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ABSTRACT 
In the mid 1980s the monolithic nature of building 
energy simulation programs led to proposals for 
development of so-called "kernel systems," i.e., 
software environments that would make available to 
developers basic software modules and a supporting 
framework that could be used to construct new 
building simulation software. One of the outcomes of 
the ensuing work was the Simulation Problem 
Analysis and Research Kernel (SPARK). Although 
the current SPARK release can be viewed as a 
limited realization of the kernel idea, it falls short in 
that the internal methods can only be accessed within 
the context of a SPARK executive. This paper 
discusses two new ways in which the SPARK 
internal methods can be employed by model 
developers, leading to a fuller realization of the 
kernel system idea. First, a new facility called 
SPARK Model Functions is described that allows the 
SPARK internal methods to be used to create 
subsystem models of arbitrary size and complexity 
that can be called by foreign executive programs. 
Second, a new feature called Multivalued Objects 
allows easy and efficient integration of legacy models 
written in procedural languages into SPARK models. 
Together, these new features provide an Application 
Programmer's Interface (API) that better exposes "the 
K in SPARK" to the software developer. 

BACKGROUND 
In 1985 a meeting was convened at the Lawrence 
Berkeley National Laboratory (The Berkeley Lab) to 
consider the state of the building energy system 
simulation art, with the intent of establishing a 
direction toward a new generation of such software. 
Proposals advanced there held that what was needed 
was not development of another, all encompassing 
computer program, but rather a collection of the body 
of essential, software-expressed, building modeling 
technology in a framework that could be used by any 
software developer to easily assemble new programs 
to meet both general and specific building simulation 
needs. This was referred to as the Energy Kernel 
System (EKS) (Clarke 1986). Subsequently the UK 
sponsored development of a prototypical EKS, the 
outcome of which was summarized by Clarke at the 
IBPSA Building Simulation '93 Conference (Clarke 

and MacRandal 1993). In the US a parallel effort, 
initially called the US/EKS, resulted in a prototypical 
software system called SPANK (Simulation Problem 
ANalysis Kernel) (Sowell, Buhl et al. 1986).  

Although both the UK EKS and SPANK emerged 
from the same Energy Kernel idea, these efforts took 
radically different approaches. The UK EKS can be 
characterized as object oriented with the objects 
typically being large procedural modules stored in a 
database and assembled by the user, along with a 
solver. Internally these models are expressed in 
vector-matrix form and the solver incorporates sparse 
techniques for efficient solution. The US approach, 
which is now known as SPARK (Simulation Problem 
ANalysis and Research Kernel), works at a lower 
level, with objects representing individual equations 
assembled into a network representing the entire 
problem.1 The problem network is mapped onto a 
mathematical graph internally, and graph algorithms 
are used to automatically determine an efficient 
solution sequence. Working directly with individual 
equations has several attractions, including 
accommodation of an input/output free, non-
algorithmic modeling paradigm. Input/output free 
means that variables which are to be inputs and those 
which are to be calculated need not be specified a 
priori. Non-algorithmic (also know as declarative) 
programming means that the solution sequence is 
determined automatically rather than being specified 
by the modeler. The progress of these two different 
Kernel Systems has been reported regularly in the 
IBPSA conference series and elsewhere. The most 
up-to-date information on the UK project is available 
at 
http://www.bitd.clrc.ac.uk/Activity/ACTIVITY=EKS 
while that of SPARK is available at 
http://simulationresearch.lbl.gov/. 

In the current release, SPARK can be described as a 
stand-alone program comprising a solver engine and 
a user interface for describing the physical system to 
be simulated. Three choices of user interface are 
available: the text based SPARK network description 

                                                           
1 Since its objects do not support inheritance, 
SPARK is more properly called "object-based" rather 
than object oriented. 
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language, and two different graphical user interfaces, 
namely Ayres Sowell Associates (ASA) WinSPARK, 
and the Berkeley Lab Visual SPARK. By any of these 
interfaces users can describe physical systems for 
simulation with a great deal more flexibility than is 
possible with monolithic, whole-building simulators, 
and solve them with more sophisticated symbolic and 
numerical techniques than are available in subroutine 
based modular simulators such as TRNSYS (anon. 
2000) or HVACSIM+ (Park, Clark et al. 1985). Thus 
described, SPARK is an application program, rather 
than a kernel system in the original sense. 
Nonetheless, a software developer with a new notion 
of how simulation models should be described can 
translate that notion into a SPARK input language 
file (or into an alternative, lower level problem 
description file) and then use the SPARK input and 
problem setup processor to generate an executable 
solver. In this limited sense the release can also be 
viewed as a realization of the kernel idea.  

While the Kernel System idea continues to be 
appealing, it is hard to argue that it has been widely 
accepted. Although some of the technology 
developed in the UK EKS project no doubt has found 
its way into other software systems such as the ESPr 
program (Clarke 2002), the EKS itself has not yet 
been taken beyond the prototype stage (MacRandal 
2002). And while SPARK has a small user 
community one doubts that it has drawn many away 
from the large communities using traditional modular 
programs such as TRNSYS, and as yet has not been 
integrated into any of the whole building programs as 
originally hoped.2 At the same time, we continue to 
see reports of new building simulation programs that 
seem to start fresh in the representation and solution 
of HVAC system models, apparently oblivious to the 
EKS efforts. Assuming that the basic premise of 
kernel system was and is correct, one cannot help but 
wonder why this situation exists. It can be explained 
in part by the natural creative urges on the part of 
building simulation theorists and software 
developers.  But even so, one wonders if these 
developers could not have expressed their creativity 
in the overall architecture and interfaces of their new 
applications, using the kernel system technology at 
some (unseen and uninteresting) lower level. Since, 
apparently, this has not often happened, it must be 
that either the implementation of the kernel system 
projects on both sides of the Atlantic were somehow 
faulted, or they have been ill presented. If the former 
is the case, little can be done. But if the latter is the 
more correct assessment, it could be that if the EKS 
and SPARK efforts had focused more on the Kernel, 
and simple programmer's interfaces to it, rather than 
on "all or none" software systems, other developers 
might have used it to augment their own creative 

projects. We  believe that this is the case, and that the 
problem can be corrected. That is, hope remains for 
success of the energy kernel idea, not in stand-alone 
programs but in Application Programmer's Interfaces 
(APIs) to the underlying kernel system functionality. 

                                                           
2 Integration of SPARK with Energy Plus is planned 
for release by The Berkeley Lab. 

Thus in order to more fully realize the original 
Energy Kernel System objectives, we seek to make 
the SPARK internal methods directly accessible to 
model developers. For one thing, we want developers 
to be able to use these internal methods to create 
system models, of arbitrary size and complexity, 
which can be called by foreign executive programs. 
This would allow SPARK models to be to be used in 
the context of other simulation environments, and in 
situations where the SPARK executive does not 
accommodate special simulation needs.  For 
discussion purposes here we shall refer to this new 
capability as SPARK Model Functions (SMF). 

Situations also arise where a developer or analyst 
wishes to use a model expressed in an algorithmic 
language within a SPARK model. This comes up 
where there is an existing, trusted model (sometimes 
called legacy code) written in a procedural language, 
e.g., FORTRAN, C, or C++, and time or other factors 
argue against re-implementation as an equation-based 
SPARK macro class.  Or, there may be small sets of 
equations within a system that are numerically 
problematic for a global solver, but which can be 
reliably solved simultaneously with well-known 
procedural algorithms. In both of these situations 
there are multiple equations being solved for multiple 
variables simultaneously within the subsystem 
model. This is in contrast to the normal SPARK 
policy of breaking subsystems (macro objects) into 
the constituent individual equations and variables to 
be solved globally. To better accommodate such 
subsystem models, there is a need for SPARK to 
accept subsystem models that provide multiple values 
back to the global solver, rather than the normal 
single valued atomic objects.  For discussion 
purposes here we shall refer to this new capability as 
Multi-Value Objects (MVOs). 

We begin with a brief explanation of SPARK 
internals. This is followed by an overview of the 
SPARK modifications needed to implement SMFs 
and MVOs, along with some example usage. 

SPARK INTERNAL STRUCTURE AND 
OPERATION 
A SPARK problem is defined in terms of linked 
objects using a textual network description language, 
typically saved in a probName.pr file. This 
description can be hierarchical, using macro objects 
and macro ports.  

As shown in Figure 1, the first processing step on a 
SPARK problem file is parsing. The parser reads and 
parses the probName.pr file and all class object files 
referred to in the problem file, descending recursively 
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to parse all macro objects found in that file and its 
dependencies. The output of the parser is the SPARK 
setup file probName.stp. This is another textual 
representation of the problem, but one in which all 
macro objects and links have been resolved into their 
atomic parts. That is, this is a "flat" problem 
description rather than hierarchical,  composed 
entirely of atomic objects, each representing a single 
equation. Links between these atomic objects 
represent individual variables. In both the original 
problem description (probName.pr) and the flat 
description (probName.stp) links representing 
variables with user specified values are marked as 
inputs, comprising the input set; other links are the 
problem unknowns that must be solved for, i.e., the 
output set. 

The next step, carried out by the SPARK setup 
program, applies a series of graph-theoretic analyses 
to determine the structure of the problem graph in 
terms of strongly connected components, cycle cut 
sets within these components, and topological 
orderings. This establishes the order in which the 
graph components must be processed during 
numerical solution, and the visitation order of the 
nodes within each component, leading to an efficient 
overall problem computation sequence.  Efficiency 
derives from the reduction in size of simultaneous 
solution sets. 

A brief description of internal problem representation 
in terms of C++ objects is necessary for better 
understanding the extensions needed for SMFs and 
MVOs. The computation sequence, as well as data 
needed to support it, is expressed as a collection of 
C++ object instantiations and initializations. The 
C++ source language for these instantiations and 
initializations are developed by the setup program 
and saved in a file named probName.cpp. The most 
important object in this file is an instance of a C++ 
class TSPARKProblem called myProblem that 
embeds the entire problem solution sequence and 
data. The numerical routines operate entirely on this 
object to determine the output set from the given 
input set.3 

An important feature of SPARK is the non-
directionality of atomic (and macro) objects. That is, 
there is no a priori designation of input and output 
variables when a SPARK class is defined. This is 
achieved by providing every atomic class with a set 
of inverse functions so that, ideally, the object 
equation could be used to solve for any single 

variable appearing in the class equation. As part of 
the problem definition the user identifies problem 
inputs, and this allows the setup program to identify a 
single variable to be solved for, and the 
corresponding needed inverse function, at each 
object. The aforementioned computation sequence is 
in fact an array of pointers to these inverse functions, 
and evaluation of the entire component is a matter of 
stepping through this array and executing these 
functions one by one. If the component being 
processed has cycles the array is traversed repeatedly 
until convergence.  In order for this to work the 
problem solver build process must be provided with 
compiled code for each of these inverse functions. 
Therefore setup also provides a list of the source files 
for these inverse functions. 

                                                           
3 In the case of time varying inputs and/or dynamic 
elements in the problem, this solution is done at 
discrete times over the specified solution interval. 
However, if the intention is to export a SMF for use 
by a foreign executive that handles time 
advancement, this aspect of SPARK processing can 
be ignored. 

Once setup has constructed the probName.cpp file, as 
well as the list of source files for the required 
SPARK inverse functions, all these files can be 
compiled for linkage with the SPARK solver fixed 
code, producing an executable solver program. The 
user executes the solver program to get numerical 
answers.  

 

Figure 1 SPARK processing diagram. 

The main() function of solver executable is the result 
of compilation of a fixed main program that has the 
basic structure shown below: 
int main() 
{ 
 … 
 // Initializations 
 myProblem.initialSolve();  
 myProblem.Solve(); 
 // Final cleanup etc. 
 return 0; 
} 
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The myProblem object, which completely defines the 
model to be solved, is instantiated globally in the 
probName.cpp file, which is separately compiled and 
linked with this fixed main program. The 
initialSolve() member function of the 
TSPARKProblem class carries out the numerical 
solution of the problem, component by component, at 
the specified initial conditions and generates 
requested reports. The Solve() member function does 
much the same, but includes a loop in which time is 
advanced for dynamic simulations. Both of these 
functions call a lower level function Evaluate() that 
actually carries out the previously found solution 
sequence. (The principle difference between 
InitialSolve() and Evaluate() is that the former does 
data input prior to calling Evaluate().) 

SPARK MODEL FUNCTIONS 
Starting with the basic ideas explained above, there 
are several ways SPARK Model Functions might be 
implemented. One way, implemented and described 
by Curtil (Curtil 2002), provides an API consisting of 
calling conventions for the needed SPARK internal 
methods. Access to these methods enables a 
developer to create multiple SPARK problems (in the 
meaning discussed in the previous section) within a 
single SPARK executable, and to write a customized 
executive routine, replacing the standard SPARK 
main() function. This greatly extends flexibility in 
that each problem can be considered, in effect, as a 
SMF even though they are not actual functions. These 
can be executed in any order and sequence, as 
determined by the developer's customized executive. 
However, the approach does not allow the developer 
to export functions in a form that can be linked into 
completely different software. That is, one can only 
use Curtil's SMFs within the SPARK framework. 

Another way to implement SMFs requires a few 
changes to existing SPARK fixed code, but allows 
automatic generation of SMFs exportable as ordinary 
C++ functions.  With this approach, as with Curtil's, 
the SPARK input language is used to express a 
model of the system for which a solver function is 
wanted, say mySystem. The standard parser and a 
slightly modified setup programs are executed in the 
usual manner to get the probName.cpp file and list of 
needed inverses. Instead of compiling and linking 
with main(), however, we compile a function called 
mySystemSM() (where SM stands for System Model), 
also generated by setup,  that initializes system model 
inputs from an argument input array and returns the 
results to an argument output array. For example, if 
our "system" were simply a mixer blending two 
moist air streams the function would be 
(approximately):4 

                                                                                                                     
4 Typically, a SMF would be much more complex, 
involving many objects rather than only one.  

int  mixerSM(const double * in, double* 
out) 
{ 
 
 // initializations 
 ... 
 // Set the in arguments 
 myProblem.SetValue("mEnt1", in[0]);      
 myProblem.SetValue("TEnt1", in[1]);      
 myProblem.SetValue("wEnt1", in[2]);  
 myProblem.SetValue("mEnt2", in[3]);      
 myProblem.SetValue("TEnt2", in[4]);      
 myProblem.SetValue("wEnt2", in[5]);  
  
 myProblem.Evaluate(); // Solve 
 // Retrieve the results 
 out[0] = 
myProblem.GetValue("mLvg");  
 out[1] = 
myProblem.GetValue("TLvg"); 
 out[2] = 
myProblem.GetValue("wLvg"); 
 out[3] = 
myProblem.GetValue("hLvg"); 
 out[4] = 
myProblem.GetValue("hEnt1"); 
 out[5] = 
myProblem.GetValue("hEnt2"); 
 // Clean-up etc 
 ... 
 return 0; 
}  

Note that myProblem is the name of a 
TSPARKProblem  object representing the system 
internally. We make use of the TSPARKProblem 
GetValue() and SetValue() class member functions to 
transfer argument values to and from myProblem, 
and use the Evaluate() member function to solve it. 
This mixerSM() function can then be compiled, along 
with the atomic mixer object inverse mixer.cpp and 
linked into a user library. The developer's application 
program can then be linked with this library, allowing 
the mixerSM() function to be called as needed. 
Although this is a simple example, a system of any 
size and complexity could be handled in the same 
manner.  

The limitation of the approach as described above is 
that in standard SPARK the object named myProblem 
is globally defined, meaning that only one system 
model can be used in a particular simulation. That is, 
you could not use both a mixerSM and a collectorSM 
in a single application because there can be only one 
myProblem.5 

To get around this limitation we must make a few 
small changes to the standard SPARK probName.cpp 
file. The needed changes can be made either by 

 
5 This is because SPARK was originally designed to 
solve a single problem at a time. 
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modifying the setup program, or by post processing 
the probName.cpp file. 

The ability to have more than one instance of a 
TSPARKProblem in a single simulation is achieved 
with the namespace feature of C++. This feature 
allows the programmer to define the scope of 
identifiers. For example, suppose we write: 
namespace MixerSM{ 
 TSPARKProblem myProblem; 
… 
}; // end MixerSM namespace 
namespace CollectorSM{ 
 TSPARKProblem myProblem; 
… 
}; // end CollectorSM namespace 

The C++ compiler can then distinguish between the 
two usages of myProblem, so that two separate 
objects are instantiated. The scope resolution operator 
:: is used to distinguish them. The mixerSM() 
function is then: 
int  mixerSM(const double * in, double* 
out) 
 ... 
 actvPrb = &MixerSM::myProblem; 
 actvPrb->Initialize( &MyRTControls 
); 
 // Set the inputs 
 actvPrb->SetValue("mEnt1", in[0]); 
 actvPrb->SetValue("TEnt1", in[1]); 
 actvPrb->SetValue("wEnt1", in[2]); 
 actvPrb->SetValue("mEnt2", in[3]); 
 actvPrb->SetValue("TEnt2", in[4]); 
 actvPrb->SetValue("wEnt2", in[5]); 
 // Solve  
 actvPrb->Evaluate(); 
 // Retrieve the results 
 out[0] = actvPrb->GetValue("mLvg"); 
 out[1] = actvPrb->GetValue("TLvg");  
 out[2] = actvPrb->GetValue("wLvg");   
 out[3] = actvPrb->GetValue("hLvg");   
 return 0; 
} // end of mixerSM 

Note that we assign the address of the 
MixeSMr::myProblem object to a global 
TSPARKProblem pointer so it can be accessed in 
other SPARK internal functions as well as in the 
mixerSM() function.  

With this technique we can have any number of 
SPARK Model Functions active in an application 
program.  We envision simulation software 
developers using SPARK to implement component 
and subsystem models in this manner, and compiling 
and them into a dynamically linked library (DLL) for 
use in their own over-all system models, thereby 
gaining the advantages of SPARK's advanced model 
description and solution techniques. 

THE WINSPARK MODEL FUNCTION AND 
LIBRARY GENERATORS 
In this work the above idea was implemented by 
modification of the SPARK setup program. The 
probName.cpp file now contains the probNameSM() 
function and a test driver main() that demonstrates 
usage, in addition to the normal code. This code is 
marked for conditional compilation so it can be 
omitted when building a conventional SPARK 
problem.  A separate program called sparkMFG 
(SPARK Model Function Generator) compiles 
probName.cpp with flags set so as to produce 
probNameSM.obj and the test driver 
probNameSMDrv.exe. The SparkMFG program can 
be executed from the command line: 
C:\myProject\mixer> SparkMFG mixer <enter> 

Or, the operation can be carried out within the 
WinSPARK environment using the Generate model 
as function choice on the Run command menu, 
Figure 2.  

 

Figure 2 WinSPARK Run menu 

Also added to the Run menu is the choice Create 
model library. When this is selected all system model 
functions that have been generated for the current 
project are compiled and linked into a Dynamic Link 
Library (DLL)., which can be compiled and linked 
(along with the SPARK solver DLL) into the 
developer's application.  

EXAMPLE USAGE 
As an example of the power of the above technique 
the modified WinSPARK has been used to develop a 
demonstration HVAC Toolkit (Brandemuehl 1993; 
Sowell and Moshier 1995) that can be used in a 
Microsoft Excel worksheet, using the facility for 
calling DLL functions from Visual Basic for 
Application (VBA ). We describe the implementation 
only in outline to save space. 

First,  a problem is defined in a SPARK project for 
each toolkit component to be included, e.g., mixer, 
collector, heating coil, cooling coil, zone, etc. The 
SparkMFG program (or the Generate Model as 
Function menu choice) is applied to each problem 
individually in order to test the functions.  When all 
are judged satisfactory the Create model library menu 
choice is used to create a DLL containing all of the 
functions.  
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If the intent is to use the SPARK Model Functions in 
a non-C++ environment they will have to be 
"wrapped" in a module for the target environment, 
observing the foreign calling conventions. For 
example, if we intend to use the functions in Excel, 
we wrap them in  VBA  functions that take input 
arguments from, and write results to, worksheet cells. 
The one for the mixer shown below typifies these 
VBA  functions. Note that we simply load the 
SPARK-generated mixerSM() function's input 
arguments with the cell addresses where these values 
reside, call the mixerSM() function, and then transfer 
the function output arguments to their respective 
cells: 
    Sub MixerDriver() 
        Dim inArgs(5) As Double, outArgs(5) 
As Double 
        Dim ec 
         
SetInputs("Mixer", inArgs(0),  
{"mAirEnt1","TAirEnt1","wAirEnt1","mAirEnt2
","TAirEnt2","wAirEnt2"}) 
ec = mixerSM(inArgs(0), outArgs(0)) 
        If ec = 0 Then 
SetOutputs("Mixer", outArgs(0), 
{"mAirLvg","TAirLvg", "wAirLvg", 
"hAirLvg", "hAirEnt1", "hAirEnt2"}) 
        End If 
    End Sub 

Here, SetInputs() and SetOutputs() are VBA  
functions that use look-up to find the names and set 
up corresponding cell references. The function can 
then be invoked as would any VBA  function. For 
example, an entire system can be simulated by 
another VBA  function that calls the individual 
component models: 
Sub simulate() 
        Call CcsimDriver 
        Call ZonePropcont 
        Call DrcctrDriver 
        Call ZoneDriver 
        Call DivsimDriver 
        Call MixerDriver 
        Call EnthalpyDriverDriver 
End Sub 

Let us be clear that this example is probably not the 
most efficient way to model HVAC systems. For one 
thing, developing the VBA  functions and 
interconnections between the several models is a 
tedious, error prone task. A more serious limitation is 
lack of automatic iteration to convergence. However, 
given the large community of spreadsheet analysts 
(even in the building simulation field), this may be an 
attractive application in spite of these limitations. If 
one were to continue this line of development, 
leading to a truly useful toolkit for Excel-based 
HVAC simulation, the VBA  functions should be 
generated automatically, and the simulate() function 
should embed a global solver, either using the Excel 

nonlinear solver or perhaps the SPARK solver in 
suitable form. Here, we present the idea primarily as 
an indication of how SMFs can be used to develop 
system simulations outside of the SPARK 
environment. 

MULTI-VALUED OBJECTS 
As noted earlier, normal SPARK atomic objects 
represent a single equation and therefore can produce 
only a single value in a model. This is the preferred 
basis for modeling in SPARK because it exposes all 
equations and variables to the SPARK graph 
algorithms, thus allowing optimal solving. Also, it 
allows greater modeling freedom since designation of 
input and output variables can be deferred until 
solution time. 

In spite of the advantages of equation based 
modeling, sometimes users have reason to solve 
certain parts of the problem with normal, algorithmic 
functions. For example, one may have a complex 
model implemented in a procedural language such as 
C or FORTRAN, but insufficient time to extract the 
underlying mathematical model and reimplement it 
as a SPARK, equation based, model. Another 
example is a subproblem that is not well suited for 
iterative numerical solution, but can be solved 
symbolically without too much difficulty. The classic 
example of this in an HVAC context is zone 
temperature control, which in the most basic form has 
two equations, one a quadratic and the other a 
piecewise linear function, Figure 3. It is well known 
that iterative solution can fail if the slope of the 
piecewise linear function is too steep where the two 
functions intersect.  However, one can easily 
construct an efficient algorithm by symbolically 
solving for the intersection of the quadratic with each 
line of the piecewise linear function (or its 
extension), then picking as the correct solution the 
point that lies on a legitimate segment of the 
piecewise linear function .6 

 

Figure 3 Quadratic and piecewise linear solution 

In cases like this the solution function produces more 
than one output. For example, the function 
solveMyModel(x, y) for the above example produces 
both x and y. To use this multivalued function in a 
SPARK problem you can write two atomic classes, 
each having an inverse function that calls the 

                                                           
6 The algorithm is given in the example qpwl in the 
WinSPARK documentation. 
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solveMyModel(x, y) function. One of these atomic 
classes would be designed to return the x result of the 
call to solveMyModel(), another to return y. The two 
atomic classes could be wrapped in a single macro 
class, providing a single modeling entity that 
represents the subproblem.  

The above strategy has been available and usefully 
employed from the earliest days of SPARK. 
However, the obvious disadvantage is that at run time 
the solveMyModel(x, y) function gets executed twice: 
once to return x, and once to return y. For some 
situations this may not be a terrible loss, but if the 
algorithm is time consuming and the number of 
outputs is large the problem run time may suffer 
significantly.  

Recently, ASA has extended SPARK to offer a more 
efficient way to handle multivalued objects like this. 
The approach used is very similar to that described 
above. In fact,  MVOs are modeled exactly as 
described above, but at run time the solution process 
is monitored so that all calls but the first to the 
multivalued function can be skipped. For example, if 
y is the first needed result when the problem is 
solved, solveMyModel(x, y) is called when the object 
producing y is calculated, but not when x is needed. 
(This approach was first described by Buhl and 
Sowell (Buhl, Erdem et al. 1993). ) To use this new 
MVO facility a MVO class, the multivalued function, 
and the atomic class inverse function must follow a 
special protocol described in the WinSPARK 
documentation (Sowell 2001). Much of the code in a 
MVO inverse function is fixed,  meaning that you can 
easily construct them with a "cut and paste" process. 
Or, you can use the MVO choice on the WinSPARK 
Symbolic menu to construct your MVO class 
automatically once you have created the multivalued 
solve function. Examples, including the one shown in 
Figure 3, are included in the WinSPARK 
documentation. These examples have solve functions 
written in C/C++, but in principle they could be 
expressed in any language for which you have a 
compiler that produces object-level compatibility 
with Microsoft Visual C/C++. 

DISCUSSION 
The two extensions to SPARK described herein, SMF 
and MVO, are currently available in WinSPARK and 
may be included in some form in later SPARK 
releases from The Berkeley Lab. Taken together, they 
provide a useful Application Programmer's Interface 
(API) that makes the SPARK methodology available 
to simulation system developers that choose to work 
in non-SPARK environments. Examples might 
include:  

(1) Porting existing model libraries into 
spreadsheet functions, thus providing high 
quality models to analysts who prefer that 
environment, 

(2) Providing user-defined secondary and 
primary systems for whole-building 
programs such as DOE-2 and Energy Plus, 

(3) Generating models for component-based 
programs such as TRNSYS and 
HVACSIM+; and  

(4)  Providing equipment manufacturers a 
straightforward means for developing high 
quality models of their products for use in 
in-house simulation tools. 

We believe that this new capability represents a more 
complete and useful realization of the original Energy 
Kernel concept. At the same time, it must be 
recognized that in both SMF and MVO we are 
departing from the pure, equation based, non-
procedural basis of the SPARK methodology, and 
this means that some of the SPARK advantages will 
not be realized. For example, if two parts of a system 
are modeled as separate SMFs and brought back 
together in a different modeling environment the 
overall solution may not be as efficient as could have 
been realized if both parts were modeled together as a 
single SPARK problem. Moreover, a SMF always 
represents a single input/output combination, while 
many such input/output combinations are possible for 
the underlying SPARK problem. That is, the 
input/output free nature is lost in the process of 
generating the SMF.7 These disadvantages are most 
evident in the Excel HVAC toolkit example, where 
the SMFs are individual SPARK component models, 
e.g., mixers, collectors and cooling coils. In many 
cases these models are so small that little runtime 
speed advantage is being gained by the graph-
theoretic analysis, yet the overhead of doing it 
remains. Therefore this particular usage must be 
justified entirely by the convenience of modeling in 
the spreadsheet environment. In general, it is likely 
true that the best usage will be characterized by 
placing as much of the problem as possible on "the 
SPARK side," so to speak, when these new features 
are used to integrate SPARK into other applications. 
That said, we nonetheless encourage software 
developers to take advantage of this facility as they 
see fit, believing that they will gain some of the 
advantages of the advanced modeling and solving 
techniques built into SPARK, while at the same time 
retaining overall control of the architecture of their 
own applications.  

CONCLUSIONS 
We have attempted to review the state of the Energy 
Kernel System idea as represented in the UK EKS 
project and the Berkeley Lab/ Ayres Sowell SPARK 
project. The full benefit of the kernel idea appears not 

                                                           
7 However, this disadvantage is not severely limiting 
because it is an easy matter to change the input 
designations in the SPARK model and regenerate the 
SMF. 
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to have been realized, as we continue to see building 
energy tools being developed without taking 
advantage of the EKS or SPARK technology. We 
believe that this is due in part to the lack of suitable 
Application Programmers Interfaces. Addressing this 
issue, we presented an implementation of a two-part 
API for WinSPARK. One part allows simulation 
software developers to automatically generate 
SPARK Model Functions, which are C++ functions 
representing SPARK problems. Since these are 
callable from any compatible language, e.g., VBA  or 
FORTRAN, this feature means that developers can 
take advantage of SPARK's advanced modeling and 
solution methods within the context of their own 
applications. The second part of the API, called 
Multivalue Objects goes in the opposite direction, 
i.e., it allows foreign code to be efficiently 
incorporated in SPARK models. This provides a 
migration path for developers with a significant body 
of legacy code to rapidly port their models to the 
SPARK environment. We believe that features of this 
nature will encourage the flow of kernel technology 
into mainstream building simulation. 
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