [92.85, 239.18]. The 5% and 1% asymptotic critical values are 1.645 and 2.33 respectively.

26This bandwidth choice is appropriate under the null hypothesis. However, the critical value estimates are
likely to be less than the true �nite sample critical values since they are the lower bounds of 95% con�dence
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function implied by the Vasicek model is appropriate.27 To implement the test, I estimated

the parameters of the Vasicek model via maximum likelihood. If the likelihood function is

properly speci�ed, then for each observation t the following moment restriction should be

satis�ed:

E

 
@L(rtjrt��t; �; �; �)

@�

����� rt��t

!
= 0;

where L(rtjrt��t; �; �; �) is the conditional log likelihood of rt given rt��t and the parameters

that generated the data. To test this moment restriction, I estimated the regression:

@L(rtjrt��t)

@�
= �0 + �1rt��t + ut;

and then performed a two-sided Z-test of whether �1 = 0:28 In all fairness, this speci�cation

test makes a lot of sense when testing the Vasicek model vs the CIR model because the

expected value of the score function is approximately linear in r if the CIR model is correct

and the likelihood function is appropriate for the Vasicek model. Monte Carlo analysis using

500 simulations under the baseline Vasicek null shows this test has the appropriate size under

the null hypothesis.29

When the data was generated by the baseline CIR model, Ait-Sahalia's size corrected

test rejects the Vasicek null 39.8% of the time at the 5% level and 13.8% of the time at

the 1% level. Thus it displays modest power against the CIR model after critical values are

adjusted for size. By contrast, the GMM test rejected the null for all 500 Monte Carlo runs

at the 1% level or better. This suggests the likelihood based GMM test is far more powerful

for distinguishing between the Vasicek null and the CIR alternative. This di�erences in

test power makes intuitive sense because Ait-Sahalia's test only exploits information about

the unconditional ergodic distribution, but ignores useful information on the conditional

distribution of each observation.

These results show that for power against parametric alternatives, tests that are tailored

to have power against that alternative will provide better performance than using a non-

parametric test. This suggests that an overall model testing procedure should �rst test a

model against parametric alternatives using tests speci�cally tailored for those alternatives.

If the model passes those tests, the nonparametric test should be applied because it may

have power in directions not captured by the parametric test. Even in this case, the non-

intervals for these critical values.
27See Newey [1985a] and Newey [1985b] for additional details on these tests.
28Standard errors were computed using Newey-West's method with a lag length of 15.
29Using data generated under the Vasicek null, this speci�cation test rejected the null hypothesis 4.8% of

the time at the 5% level in 500 Monte Carlo runs and it rejected the null hypothesis 1.6% of the time at the
1% level.
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parametric tests need to be used cautiously because the results in section II of the paper

show that the �nite sample and asymptotic properties of these estimators are very di�erent.

IV Summary and Conclusion.

The application of nonparametric methods to analyze interest rate data provides new op-

portunities for estimating interest rate dynamics, and for testing interest rate theories. In

addition to the opportunities, however, interest rate data present di�cult challenges because

the nonparametric techniques were developed for i.i.d. observations, while interest rates are

dependent and highly persistent.

In this paper I have provided an in-depth examination of kernel density estimation of the

ergodic distribution of the short term interest rate when interest rates follow a continuous

time AR(1) process as in Vasicek [1977]. This functional form makes it possible to compute

many useful �nite sample time-series results, and to contrast �nite sample properties of the

kernel density estimate with its asymptotic properties.

Our principal results for the Vasicek model in �nite samples are that holding the ergodic

distribution of the interest rate process �xed, the Mean Integrated Squared Error (MISE)

of the kernel density estimate is highly sensitive to the persistence of the data generating

process, and to the span of the data; however, it is very insensitive to the frequency with

which the process is sampled. Similarly, holding the ergodic distribution �xed, the optimal,

i.e. MISE minimizing, kernel bandwidth is sensitive to the persistence of the interest rate

process and to the span of the data, but is very insensitive to the data sampling frequency.

This suggests bandwidth selection rules which are sensitive to the data sampling frequency,

such as rules which are appropriate for i.i.d. draws, are likely to generate very poor density

estimates when the data is generated by a persistent time-series process.

When contrasting asymptotic and �nite sample results we found that the asymptotic

distribution seriously understates the �nite sample bias and seriously understates the �nite

sample variance of the kernel density estimates. The asymptotic approach also understates

the absolute magnitude of the �nite sample correlation between density estimates at non-

adjacent points in the support of the interest rate distribution. Also, asymptotically, the

variance of the kernel density estimate is unimodal. By contrast the �nite sample variance

is bimodal, even with 100 years of data.

The paper also provided an in-depth examination of the size and power of one of Ait-

Sahalia's test of parametric interest rate models. The test we examined is based on the

distance between a nonparametric estimate of the ergodic distribution of the interest rate

process and the closest estimate that is consistent with a particular parametric family. Ex-
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amining this test when the data was generated by the Vasicek model, we found the size

of the test when using asymptotic critical values is far too large. Also, we conjecture that

the high rate of rejection occurs because the persistence of the data generating process does

not a�ect the asymptotic critical values, but has an important e�ect on the �nite sample

performance of the kernel density estimates. After the test is corrected for size, it appears to

have low power in distinguishing between the CIR and Vasicek models when compared with

an alternative conditional moment test of the restrictions imposed by the Vasicek model.

The most important implication of this paper is that statistical inference using nonpara-

metric density estimation is di�cult in a time series context, especially for highly persistent

time series such as interest rates. Our results on estimation of the ergodic distribution of

the short rate in the Vasicek process, show that the problem is not that the nonparametric

kernel estimates are necessarily bad, but rather that hypothesis tests and other inferences

based on asymptotics may be very poor because the asymptotic approximations of the kernel

density estimate's bias, variance, and correlation are so far o� from their true �nite sample

values, even when the sample size is as large as 100 years. This suggests that the results from

nonparametric techniques should be interpreted with caution and probably should be used

as part of a larger research e�ort that includes parametric estimation to learn more about

the persistence of a process, as well as signi�cant bootstrapping, and other Monte Carlo

analysis to simulate the behavior of nonparametric estimators in �nite samples. Despite

the di�culties highlighted here, I do believe that the principle advantage of nonparametric

density estimation, its ability to describe the data, remains intact. I also conjecture that

the best prospects for future work in this area will be for approaches that �nd good ways to

combine the information from nonparametric and parametric estimation methods.
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Appendices

This appendix provides detailed results on kernel density estimation when the time series

of interest rates is generated under the Vasicek process. The appendix is divided into four

main parts. Part A lays out notation and provides some basic results that simplify the

derivation of the results in the next three sections. Part B presents our results on Mean

Integrated Squared Error, Mean Integrated Squared Variance, and Mean Integrated Squared

Error when the interest rate process is sampled continuously. Part C presents similar results

when the interest rate process is sampled at evenly spaced discrete time intervals. In part C

we also derive the Variance of the Kernel Density estimate for both discrete and continuous

sampling. Finally, part D works out formulae that are useful for computing the covariance

of the density estimates.

A Notation and Four Basic Results.

As a preliminary, this section �xes notation and states four results that will be used in the

sections that follow.

Throughout our exposition,�(rs; s; jrt; t) will denote the probability that r takes the re-

alization rs at time s given that r was equal to rt at time t. Similarly, �(~r) will denote the

unconditional probability that r takes on the realization ~r:

In certain sections we will derive results on kernel estimation for the Vasicek process. We

will use the term Vasicek process to represent the following stochastic process for r:

dr = �(� � r)dt+ �dw:

Under the Vasicek process r's ergodic distribution is gaussian of form:

r � N (�;
�2

2�
):

The results we will use below are as follows:

Result 1:

�(rs) =
Z
�(rs; sjrt; t)�(rt)drt

This result is well known and shows that the ergodic distribution of the process is the

unconditional distribution of the process.
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Result 2:

Z 1
�1

1p
2��1

e
�:5( y�u

�1
)2 1p

2��2
e
�:5(u�z

�2
)2
du =

1p
2�

1q
�21 + �22

e
�:5

�
y�zp
�2
1
+�2

2

�2

Result 3: Z 1
�1

 
1p
2��1

e
�:5( y�u

�1
)2
!2

dy =
1p

2
p
2��1

:

Result 4:

1p
2��1

1p
2��2

e
�:5(u�y

�1
)2
e
�:5( y��

�2
)2
=

1p
2�S1

1p
2�S2

e
�:5(

y�(�u+(1��)�)
S1

)2
e
�:5(u��

S2
)2

where S1 =
r

�21�
2
2

�2
1
+�2

2

, S2 =
q
�21 + �22 , and � =

�22
�2
2
+�2

1

:

Results 2,3, and 4 are especially useful when the kernel function is gaussian and the

ergodic and conditional distribution of r are Gaussian, as they are with the Vasicek process.

Our basic results for the continuous sampling kernel estimate are below.

B Kernel Estimation with Continuous Sampling.

This section motivates kernel estimation of the ergodic distribution of a stochastic process

r when the realizations of the process are continuously sampled over a span of T years. I

will then derive expressions for the expected kernel density estimate, the Mean Integrated

Squared Error (MISE), Mean Integrated Squared Bias (MISB), and Mean Integrated Vari-

ance (MIVAR). I assume throughout that the process for r begins with a draw from its

unconditional (ergodic) distribution at time 0, and then follows a strictly stationary Markov

di�usion process of form:

dr = �(r)dt+ �(r)dw:

To motivate continuous sampling, suppose that the process is sampled discretely at N

evenly spaced times so that the time between observations is �T . This implies that 1=N =
�T
T
: With this notation, the traditional kernel density estimate has the form:

�̂(u) =
1

Th

N�tX
s=�t

K

�
u� rs

h

�
�t:

As the sampling is conducted more and more frequently, �t goes to zero and the kernel
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density estimate contverges to:

�̂(u) =
1

Th

Z T

0
K

�
u� rs

h

�
ds

This is the expression for the kernel density estimate with continuous sampling.

Given the continuous sampling kernel density estimate, below we derive the Expected

Kernel Density Estimate, Mean Integrated Squared Bias, and Mean Integrated Variance.

The Expected Kernel Density Estimate.

To compute the expected kernel density estimate, we will exploit the linearity of the integral

operator and the fact that r follows a Markov process. Therefore, if r starts from r0 at time

0, then

E(�̂(u)jr0) = 1

Th

Z T

0
[EK(

u� rs

h
)jr0]ds = 1

Th

Z T

0

�Z
rs

K(
u� rs

h
)�(rs; sjr0; 0)drs

�
ds

The unconditional expected value of the kernel density estimate is given by the expression:

E�̂(u) =
Z
r0

 
1

Th

Z T

0

�Z
rs

K(
u� rs

h
)�(rs; sjr0; 0)drs

�
ds

!
�(r0)dr0

By Result 1 and Fubini's theorem this simpli�es considerably to become:

E�̂(u) =
Z
rs

K(
u� rs

h
)�(rs)drs:

If the kernel is gaussian, and r evolves according to the Vasicek process, then by result 2

we get an analytical expression for the expected kernel density estimate:

E�̂(u) =
1p
2�

1q
h2 + �2

2�

e
�:5

�
u��p
h2+�2

2�

�2

This shows the unconditional expected kernel density estimate for the Vasicek process

has the form of a gaussian distribution with mean � and variance h2 + �2

2�
. This is nearly

identical to the expression for the ergodic distribution for r. The di�erence between the two

expressions is the inclusion of h in the expression for the expected density. In this case we

can see how choosing a nonzero bandwidth introduces bias in the kernel density estimate.

The Mean Integrated Squared Error of the density estimate is the sum of the Mean

Integrated Squared Bias and the Mean Integrated Variance. The methods that are used to

compute each of these are presented below.
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Mean Integrated Squared Bias.

The expression for the Mean Integrated Squared Bias is:

MISB =
Z
u
(E�̂(u)� �(u))2du:

If the kernel is gaussian, and r evolves according to the Vasicek process, then using results

2 and 3, the formula for the Mean Integrated Squared Bias simpli�es to have the following

analytical form:

MISB(V asicek) =
1p
2�

0
@ 1q

2h2 + �2

�

+
1q
2(�

2

2�
)
� 2q

(h2 + �2

�
)

1
A

Mean Integrated Variance.

The expression for the Mean Integrated Variance of the kernel estimate is:

MIV AR = E

Z
u
(�̂(u)� E�̂(u))2 du:

By Fubini's theorem, and simpli�cation, this can be written as:

MIV AR =
Z
u

�
E
h
�̂2(u)

i
� (E�̂(u))2

�
du:

If the kernel is gaussian, and r follows the Vasicek process then by result 3 this simpli�es

further to become:

MIV AR(V asicek) =
Z
u
E
h
�̂2(u)

i
du� 1p

2�

0
@ 1q

2h2 + �2

�
)

1
A :

Computing the �rst term in the expression for Mean Integrated Variance is very di�cult,

and must be done numerically, even with a process as simple as the Vasicek model. However,

it is relatively simple to compute for the Vasicek process. In what follows we will present

the general formula for the �rst expression, and then the formula for this expression under

the Vasicek model.

It is useful to de�ne some auxilary expressions to compute the �rst term of the expression

for MIVAR. De�ne:

F (t) =
Z t

0
K

�
u� rs

h

�
ds:

Although the function F(t) depends on the random realizations of the process r, over each
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increment of time dt, the function is locally deterministic with derivative30:

dF (t) = K

�
u� rt

h

�
dt:

Using elementary rules of calculus this implies:

d(F (t)2) = 2F (t)dF (t);

and an alternative expression for the square of the kernel density estimate is:

�̂(u)2 =
1

T 2h2

Z T

0
2F (t)dF (t)

Substituting in for the expressions for F(t) and dF(t) and rearranging yields:

�̂(u)2 =
2

T 2h2

Z T

0

�Z t

0
K

�
u� rs

h

�
K

�
u� rt

h

�
ds

�
dt

The above expression is very convenient because it allows us to express E
R
u �̂(u)

2du

using the law of iterated conditional expectations, and result 1. This yields:

E

Z
u
�̂(u)2du =

Z
u

(
2

T 2h2

Z T

0

�Z t

0
E

�
K

�
u� rs

h

�
K

�
u� rt

h

��
ds

�
dt

)
du

By the law of iterated conditional expectations, and by Result 1, the expectation of the

term inside the inner braces can be written as:

E

�
K

�
u� rs

h

�
K

�
u� rt

h

��
=
Z
rs

K

�
u� rs

h

��Z
rt

K

�
u� rt

h

�
�(rt; tjrs; s)drt

�
�(rs)drs

Substituting, the above expression into the one before it gives us our �nal, and very large

expression for the �rst term of the MIVAR:

E

Z
u
�̂(u)2du =

30In the next increment of time, F will grow by the amount

K

�
u� rt+dt

h

�
dt:

Applying Ito's lemma to rt+dt, the above expression can be written in Taylor series form as:

K

�
u� rt+dt

h

�
dt = K

�
u� rt

h

�
dt+Kr(:)dr � dt+ :5Krr(:)(dt

2):

All of the stochastic terms in this expansion are of smaller order than dt, and thus can be ignored. This
implies that F is locally deterministic with the derivative given in the text.
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2

T 2h2

Z
u

(Z T

0

�Z t

0

�Z
rs

K

�
u� rs

h

��Z
rt

K

�
u� rt

h

�
�(rt; tjrs; s)drt

�
�(rs)drs

�
ds

�
dt

)
du

The above expression is not pretty, but it is correct. Moreover the expression inside the

outer f g very closely resembles the expression for the expected squared occupation time of

a Markov di�usion in Karlin and Taylor (1981). More importantly for my purposes, with a

gaussian kernel, if the data is generated by the Vasicek model, then this expression can be

computed relatively easily numerically. The reason is that the transition probabilities in the

Vasicek model are conditionally and unconditionally gaussian. This combined with Fubini's

theorem allows me to apply Result 2 three times, allowing me to reduce the above expression

to the following simpli�ed expression:

E

Z
u
�̂(u)2du =

2

T 2

1p
2�

Z T

0

2
4Z t

0

1q
2h2 + �2

�
(1� e��(t�s))

ds

3
5 dt:

This expression can be rewritten as:

E

Z
u
�̂(u)2du =

2

T 2

1p
2�

1q
2h2 + �2

�

Z T

0

2
66664
Z t

0

dss
1�

�
�2

�

2h2+�2

�

�
e��(t�s)

3
77775 dT

Making the substitution:

z =

vuut �2

�

2h2 + �2

�

!
e��(t�s);

The above integral simpli�es to become:

E

Z
u
�̂(u)2du =

2

�

2

T 2

1p
2�

1q
2h2 + �2

�

Z T

0

"Z z

z

dz

z
p
1� z2

#
dT:

where

z =

vuut �2

�

2h2 + �2

�

!
e��t and z =

vuut �2

�

2h2 + �2

�

!
:

To compute the integral in terms of z, we make the additional substitution z = cos(�):

This substitution and algebra produce the result:

E

Z
u
�̂(u)2du =

1p
2�

1q
2h2 + �2

�

8<
:1 + 2

�

2

T 2

Z T

0
ln

2
4 1 +

q
1�  (t)

1 +
q
1�  (0)

3
5 dt

9=
; ;
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where

 (t) =

0
@ �2

�

2h2 + �2

�

1
A e��t

Substituting the above expression as the �rst piece of the Mean Integrated Variance for

the Vasicek process with a gaussian kernel produces our �nal result:

MIV AR(V asicek) =
1p
2�

1q
2h2 + �2

�

2

�

2

T 2

Z T

0
ln

2
4 1 +

q
1�  (t)

1 +
q
1�  (0)

3
5 dt;

where  (t) is as above.

The �nal integral in the above expression can be numerically computed very rapidly in

Mathematica and produces the Mean Integrated Variance of the kernel density estimate.

C Discrete Sampling Kernel Density Estimates.

In this section, we will derive expressions for the �rst and second moments of

�̂(u) =
1

Nh

N�sX
s=�s

K(
u� rs

h
)

when the interest rate at time 0 is drawn from density �(u) and then r evolves as in equation

(3) in the text. These �rst and second moments can then be used to compute the mean and

variance of the kernel density estimate, and can also be used to compute Mean Integrated

Squared Bias and Mean Integrated Squared Error.

The Expected Kernel Density Estimate

The �rst moment is E�̂(u); solving for this moment is easy:

E�̂(u) = E
1

Nh

N�sX
s=�s

K(
u� rs

h
)

=
1

N

N�sX
s=�s

Z
r0

�Z
rs

1

h
K

�
u� rs

h

�
�(rs; sjr0; 0)drs

�
�(r0)dr0

=
1

N

N�sX
s=�s

Z
rs

1

h
K

�
u� rs

h

�
�(rs)drs

=
1p
2�

1q
h2 + �2

2�

e
�:5

�
u��p
h2+�2

2�

�2
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The second equality is by the law of iterated conditional expectations. The third equality is

by Fubini's theorem and result 1. The �nal equality follows by result 2.

The Expected Squared Kernel Density Estimate

Second moments are much more di�cult than �rst moments. The expression for the expected

square of the kernel density estimate is:

E�̂(u)2 = E

 
1

Nh

N�sX
s=�s

K(
u� rs

h
)

!2

=
�
1

N

�2  N�sX
s=�s

E[
1

h
K(

u� rs

h
)]2 + 2

N�tX
t=�t

t��tX
s=�s

E
1

h
K(

u� rs

h
)
1

h
K(

u� rt

h
)

!

The �rst piece of this expectation is relatively easy to �nd. We know for a Gaussian

kernel that:

�
1

h
K(

u� rs

h
)
�2

=
1p
2�h

1p
2�h

e
�:5

�
u�rs
hp
2

�2

=
1

h
p
2
p
2�

1
hp
2

K

0
@u� rs

hp
2

1
A

Therefore, using the method used to derive the formula for E�̂(u) we have:

E

�
1

h
K(

u� rs

h
)
�2

=
1

h
p
2
p
2�
E

1
hp
2

K

0
@u� rs

hp
2

1
A

=
1

h
p
2
p
2�

1p
2�
q

h2

2
+ �2

2�

e
�:5

�
u��p
h2

2
+�2

2�

�2

The second piece of the expectation is more di�cult because it involves a double sum of

terms with general form:

E

�
1

h
K

�
u� rs

h

�
1

h
K

�
u� rt

h

��
=

=
Z
r0

�Z
rs

1

h
K

�
u� rs

h

��Z
rt

1

h
K

�
u� rt

h

�
�(rt; tjrs; s)drt

�
�(rs; sjr0; 0)drs

�
�(r0)dr0:

=
Z
rs

1

h
K

�
u� rs

h

��Z
rt

1

h
K

�
u� rt

h

�
�(rt; tjrs; s)drt

�
�(rs)drs:

=
Z
rs

1

h
K

�
u� rs

h

�
1p
2�

1q
h2 + V (rt; tjrs; s)

exp
�:5

�
u��(rt;tjrs;s)p
h2+V (rt;tjrs;s)

�2

�(rs)drs
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where V (rt; tjrs; s) is the variance of rt given rs, and �(rt; tjrs; s) is the mean of rt given rs:

The �rst equality above follows by the law of iterated expectations; the second equality

follows from result 1; and the third equality follows by result 2. This generates an answer that

is the product of three gaussian density functions multiplied by some additional factors. This

makes it possible to apply additional results to further simplify the integral. Substitution

of the expressions for V (rt; tjrs; s) and �(rt; tjrs; s), and some algebra makes it possible to

represent the above integral as the product of three gaussian density functions each of which

involve rs minus some mean divided by some variance. This makes it possible to apply result

4 to any two of these density functions. The resulting expression contains the product of only

two gaussian density functions that involve rs. Result 2 can be applied to these functions

to integrate out rs. This produces our �nal complicated expression which, for the sake of

notational compactness, we will write as G(�; t� s; VE; h):

G(�; t� s; VE; h) = E

�
1

h
K

�
u� rs

h

�
1

h
K

�
u� rt

h

��
=

C(�; t� s; VE; h)
1p

2�V1(�; t� s; VE; h)
e
�:5

�
u��

V1(�;t�s;VE;h)

�2
1p
2�

1

V2(h; VE)
e
�:5

�
u��

V2(h;VE)

�2

where,

VE =
�2

2�

C(�; t� s; VE; h) =
e�(t�s)

e�(t�s) � VE
VE+h2

V1(�; t� s; VE; h) =

vuuut(h2 + VE)e2�(t�s) � VE + h2VE
h2+VE�

e�(t�s) � VE
VE+h2

�2
V2(h; VE) =

q
h2 + VE

Although the �nal form of this expression appears onerous, it only involves a leading

term multiplied by the product of two gaussian density functions. More importantly, it is

fully analytical which means it is possible to generate (for a given bandwidth) an analytical

expression for the variance of the kernel density estimate at each point u. This is done below.
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Variance of the Discrete Sampling Kernel Density Estimate.

The variance of �̂(u) is given by E[�̂(u)]2 � [E�̂(u)]2: This variance has the following form:

V ar[�̂(u)] =
�

1

N2

�0BB@ N

h
p
2
p
2�

1p
2�
q

h2

2
+ �2

2�

exp
�:5

�
u��p
h2

2
+�2

2�

�2

+2
NX
t=1

t�1X
s=1

G(�; t� s; VE; h)

1
CCA

� 1p
2
p
2�
p
VE + h2

1p
2�
q

VE+h2

2

exp

�:5

0
@ u��q

VE+h2

2

1
A

2

where G(�; t� s; VE; h) is as given above.

Variance of the Continuous Sampling Kernel Density Estimate.

To compute the Variance of the Continuous Sampling Kernel Density Estimate, it su�ces to

take limits of the variance for the discrete sampling kernel density estimate as the sampling

interval goes to 0. De�ne sampling interval �t and �s so that

1

N
=

�t

T
=

�s

T
;

and rede�ne G(:) to remove the discreteness captured by the term �T , i.e. de�ne G�(�; t�
s; VE; h) as:

G�(�; t� s; VE; h) =

C�(�; t� s; VE; h)
1p

2�V �1 (�; t� s; VE; h)
e
�:5

�
u��

V �
1
(�;t�s;VE;h)

�2
1p
2�

1

V2(h; VE)
e
�:5

�
u��

V2(h;VE)

�2

where,

VE =
�2

2�

C�(�; t� s; VE; h) =
e�(t�s)

e�(t�s) � VE
VE+h2

V �1 (�; t� s; VE; h) =

vuuut(h2 + VE)e2�(t�s) � VE + h2VE
h2+VE�

e�(t�s) � VE
VE+h2

�2
V2(h; VE) =

q
h2 + VE

With this change in notation, the variance of the continous sampling kernel density
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estimate has form:

lim
�t!0

lim
�s!0

�
1

T 2

�0BB@ T�s�t

h
p
2
p
2�

1p
2�
q

h2

2
+ �2

2�

exp
�:5

�
u��p
h2

2
+�2

2�

�2

+2
TX

t=�t

(
t��sX
s=�s

G�(�; t� s; VE; h)�s

)
�t

1
CCA

� 1p
2
p
2�
p
VE + h2

1p
2�
q

VE+h2

2

exp

�:5

0
@ u��q

VE+h2

2

1
A

2

The �rst term inside the parenthesis goes to 0 while the second term converges to a double

integral. The term outside the parenthesis remains unchanged. This yields our �nal result

for the variance of the continuous sampling kernel density estimate:

V ar[�̂(u)] =

2

T 2

Z T

t=0

�Z t

s=0
G�(�; t� s; VE; h)ds

�
dt� 1p

2
p
2�
p
VE + h2

1p
2�
q

VE+h2

2

exp

�:5

0
@ u��q

VE+h2

2

1
A

2

Unfortunately, this integral is too di�cult to reduce further.

MIVAR of Discrete Sampling Kernel Density Estimate.

The mean integrated variance of the kernel density estimate is simply the integral of the

variance with respect to u. The �rst and third terms of the expressions for variance are

trivial to integrate. The middle term involves the product of two gaussian densities and

hence can be integrated using result 2. Simpli�cation produces the result that is contained

in proposition II.

Mean Integrated Squared Bias.

Since the expected kernel density estimate is the same in both the continuous and discrete

sampling cases, the mean integrated squared bias is also the same in both cases and is

presented in the results for the kernel density estimate with continuous sampling.

D Covariance of the kernel density estimates.

For kernel density estimates �̂(u) and �̂(v) of the ergodic distribution of r at points u and

v, this section derives expressions for Cov(�̂(u); �̂(v)): Robinson [1984] provides a central
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limit theorem in which this covariance goes to zero asymptotically. However, he cautions

that in applications, the covariance will be nonzero due to positive bandwidth and due to

the dependence in the data. Because we derive analytical (yet complicated) expressions

for this covariance in the case of the Vasicek model, the magnitude of this covariance as

function of bandwidth size and data dependence can be studied for �nite sample kernel

density estimates.

Covariance with discrete sampling kernel estimate.

The formula for the covariance is:

Cov(�̂(u); �̂(v)) = E[�̂(u)�̂(v)]� [E�̂(u)][E�̂(v)]:

The only piece of this formula that has not been solved for is E[�̂(u)�̂(v)]: This can be

expressed as:

E[�̂(u)�̂(v)] = E

 
1

N

NX
t=1

1

h
K(

u� rt

h
)
1

N

NX
s=1

1

h
K(

v � rs

h
)

!

=
1

N2h2
E

 
NX
t=1

K(
u� rt

h
)K(

v � rt

h
) +

NX
t=1

K(
u� rt

h
)
t�1X
s=1

K(
v � rs

h
) +

NX
t=1

K(
v � rt

h
)
t�1X
s=1

K(
u� rs

h
)

!

The right hand side of this expression involves three sets of terms. However, the second and

third set are virtually identical since one can be obtained from the other by switching u and

v. Therefore, it is only necessary to compute

E

�
K(

u� rt

h
)K(
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h
)
�

and E
�
K(
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h
)K(

v � rs

h
)
�
:

Using results 1 and 4, we �nd:

E
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Similarly, using results 1 and 4, we �nd that:

E

�
K(

u� rt

h
)K(

v � rs

h
)
�
= J2(u; v; h; �; VE; �; (t� s)) =
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Therefore, E[�̂(u)�̂(v)]

=
1

N2
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!

This is enough information to compute the covariance in the case of discrete sampling.

Covariance with Continuous Sampling

In the case of continuous sampling, we can take limits as above. This yields E[�̂(u)�̂(v)]:

=
1

T 2

 Z T

t=0

Z t

s=0
J�2 (u; v; h; �; VE; �; (t� s))dsdt+

Z T

t=0

Z t

s=0
J�2 (v; u; h; �; VE; �; (t� s))dsdt

!

36



Table 1

Optimal Bandwidth and MISE for Vasicek Process

Model Vasicek Parameters Optimal Bandwidth MISE MISVAR MISB
� � �2

(-2) 3.43348 0.089102 0.0087416 0.0140979 0.176687 0.146629 0.0300585
(-1) 1.71674 0.089102 0.0043708 0.0175509 0.306968 0.241167 0.0658013
(0) 0.85837 0.089102 0.0021854 0.0217661 0.511568 0.375094 0.136474
(1) 0.42917 0.089102 0.0010927 0.0268048 0.806781 0.543768 0.263014
(2) 0.21459 0.089102 0.00054635 0.0325055 1.17959 0.721825 0.457764

Notes: The table presents theoretical results that would be expected when computing kernel
density estimates of the long run distribution of the spot interest rate using 22 years of
continuously sampled data when the observation of the spot interest rates begin with a draw
from their ergodic distribution at time 0 and then evolve as in the Vasicek model:

dr = �(� � r)dt+ �dW:

Parameters for �ve models are considered. Model (0) is a baseline model since the param-
eters for this model are empirical estimates reported in Ait-Sahalia [1996a]. The long run
distribution of the spot interest rate is the same for all �ve models, but the rate at which
interest rates revert to their long run distribution di�ers. Columns (2)-(4) list the parame-
ters of the Vasicek model for each speci�cation. A gaussian kernel is used for all estimates.
For each speci�cation, column (5) reports the bandwidth choice that minimizes the Mean
Integrated Squared Error of the kernel density estimate. Columns (6)-(8) report the Mean
Integrated Squared Error (MISE), Mean Integrated Squared Variance (MISVAR), and Mean
Integrated Squared Bias (MISB) of the kernel density estimates that use the bandwidth in
column (5). Details on bandwidth selection are presented in the appendix.
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Table 2: MISE Minimizing Bandwidth

as a function of Data Span (T), and Sampling Frequency

for Five Parameterizations of Vasicek Model

T = 5 years Model
Sampling Frequency (-2) (-1) (0) (1) (2)

Continuous 0.0224 0.0276 0.0333 0.0389 0.0434
1 day 0.0224 0.0276 0.0333 0.0389 0.0434
5 day 0.0224 0.0276 0.0333 0.0389 0.0434
10 day 0.0225 0.0276 0.0333 0.0389 0.0434
20 day 0.0229 0.0277 0.0333 0.0389 0.0434
30 day 0.0234 0.0278 0.0334 0.0389 0.0434

T = 10 years Model
Sampling Frequency (-2) (-1) (0) (1) (2)

Continuous 0.0181 0.0224 0.0276 0.0333 0.0389
1 day 0.0181 0.0224 0.0276 0.0333 0.0389
5 day 0.0181 0.0224 0.0276 0.0333 0.0389
10 day 0.0183 0.0224 0.0276 0.0333 0.0389
20 day 0.0187 0.0225 0.0276 0.0333 0.0389
30 day 0.0192 0.0227 0.0276 0.0333 0.0389

T = 20 years Model
Sampling Frequency (-2) (-1) (0) (1) (2)

Continuous 0.0145 0.0181 0.0224 0.0276 0.0333
1 day 0.0145 0.0181 0.0224 0.0276 0.0333
5 day 0.0146 0.0181 0.0224 0.0276 0.0333
10 day 0.0148 0.0181 0.0224 0.0276 0.0333
20 day 0.0154 0.0183 0.0224 0.0276 0.0333
30 day 0.0160 0.0185 0.0225 0.0276 0.0333

T = 50 years Model
Sampling Frequency (-2) (-1) (0) (1) (2)

Continuous 0.0108 0.0135 0.0169 0.0209 0.0258
1 day 0.0108 0.0135 0.0169 0.0209 0.0258
5 day 0.0110 0.0136 0.0169 0.0209 0.0258
10 day 0.0113 0.0136 0.0169 0.0209 0.0258
20 day 0.0120 0.0139 0.0169 0.0209 0.0258
30 day 0.0126 0.0141 0.0170 0.0209 0.0258

T = 100 years Model
Sampling Frequency (-2) (-1) (0) (1) (2)

Continuous 0.0087 0.0108 0.0135 0.0169 0.0209
1 day 0.0087 0.0108 0.0135 0.0169 0.0209
5 day 0.0089 0.0109 0.0135 0.0169 0.0209
10 day 0.0093 0.0110 0.0136 0.0169 0.0209
20 day 0.0101 0.0113 0.0136 0.0169 0.0209
30 day 0.0107 0.0117 0.0137 0.0169 0.0209
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Table 3: MISE as a function of

Data Span (T), and Sampling Frequency

for Five Parameterizations of the Vasicek Model

T = 5 years Model
Sampling Frequency (-2) (-1) (0) (1) (2)

Continuous 0.5466 0.8544 1.2337 1.6090 1.9007
1 day 0.5467 0.8544 1.2337 1.6090 1.9007
5 day 0.5474 0.8546 1.2338 1.6090 1.9007
10 day 0.5498 0.8553 1.2340 1.6091 1.9007
20 day 0.5587 0.8579 1.2348 1.6094 1.9009
30 day 0.5719 0.8622 1.2361 1.6099 1.9011

T = 10 years Model
Sampling Frequency (-2) (-1) (0) (1) (2)

Continuous 0.3302 0.5466 0.8544 1.2337 1.6090
1 day 0.3302 0.5466 0.8544 1.2337 1.6090
5 day 0.3310 0.5468 0.8544 1.2337 1.6090
10 day 0.3331 0.5474 0.8546 1.2338 1.6091
20 day 0.3409 0.5498 0.8553 1.2340 1.6091
30 day 0.3520 0.5536 0.8564 1.2343 1.6092

T = 20 years Model
Sampling Frequency (-2) (-1) (0) (1) (2)

Continuous 0.1910 0.3302 0.5466 0.8544 1.2337
1 day 0.1911 0.3302 0.5466 0.8544 1.2337
5 day 0.1917 0.3304 0.5467 0.8544 1.2337
10 day 0.1937 0.3310 0.5468 0.8544 1.2337
20 day 0.2005 0.3331 0.5474 0.8546 1.2338
30 day 0.2094 0.3365 0.5484 0.8549 1.2338

T = 50 years Model
Sampling Frequency (-2) (-1) (0) (1) (2)

Continuous 0.0882 0.1590 0.2780 0.4673 0.7455
1 day 0.0882 0.1590 0.2780 0.4673 0.7455
5 day 0.0889 0.1592 0.2781 0.4673 0.7455
10 day 0.0906 0.1597 0.2782 0.4674 0.7455
20 day 0.0957 0.1616 0.2788 0.4675 0.7455
30 day 0.1019 0.1645 0.2797 0.4677 0.7456

T = 100 years Model
Sampling Frequency (-2) (-1) (0) (1) (2)

Continuous 0.0478 0.0882 0.1590 0.2780 0.4673
1 day 0.0478 0.0882 0.1590 0.2780 0.4673
5 day 0.0478 0.0882 0.1590 0.2780 0.4673
10 day 0.0478 0.0882 0.1590 0.2780 0.4673
20 day 0.0478 0.0882 0.1590 0.2780 0.4673
30 day 0.0478 0.0882 0.1590 0.2780 0.4673
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Table 4

Finite Sample Properties of Marginal Density Test

Under Vasicek Model

A: Asymptotic and Finite Sample 5% Critical Values

Model Vasicek Parameters 5% Critical Values
� � �2 Asymptotic 22 Year Lower Bound Upper Bound

(-2) 3.433480 0.089102 0.008742 1.645 11.52 10.21 13.36
(-1) 1.716740 0.089102 0.004371 1.645 17.00 13.43 20.25
(0) 0.858370 0.089102 0.002185 1.645 19.47 16.60 23.90
(1) 0.429185 0.089102 0.001093 1.645 19.17 15.41 25.43
(2) 0.214592 0.089102 0.000546 1.645 11.08 8.51 18.23

B: Asymptotic and Finite Sample 1% Critical Values

Model Vasicek Parameters 1% Critical Values
� � �2 Asymptotic 22 Year Lower Bound Upper Bound

(-2) 3.433480 0.089102 0.008742 2.33 17.70 15.45 49.87
(-1) 1.716740 0.089102 0.004371 2.33 29.73 23.90 52.79
(0) 0.858370 0.089102 0.002185 2.33 44.09 37.30 127.25
(1) 0.429185 0.089102 0.001093 2.33 36.44 29.55 166.56
(2) 0.214592 0.089102 0.000546 2.33 39.94 28.67 130.53

C: Empirical Rejection Frequencies Using Asymptotic Critical Values

Model Vasicek Parameters 5% level 1% level
� � �2 Rej. Freq. Std. Err. Rej. Freq. Std. Err.

(-2) 3.433480 0.089102 0.008742 45.60% 2.23% 37.80% 2.17%
(-1) 1.716740 0.089102 0.004371 57.40% 2.21% 49.40% 2.24%
(0) 0.858370 0.089102 0.002185 51.60% 2.23 % 43.60% 2.22%
(1) 0.429185 0.089102 0.001093 40.80% 2.20% 34.20% 2.12%
(2) 0.214592 0.089102 0.000546 21.00% 1.82% 18.80% 1.75%

Notes: Panels A and B present asymptotic and �nite sample critical values for the M̂ test
statistic, described in section III. of the text, when the short term interest rate is sampled
once a day for 22 years. Lower and upper bounds of a 95% con�dence interval for these
critical values are also provided. Panel C presents estimates of the probability of rejecting
the null when it is true using asymptotic critical values. All �nite sample results are based
on 500 monte-carlo similuations.For all tests, the short rate was generated by the Vasicek
model:

dr = �(� � r)dt+ �dW;

with the parameters shown. The kernel density bandwidths used to compute each test are
listed in Table 1. Details on bandwidth selection and on the M̂ statistic are provided in the
text.
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Table 4A

Finite Sample Properties of Marginal Density Test

Under Vasicek Model

A: Asymptotic and Finite Sample 5% Critical Values

Model Vasicek Parameters 5% Critical Values
� � �2 Asymptotic 22 Year Lower Bound Upper Bound

(-2) 3.433480 0.089102 0.008742 1.645 10.78 9.71 13.48
(-1) 1.716740 0.089102 0.004371 1.645 15.07 12.64 19.10
(0) 0.858370 0.089102 0.002185 1.645 18.04 15.89 22.69
(1) 0.429185 0.089102 0.001093 1.645 19.66 16.53 26.58
(2) 0.214592 0.089102 0.000546 1.645 12.45 9.71 23.35

B: Asymptotic and Finite Sample 1% Critical Values

Model Vasicek Parameters 1% Critical Values
� � �2 Asymptotic 22 Year Lower Bound Upper Bound

(-2) 3.433480 0.089102 0.008742 2.33 17.41 14.66 49.09
(-1) 1.716740 0.089102 0.004371 2.33 29.25 23.86 56.34
(0) 0.858370 0.089102 0.002185 2.33 46.36 30.56 133.72
(1) 0.429185 0.089102 0.001093 2.33 40.91 33.32 160.55
(2) 0.214592 0.089102 0.000546 2.33 50.79 36.41 153.01

C: Empirical Rejection Frequencies Using Asymptotic Critical Values

Model Vasicek Parameters 5% level 1% level
� � �2 Rej. Freq. Std. Err. Rej. Freq. Std. Err.

(-2) 3.433480 0.089102 0.008742 43.40% 2.22% 36.20% 2.15%
(-1) 1.716740 0.089102 0.004371 55.00% 2.22% 45.20% 2.23%
(0) 0.858370 0.089102 0.002185 47.20% 2.23% 39.60% 2.19%
(1) 0.429185 0.089102 0.001093 37.00% 2.16% 32.00% 2.09%
(2) 0.214592 0.089102 0.000546 20.60% 1.81% 18.20% 1.73%

Notes: Panels A and B present asymptotic and �nite sample critical values for the M̂ test
statistic, described in footnote 19 of section III. A, when the short term interest rate is
sampled once a day for 22 years. Lower and upper bounds of a 95% con�dence interval
for these critical values are also provided. Panel C presents estimates of the probability of
rejecting the null when it is true using asymptotic critical values. All �nite sample results
are based on 500 monte-carlo similuations.For all tests, the short rate was generated by the
Vasicek model:

dr = �(� � r)dt+ �dW;

with the parameters shown. The kernel density bandwidths used to compute each test are
listed in Table 1. Details on bandwidth selection and on the M̂ statistic are provided in the
text.
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Figure 4: Correlation Function for Kernel Density Estimates
                  T = 22 Years, N = 5500
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Figure 5: Correlation Function for Kernel Density Estimates
                 T = 100 Years, N = 24000
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Figure 6: Covariance Function for Kernel Density Estimates
                  T = 22 Years, N = 5500
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Figure 7: Covariance Function for Kernel Density Estimates
                 T = 100 Years, N = 24000
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