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Introduction

Talking about the BFKL kernel one usually has in
mind the case of the forward scattering, i.e. t = 0 and
vacuum quantum numbers in the t-channel. However,
the BFKL approach is not limited to this particular
case and, what is more, from the beginning it was
developed for arbitrary t and for all possible t-channel
colour states.

The forward BFKL kernel at NLO was found almost
seven years ago.

V.S.F., L.N. Lipatov, 1998,
M. Ciafaloni, G. Camici, 1998.

The forward kernel can carry only restrictive informa-
tion about the BFKL dynamics. Moreover, the non-
forward case has an advantage of smaller sensitivity
to large-distance contributions, since the diffusion in
the infrared region is limited by

√

|t|. But the calcula-
tion of the non-forward kernel at NLO was completed
only last year.

The reason was a complexity of the two-gluon contri-
bution.

The kernel is given by the sum of “virtual” and “real”
contributions.

K̂ = ω̂ + K̂r

The “virtual” contribution is universal.
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It is expressed through the NLO gluon Regge trajec-
tory ω(t) which is known

V.S.F., R. Fiore, M.I. Kotsky, 1995,
J. Blumlein, V. Ravindran, W. L. van Neerven, 1998,

V. Del Duca, E. W. N. Glover, 2001.

The “real” contribution

K̂r = K̂G + K̂QQ̄ + K̂GG

is related to particle production in Reggeon-Reggeon
collisions and consists of parts coming from one-gluon,
two-gluon and quark-antiquark pair production. The
first part is also universal, apart from a colour coeffi-
cient, and is also known in the NLO

V.S.F., D.A. Gorbachev, 2000.

The new contributions which appear in the NLO are
K̂QQ̄ and K̂GG . Each of them is written as a sum
of two terms with coefficients depending on a colour
representation R in the t-channel. For the QQ̄ case
both these terms are known.

V.S.F., R. Fiore, A. Flachi, M.I. Kotsky, 1998,
V.S.F., R. Fiore, A. Papa, 1999.

Instead, only the piece related to the gluon channel
was known for the GG case.

V.S.F., D.A. Gorbachev, 2000.

For scattering of physical (colourless) particles only
the Pomeron channel exists.

Thus, the two-gluon contribution was the only missing
piece in the the non-forward BFKL kernel.
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The two-gluon contribution

q1 ↓ ↑ q′1

q2 ↓ ↑ q′2

k1→

→ k2

The “non-subtracted” contribution to the kernel KGG

is

∑

G1G2

∫

γG1G2
(

γ′G1G2
)∗

dφG1G2 ,

γG1G2 and γ′G1G2 – effective vertices for two-gluon pro-
duction in collision of Reggeized gluons with momenta
q1, −q2 and q′1, −q′2 respectively;

q1 − q′1 = q2 − q′2 = q,

q is the total momentum transfer,

q1 − q2 = q′1 − q′2 = k1 + k2,

ki – momenta of produced gluons,
dφG1G2 – their phase space element; the sum is over
polarizations and colours of produced gluons.
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For two-gluon states (and only for them) the integral
over their invariant mass k2 is logarithmically diver-
gent at large k2, that requires subtraction of the re-
gion of large invariant mass. This region is taken into
account in the leading terms.

The two-gluon vertex

L.N. Lipatov, V.S.F., 1989.

contains two colour structures:

γG1G2 = TG1TG2γ12 + TG2TG1γ21 ,

Accordingly, for any representation of R of the colour

group the two-gluon contribution K
(R)
GG contains two

terms:

”direct”
TG1TG2TG2TG1

and ”interference”

TG1TG2TG1TG2,

with different colour coefficients aR and bR and the
functions Fa and Fb,

Fa ∝ γ1γ
′
1 + γ2γ

′
2,

Fb ∝ γ1γ
′
2 + γ2γ

′
1,
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With account of the subtraction K
(R)
GG is presented in

the form

2g4N 2
c

(2π)D−1
Ŝ

∫ 1
0 dx

∫ d2+2εk1

(2π)D−1









aRFa(k1, k2) + bRFb(k1, k2)

x(1− x)









+

,

where the operator Ŝ symmetrizes with respect to
exchange of the Reggeon momenta, x is a fraction of
longitudinal momenta of a produced gluon,









f(x)

x(1− x)









+

≡
1

x
[f(x)− f(0)] +

1

(1− x)
[f(x)− f(1)],

The group coefficients are expressed through the co-

efficients cR appearing in the leading order: aR = c2
R

and bR = cR

(

cR −
1
2

)

.

For the colour group SU(Nc) with Nc = 3 the possible
representations R are

1, 8a, 8s, 10, 10, 27.

Corresponding coefficients are

c1 = 1 , c8a = c8s =
1

2
, c10 = c10 = 0 , c27 = −

1

4Nc

In particular,

a0 = 1 , a8a = a8s =
1

4
, b1 = 1/2, b8a = b8s = 0.

The last equality is especially important for the an-
tisymmetric case, since the vanishing of b8a is crucial
for the gluon Reggeization.
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The equality b8 = 0 extremely simplifies calculation of
the octet kernel

V.S.F., D.A. Gorbachev, 2000.

Remarkably, that only planar diagrams contribute to

K
(8)
GG due to the colour structure.

Instead of calculation of the second term in

2g4N 2
c

(2π)D−1
Ŝ

∫ 1
0 dx

∫ d2+2εk1

(2π)D−1









aRFa(k1, k2) + bRFb(k1, k2)

x(1− x)









+

we have found more convenient to calculate the “sym-
metric” contribution

K
(s)
GG(~q1, ~q2; ~q) =

2g4N 2
c

(2π)D−1
Ŝ

∫ 1
0 dx

∫ d2+2εk1

(2π)D−1









Fs(k1, k2)

x(1− x)









+

where

Fs = Fa + Fb ∝ (γ1 + γ2)(γ
′
1 + γ′2).

A marvellous feature of K
(s)
GG is absence of infrared

singularities.

The disappearance of the singularities is rather tricky:
it takes place due to independence of infrared singular
terms in the Fs from x. Because of this reason the
singularities vanish after the substraction.
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Relations between the colour coefficients aR and bR

permits to write the two-gluon contribution to the
kernel for any representation R is the form

K
(R)
GG = 2cRK

(8)
GG + bRK

(s)
GG.

Moreover, in pure gluodynamics an analogous rela-
tions is valid for total ”real” parts of the kernel:

K(R)
r = 2cRK

(8)
r + bRK

(s)
GG.

Since K
(s)
GG is infrared safe, this relation greatly sim-

plifies analysis of infrared singularities, especially be-
cause

The ”real” part K(8)
r for the gluon channel is rather

simple

K(8)
r

(~q1, ~q2; ~q) =
g2Nc

2(2π)D−1











~q 2
1 ~q ′ 22 + ~q ′ 21 ~q 2

2

~k 2
− ~q 2





×







1

2
+

g2NcΓ(1− ε)(~k 2)ε

(4π)2+ε

(

−
11

6ε
+

67

18
− ζ(2) + ε

(

−
202

27
+ 7ζ(3) +

11

6
ζ(2)

))







+
g2NcΓ(1− ε)

(4π)2+ε



~q 2





11

6
ln





~q 2
1 ~q 2

2

~q 2~k 2



+
1

4
ln





~q 2
1

~q 2



 ln





~q ′21

~q 2



+
1

4
ln





~q 2
2

~q 2



 ln





~q ′22

~q 2





+
1

4
ln2





~q 2
1

~q 2
2







−
~q 2
1 ~q ′ 22 + ~q 2

2 ~q ′ 21

2~k 2
ln2





~q 2
1

~q 2
2



+
~q 2
1 ~q ′ 22 − ~q 2

2 ~q ′ 21

~k 2
ln





~q 2
1

~q 2
2









11

6
−

1

4
ln





~q 2
1 ~q 2

2

~k 4









+
1

2
[~q 2(~k 2 − ~q 2

1 − ~q 2
2 ) + 2~q 2

1 ~q 2
2 − ~q 2

1 ~q ′ 22 − ~q 2
2 ~q ′ 21 +

~q 2
1 ~q ′ 22 − ~q 2

2 ~q ′ 21

~k 2
(~q 2

1 − ~q 2
2 )]

×I(~q 2
1 , ~q 2

2 , ~k 2)
]}

+
g2Nc

2(2π)D−1

{

~qi ←→ ~q ′
i

}

,

where

I(a, b, c) =
∫ 1

0

dx

a(1− x) + bx− cx(1− x)
ln





a(1− x) + bx

cx(1− x)



 .
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Due to infrared safety of K
(s)
GG the singularities are the

same for all colour states in the t-channels, apart from
colour factors.

Actually the singularities are the same as for the for-
ward case, since they are proportional to the LO ker-
nel.

The total kernel K̂ = ω̂ + K̂r

must be infrared safe for the Pomeron channel.

In this case the singularities of Kr are cancelled by the
singularities of the gluon trajectory.

The infrared safety is explicitly demonstrated and
forms free from the singularities are found.

V.S.F., R.Fiore, 2005.

The ”symmetric” contribution is rather complicated.

The complexity is related to the non-planar diagrams.

It is known since the calculation of the

non-forward kernel for the QED Pomeron
V.N. Gribov, L.N. Lipatov, G.V. Frolov, 1970

H. Cheng, T.T. Wu, 1970

where only box and cross-box diagrams are relevant.
The kernel was found only in the form of two-

dimensional integral.
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In QCD the situation is greatly worse because of the
existence of cross-pentagon and cross-hexagon dia-
grams in addition to QED-type cross-box diagrams.

It requires the use of additional Feynman parameters.

At arbitrary D no integration over these parameters
at all can be done in elementary functions. It occurs,
however, that

in the limit ε→ 0 the integration over additional Feyn-
man parameters can be performed, so that the result
can be written as two-dimensional integral, as well as
in QED.

The result can be written as

K
(s)
GG(~q1, ~q2; ~q =

α2
sN

2
c

4π3






























(~q 2 − 2~q 2

1 )(
25

9
−

π2

12
)

−
11

12








2~q 2

1 ln









~q 2
1

~k 2








− ~q 2 ln









~q 2

~k 2
















+

~q 2

4
ln









~q 2
1

~q 2








ln









~q ′ 21

~q 2









−
~q ′ 2
1

2











(~k 2 − ~q 2
1 − ~q 2

2 )2 − 4~q 2
1 ~q 2

2

2~k 2
I(~k 2, ~q 2

2 , ~q 2
1 )

+
~k 2 + ~q 2

2 − ~q 2
1

2~k 2
ln











~k 2

~q 2
2











ln









~q 2
1

~q 2
2



















− J(~q1, ~q2; ~q)











+
[

~qi ↔ −~q′i
])

+
(

~q1↔ −~q′2
)}

,
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with the two-dimensional integral J(~q1, ~q2; ~q):

J(~q1, ~q2; ~q) =
∫ 1

0
dx

∫ 1

0
dz







~q1~q
′
1



(2− x1x2) ln





Q2

~k 2



−
2

x1
ln





Q2

Q2
0









−
1

2Q2
x1x2(~q

2
1 − 2~q1~p1)(~q

′2
1 − 2~q ′1 ~p2) +

2

x1

[

(

x2~q1~q
′
1 (~p1(~q

′
1 − ~p2))− ~q ′ 21 ~q1~p2

) 1

Q2

+
(

z(1− z)~q ′ 22 ~q1~q
′
1 + ~q ′ 21 (z~q1

~k + (1− z)~q1~q
′
1)
) 1

Q2
0

]

−
1

Q2

(

~q ′ 21 ~q1 (~p1 − 2~q ′1)

+4x1~q
2
1 (~q ′1~p2) + ~q ′1~q1(~q

′
1~q1 − ~q ′1~p1 − ~q1~p2) + 2(~q ′1~p1)(~q1~p2)− 2(~q ′1~p2)(~q1~p1)

)

+~q ′ 21

[

−1

µ2
2Q

2

(

2
x2

x1
(~q1~p2)~q

′
1
~k + x2(~q

′
1~p2)(~q

2
2 −

~k 2) + 2(~q2~p2)~q1~q

)

+
2

µ2
0Q

2
0

1

x1
(~q1~p0)~q

′
1
~k −

~q1(~q
′
1 + ~k)

x1





x2

~p 2
2

ln





Q2

µ2
2



−
1

~p 2
0

ln





Q2
0

µ2
0









+
1

~p 2
2





1

~p 2
2

ln





Q2

µ2
2



+
1

Q2





(

2
x2

x1
(~q1~p2)(~q

′
1 + ~k)~p2 − 2((x2~q

′
1 + ~q2)~p2)~q1~p2

)

−
1

~p 2
0





1

~p 2
0

ln





Q2
0

µ2
0



+
1

Q2
0





(

2
1

x1
(~q1~p0)(~q

′
1 + ~k)~p0

)

+
(x2~q

′
1 + ~q2)~q1

~p 2
2

ln





Q2

µ2
2





+
~q 2
1

d



(~q2
~k)(~q ′2

~k)





Q2

d
L −

1
~k 2



+ (~q2~p2)(~q
′
2
~k)





1

µ2
2

−
µ2

1

d
L



 + (~q2
~k)(~q ′2~p1)





1

µ2
1

−
µ2

2

d
L





+(~q2~p2)(~q
′
2~p1)







~k 2

d
L −

1

Q2





 +
(~q2~q

′
2)

2
L























.

Here

~p1 = zx~q1 + (1− z)(x~k − (1− x)~q ′2), ~p2 = z((1− x)~k − x~q2) + (1− z)(1− x)~q ′1;

Q2 = x(1− x)(~q 2
1 z + ~q ′21 (1− z)) + z(1− z)(~q 2

2 x + ~q ′22 (1− x)− ~q 2x(1− x)),

µ2
i

= Q2 + ~p 2
i
, d = µ2

1µ
2
2 −

~k 2Q2 , L = ln





µ2
1µ

2
2

~k 2Q2



 ,

~p0 = z~k + (1− z)~q ′1; Q2
0 = z(1− z)~q ′ 22 , µ2

0 = z~k 2 + (1− z)~q ′ 21 .
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Presence of the two-dimensional integral J(~q1, ~q2; ~q) in
the kernel makes difficult its use both for analytical
investigation and for numerical calculations.

Unfortunately, the integrand INT (x, z) of the
two-dimensional integral J(~q1, ~q2; ~q) is too complicated.
Moreover, it’s behaviour near the board of the inte-
gration region is not smooth. Analytical analysis of
the integrand near the board can facilitate the nu-
merical calculations.

The most important are the corner regions:

x� 1, z � 1:

INT (x, z) '
2

x







(~q1~q
′

1)~q ′1~q
′

2

~q ′ 21

−
(~q1~q

′
2)

2





 ln







x~q ′ 21 + z~q ′ 22

z~q ′ 22





 +
1

x~q ′ 21 + z~q ′ 22

×
[

~q ′ 21 (~q 2
2 −

~k 2 + ~q1~q
′

2)− ~q 2
1 (~q ′1~q2) + (~q1~q

′
1 )(2~q1~q

′
1 + ~q ′1~q

′
2) + 2(~q ′1~q2)(~q1~q)

]

.

x� 1, 1− z � 1:

INT (x, z) '
2

x









~q1~q
′

1 − ~q ′ 21









(~q1
~k)(~q ′1

~k)
~k 4

−
(~q1~q

′
2 )

2~k 2

















ln







x~q 2
1 + (1− z)~q ′ 22

(1− z)~q ′ 22







+
1

x~q 2
1 + (1− z)~q ′ 22

[

−2~q ′ 21 (~q1~q)− (~q1~q
′

1 )(2~q ′ 21 + 2~q 2
1 + ~q1~q

′
2 )

+
~q ′ 21

~k 2









2(~q1
~k)2 + 2(~q1

~k)(~q 2
1 + ~q1~q2) + ~q 2

1 (~q ′1
~k) +

~q 2
1 (~q2

~k)(x~q1~q
′

2 − (1− z)~q ′ 22 )

x~q 2
1 + (1− z)~q ′ 22









+
~q 2
1 ~q ′ 21

~k 2









(~q2
~k)(~q ′2

~k)
~k ′ 2

−
(~q2~q

′
2 )

2

















.
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1− x� 1, z � 1:

INT (x, z) '
1

(1− x)~q ′ 21 + z~q 2
2

[

(~q1~q
′

1 )(~q2~q
′

1) + ~q ′ 21 (~q 2
1 − 2~q1~q

′
1 )

+~q 2
1









(~q2
~k)(~q ′2

~k)
~k4

−
(~q2~q

′
2)

2~k2

















+
(1− x)~q ′1~q2 − z~q 2

2

((1− x)~q ′ 21 + z~q 2
2 )2

~q ′ 21









2~q1~q + ~q 2
1

~q ′2
~k

~k 2









.

1− x� 1, 1− z � 1:

INT (x, z) '

[

−~q ′ 21 (~q1(~q
′

1 + ~q2))− 2~q 2
1 (q ′1~q2)− (~q1~q

′
1)(~q1~q2)

]

(1− x)~q 2
1 + (1− z)~q 2

2

.

Contributions of the corner regions to the kernel are calculated

analytically.

Unfortunately, it is practically impossible to do for the regions

where one of the variables is closed to the board, whereas an-

other is arbitrary, although the integrand in these regions is also

found.
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Another form of the ”symmetric” contribution: the
integral in transverse momentum space:

K
(s)
GG(~q1, ~q2; ~q) =

α2
sN

2
c

4π3
([Js(~q1, ~q2; ~q) + Js(−~q2,−~q1;−~q)]

+[~qn ↔ ~q − ~qn]) ,

where ~qn and ~q − ~qn ≡ −~q ′n (n = 1, 2) are the t–channel
Reggeized gluon momenta,

Js(~q1, ~q2; ~q) =
~k 2

2
+

5

2
(~q1~q2)+

~q 2

2







13

18
− ζ(2)





−
(~q 2

1 − ~q 2
2 )(~q ′ 21 − ~q ′ 22 )

2~k 2

+2











~q1~q2 − ~q 2
1

~k~q ′1
~k 2











ln









~q 2
1

~k 2








− ~q 2









11

12
ln









~q 2

~k 2








+

5

6
ln 2









−
~k 2

2
ln









~q 2
1

~k 2








ln









~q 2
2

~k 2








+

~q 2

4
ln









~q 2
1

~q 2








ln









~q ′ 21

~q 2








+ (~q1~q

+
~q 2
1 (~k~q ′2)− ~q ′ 21 (~k~q2)

~k 2
)









1

2
ln









~q 2
2

~k 2








ln









~q 2
1

~q 2
2








+ (~q2

~k)I(~q 2
1 , ~q 2

2 , ~k 2))









−~q 2
2 (~q′1~q)I(~q 2

1 , ~q 2
2 , ~k 2) +

∫ d2k1

π

[











−
~k 2

1
~k 2

2

2
+ (~k1

~k2)
2

+(Qi
1Ω

ij
1 Q′j2 )(Qi

1Ω
ij
2 Q′j2 )− ~Q′ 22 (Qi

1Ω
ij
1 Ωjl

2 Ql
1)
)

×
1

~Q 2
1
~Q ′ 22 −

~k 2
1
~k 2

2

ln











~Q 2
1

~Q ′ 22

~k 2
1
~k 2

2











−
1

2
+

5

6

~q 2

~k 2
1 + ~k 2

2

]

.

Here ~k = ~q1− ~q2 = ~q ′1 − ~q ′2,
~k2 = ~k − ~k1, ~Qn = ~q1− ~kn, ~Q ′n =

~q ′1 −
~kn, Ωij

n = δij − 2ki
nk

i
n/

~k 2
n

Workshop on Low x Physics
Lisbon, Portugal, June28 – July 1, 2006



Summary

• The BFKL kernel is known now for t 6= 0 and all
possible t-channel colour states R

• It is expressed in terms of the gluon trajectory, the
kernel in the octet channel and the ”symmetric”
contribution of two-gluon production

• The ”symmetric” contribution is infrared safe

• It makes simple the infrared structure of the kernel
for any R and evident the infrared safety of the
singlet kernel

• However ”symmetric” contribution contains two-
dimensional integral with a complicated integrand

• Analysis of the integrand in the near-board region
is performed

• Alternative representation of the ”symmetric” con-
tribution is found

• Work on search of suitable representations for the
kernel and on investigation of its properties is con-
tinuing

Workshop on Low x Physics
Lisbon, Portugal, June28 – July 1, 2006


