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Abstract

We propose a method for consolidation of seasonal forecasts. The method takes into account that we have very short records (~25 years) and there will be (or could be) many methods that are highly correlated. While we propose two specific methods in great detail, Ridge Regression and Gaussian Distribution Kernel, we have not written anything in stone and expect amendments when executing the proposal.

Implementation for operational forecasts is envisioned, keeping the practicalities at CPC in mind. 

Preamble

Since this is only a one-year proposal we see this activity only as a start. Involvement of other parties, especially IRI, in a new multi-year proposal to be submitted after completion of the first year should be considered.

1. Introduction

Consolidation of multiple forecasts is necessary for a number of reasons. One can think of consolidation as the process of making the best possible official forecast out of a number of different forecast tools. This is a laudable goal for any weather service. While one may entertain the thought of doing consolidation subjectively, one very good reason for objective consolidation is that the supply of forecasts has become so large that no human (forecaster or user) is able to absorb the information in the available time, weigh their relative credibility, do justice to each component, and formulate the official forecast. And the problem is only getting worse. This is probably true for both short and long range forecasts, but here we address the latter. The idea of formal consolidation is at least as old as Thompson (1977), but development has been slow.  Recent efforts to establish the Climate Test Bed facility have identified tool consolidation as a top priority for accelerating improvements in NOAA operational climate forecasts.  

We consider it self evident that a) one needs hindcasts in order to make an optimal consolidation and b) the real time forecasts need to be consistent in all respects with the hindcasts. But note that this practice has hardly been developed for dynamical models. CDC has undertaken a reforecast project (Hamill et al 2004) for the week2 forecast – this may be a prototype, an atmosphere only reforecast. The new coupled ocean atmosphere model at NCEP (Saha et al 2005), named Climate Forecast System (CFS), has a hindcast amounting to 3500 years of integration. In the case of Hamill et al. (2004) the purpose was calibration of the model in its own right, not consolidation. The CFS also needs to be combined with other methods currently used at CPC. Other literature or practices are often employing AMIP runs for the hindcast of dynamical models (Peng et al 2002), but this may not necessarily apply in the real time setting. For statistical methods the idea of hindcasts comes more natural and is fairly well developed

Consolidation is difficult for many small reasons, but two large reasons in particular. The first is a stunning lack of data vis-à-vis the number of coefficients that need fitting.  Think of consolidation as CON = a*A + b*B +c*C….., where the capital letters refer to forecast tools, and the lower case coefficients need to be determined from hindcasts. Seasonal forecast tools like the CFS (Saha et al 2005/06) have only a 23 year record of hindcasts. This may sound like a lot, but in terms of seasonal means there is very little independent material to tune coefficients on. While some empirical methods like CCA (Barnston 1994) may have 50 (or potentially 100) years, the data set still falls short by orders of magnitude if there are many methods/models to be combined. This is especially so when A, B, C and all others are highly correlated. The 2nd major difficulty is low frequency climate change. The period 1981-2003 was much warmer over the US than the 60’s and 70’s. This major source of forecast skill (when verified against an ‘old’ normal) is accounted for in real time operations at CPC by the Optimal Climate Normals (OCN) method (Huang et al 1996). Dealing with this aspect retroactively on very limited data may be next to impossible.

By the nature of the consolidation methodology used one may see a stark distinction between two groups of consolidation activities, namely those working with point forecasts (it will be 66.0 F tomorrow) and those working with pdf forecasts (next winter a 50% chance of the upper tercile). The distinction is not as absolute as it may seem, because in applying linear regression to N point forecasts, one automatically obtains the root-mean-square error (rmse), which, to first approximation, serves as a standard deviation around the point forecast, i.e. linear regression results in a consolidated pdf. Whether the spread of forecasts, on a case-by-case basis, can be used to improve upon the vanilla pdf remains an open question, but we note that Hamill et al. (2004) have concluded in the negative. 

We have to be practical, having in mind CPC’s operational setting, and knowing, more or less, which type of models/methods, in principle, could participate. We propose two consolidation methods for further development. The first is linear Ridge Regression, having the method of data assimilation (Gandin 1965) in mind as a practical solution in a situation of enormous redundancy. We use this method because we recognize there is not enough data to tune all coefficients and to resolve co-linearity among forecast methods. We thus hit the covariance matrix hard with some strong medicine that allows stable albeit flawed solution. The 2nd method is the Gaussian Density Kernel method, which seeks to combine pdfs assigned to each method (?). In the GDK method there is ample opportunity for the spread in the ensemble to help shape the pdf on a case-by-case basis.

In general, consolidation could be combined (or folded in) with calibration. However, we approach consolidation separately from calibration. That is, we consider it the task of the originators of the forecast to correct for systematic errors in the mean or higher order moments, if they wish. 

Consolidation is not new at NCEP.  Leaving a long history of subjective consolidation aside, CPC actually has had a primitive consolidation of a few of its seasonal forecast tools running from 1995 onward (Fig.1). But it has proved difficult to maintain this tool in real time over the years nor can it be adjusted to ingest more tools. Van den Dool and Rukhovets(1994) designed a consolidation for the various members (at the time unequal members in terms of resolution, age) of the global model for support of the 6-10 day forecast. Ever since Unger et al(1996), CPC  has presented the official NWS SST forecast (Nino3.4 only) as a consolidation of in-house tools (CCA, CA, MRK, coupled model) – the exact method has evolved over time and has led to the idea of GDK presented here. In a certain sense ‘ensemble’ CCA (Mo, 2003) is also a consolidation.

Outside NCEP ‘multi-model ensembles’ appears to be even more popular. At the IRI a Bayesian method and a canonical variate method (Barnston et al 2003) are used to consolidate a large number of model forecasts from various centers around the world. The DEMETER project in Europe has been used to make a strong case in favor of  multi-model ensembles (Hagedorn et al 2005). 

In sections 2 (3) we describe the Ridge Regression (Gaussian Distribution Kernel). Although we present the details of these methods we do not want to give the impression that the methods are cast in stone. It is likely that changes will be made as  we try out the methods, and gather input from others. In section 4 we present other practicalities, which may also be subject to change. 

Although we are optimistic one should also be realistic. Consolidation should be better than the single best participating tool, but for all the work to be done to determine optimal weights etc, the following should be kept in mind.

(1) The Consolidation will not be much better that the best individual tool if there is little independent information provided by the other tools

(2) The Consolidation will fail (in real time) if any of the hindcast data sets gives a flawed impression of skill or if we cannot execute real time forecasts 100% consistent with the hindcasts.


We do not have control over all of these factors.
2. Ridge Regression

For US T&P we propose to implement a version of Ridge Regression as the consolidation method. It is assumed that this will function even with an ‘overload’ of participating methods and short data sets – and this is the key consideration. The solution will be kept sane by pulling it slightly in the direction of a simpleminded approach based on the skill of each method. Since skill ought to be positive, negative weights should never be assigned to any method. Space dependence of weights may be possible to some degree. ‘Regime’ dependence will be possible to some degree. Missing methods in real time can be easily accommodated. 
Definitions.

Let  A, B and C be three forecast methods with a hindcast history 1981-2003. A etc is shorthand for A (year, initial month, lead, space) or A (year, target month, lead, space).  Stratification by month is customary, so A (y, l, s) suffices in the notation below, where y is 1981 to 2003, lead=1, 6(13), space (s) could be gridpoints NH (for example) or 102 super Climate Divisions in US. The matching observations are O (y, l, s).  The inner product is defined by:


AB = Σ A ( y, l, s) * B (y, l, s)       (1) 

where summation is over time y and (some or all of) space s. For simplicity we work with just three methods, but the derivation can be given for N methods.
Simple consolidation

In general we look for:  CON(solidation) = a*A + b*B + c*C
(2)
In a s
imple-minded solution a, b and c are proportional to the skill of methods A, B and C, i.e. proportional to AO, BO and CO (covariances), multiplied by 1/AA etc.  In that case Σ a+b+c probably needs an additional constraint like a+b+c=1.  a, b and c could be function of s, lead, initial (target) month. a, b and c should always be positive because we do not admit methods with negative skill (over the hindcast data set). As seen in section 3 alternatives to the weights a, b and c could be R/(1-R), where R is the correlation of say A and O.  

Full solution

While a simple-minded solution may be practical we actually seek the full optimal solution, taking into account both skill by methods and ‘co-linearity’ among methods:



Matrix

*  vector
=    vector


|AA
AB
AC|

|a|

|AO|  


|BA
BB
BC|
*
|b|
=
|BO|


(3)


|CA
CB
CC|

|c|

|CO|

If co-linearity were zero, note a = AO/AA etc, the simple-minded solution. Also note there is no constraint on  Σ a+b+c . The full solution takes co-linearity of methods into account. I.e. if A and B always give the same information they have to share the weight – they do not both get a high weight. The measure of co-linearity is given by the strength of the off-diagonal elements, relative to the main diagonal (AA, BB and CC). 

Addressing Serious Problems

Co-linearity is essential for the full solution, but problems arise when the co-linearity is too large, or when there is not enough data to estimate the co-linearity accurately. In either case the solution (a,b,c) may be unstable. In consolidation of seasonal forecasts there is FAR too little data to determine a,b,c…z, given the number of participating methods (quickly increasing). 
Ridge regression is an amendment to the full solution to address this problem. One can stabilize the solution by adding small positive constants to the main diagonal of the matrix.  This changes (3) to (4).



Matrix

*  vector
=    vector


|AA+ε2

AB
AC    |

|a|

|AO|  


|BA
BB+ε2

BC    |
*
|b|
=
|BO|


(4)


|CA
CB
CC+ε2
|

|c|

|CO|

Even very small ε2  can stabilize the worst possible matrices, see example in Appendix for a demo. Adding  ε2   to the main diagonal plays down the role of co-linearity ever so slightly, and drives the solution very slightly in the direction (but not exactly so) of a simple-minded solution. A 2nd layer of amplitude adjustment may be needed.

About Ridging

The oldest reference on ridging in the English literature is Tikhonov(1977) in translation, but this method may have been known since 1950 in Russia. The basic idea is to find a reasonable solution where there are more unknowns than equations. Nominally we have 3 equations and three unknowns in (3), but when co-linearity is too large there may be effectively fewer than three equations. While (3) minimize the rms difference between O and CON on a given data set, the ridge regression minimizes simultaneously Σ a*a+b*b+c*c. As can be seen from the example in the appendix, ridging does this very effectively. The situation we encounter in consolidation is similar to data assimilation (Gandin 1965), where redundance (co-linearity) among observations to be assimilated is large. In the data assimilation context ε2 relates to the (assumed) error in the observations. One could even embrace the situation as follows. 



-) truncate forecast(obs) in EOF space



-) Now determine AA from filtered data…. 



-) Add  ε2  which is related to variance of unresolved EOFs



-) Controlled use of noise: off-diagonal elements unchanged.



-) solve the system. 

In this context ε2 has a real meaning, namely the variance of the unresolved EOFs. We are not sure whether the EOF truncation is necessary, and if it is whether either EOF’s of the fields of variables (say US T) or eigenvectors of the matrix in (3) are the best way to go.  We may have to work on adjusted ridging where in the limit of infinite noise the simple-minded solution for a, b, c emerges. 

Given our experience with ridging (Van den Dool et al 2003), we feel we have a basis for assuming that the proposed consolidation will function even with an ‘overload’ of participating methods and short data sets – and this is the key consideration. The weights generated by ridging will be handed off to the new procedure of making the probability forecast, described in the section 3. Meanwhile, since the (ridge) regression also comes with an rms error and a correlation (a frequentist’ a-priori skill) we could use an older recipe (Unger 1998, personal communication) described in Fig.2 to make a probability forecast in three classes. For the same a-priori skill the probability anomalies vary greatly as a function of the point forecast anomaly.

Other than consolidation of drastically different methods, ridge regression can also be used on the very tough problem of assigning weights to the 15 members (per month) of the CFS ensemble. Being different in age (as in lagged average forecasting some 20 years ago) the older members should have lower weight, but the way weights decrease backward in time is entirely unknown. Here too the forecasts correlate very highly among themselves.

3. Gaussian Distribution Kernel method

An important part of any climate forecast is the ability to express probabilistic information about the variable being predicted.  A probabilistic prediction is difficult because it requires statistical information about the forecast system in order to provide a well calibrated product.  In the case of climate prediction, the forecast system consists of many different tools, each of which uses different prediction method.  Some tools are based on statistical methods such as regression, or canonical correlation analysis, while others are based on physical models of the ocean and atmosphere.  The physical modeling approach has recently emphasized the ensemble forecasting approach, in which multiple forecasts are produced for the same target period.  The problem at hand is how to process the information from the many tools into a single probabilistic forecast.

We plan to use a consolidation method based on the relationships between explained and unexplained variance of the forecast system.  Forecasts from each tool are weighted roughly according to the skill of the system and to compensate for possible redundant information from any particular tool we use the weights of Ridge Regression as described in section 2.  Statistics from the weighted ensemble are then analyzed to produce a forecast probability distribution function based on the kernel smoothing method (Silverman, 1986).  Kernel smoothing is similar to a histogram except that a distribution is placed around the histogram elements rather than to assume a discrete value.  When applied to an ensemble forecast, the probability distribution of a forecast element, F, is obtained by placing a distribution around each member's forecast for a particular variable at a given location.  The final PDF is obtained from the sum of all individual "kernel" distributions, normalized to unity.  In this case, a Gaussian distribution is used as the kernel distribution function, with standard deviation Sz. (See Fig. 3.)  

Before the Gaussian kernel density method can be applied to a prediction problem, several important issues must be addressed.  Namely, the width of the kernel, Sz, and how to correct forecast bias and account for forecast skill.   While there are several techniques documented in meteorological literature that provide kernel smoothing parameters Roulston and Smith (2003),  Anderson(2001), none are as simple as the one proposed here.   A method that accounts for both the predictability of the ensemble forecasting system, and the spread of the members is used here to produce the kernel statistics.  

Linear regression is a well known statistical technique that relates predictor variables to their subsequent observations.  A linear regression equation derived from the ensemble means and their associated observation is a measure of skill. Regression theory states that the explained variance,   σF2   is equal to the climatological variance of the predicted variable,  σC2 , multiplied by the square of the correlation coefficient between the forecast (in this case the ensemble mean) and the observation, RF2 ;   σF2 =  σC2 RF2 .

(See list of definitions at the end of section 3.)

The unexplained variance, also know as the error variance, therefore, is the residual.

SF2 =  σC2 (1 - RF2 )                        

An ensemble forecast attempts to account for part of the error variance through the ensemble spread.  Thus the error variance is divided into two components:  a predicted component, as determined by the ensemble spread, expressed as a variance, E2 , and the residual, which is apportioned equally about each ensemble members, since we don't know in advance which member will be correct.  If it is assumed that the errors unaccounted for by the ensemble spread are normally distributed, then the residual error will form a Gaussian distribution around each ensemble member with variance,  Sz2   .  

The following equations govern the relationship between the various variance components of the system.  

               SF2 =  SFm2 +  E2                                                          (5)

            
   SFm2 =  Sz2 +  E2                                                          (6)

Regression theory can be used to provide a candidate for optimum ensemble spread.  The error variance for regression for the ensemble mean, and individual ensemble forecasts respectively are:

SF2 =  σC2 (1 - RF2 )                        

   


SFm2 =  σC2 (1 - RFm2 )                        

Substituting these into Eq. (5) yields:

E2 =  σC2 (RFm2 - RF2 ).
(7)

Which implies from  Eq. (6) that;

Sz2 =  σC2 (1 - 2RFm2 - RF2 ) .     (8)                        

Thus the statistical parameters of the ensemble system are specified by the historical performance of the individual forecasts and their ensemble mean.  Note that occasionally some adjustments must be made to keep Sz2 positive. 

The core of the GDK method is Eq (7) and (8).

The Gaussian kernel forecast is then produced by a four step process.  First the forecast is standardized by subtracting its mean and dividing by the standard deviation;

Zi =  (Fi-F)/ σF

This standardized forecast is then adjusted according to the predictability of the system:

Z'i =  Rz Zi
The adjusted and standardized forecast is then restored by applying the climatological mean and standard deviation of the forecast variable:

      


F'i =  Z'i σC  + C
These three steps are identical to Linear regression except that the effective correlation, 

Rz, is used rather than RFm .  Rz  is computed from the following relationship:

     


Rz2= ( 1-( Sz2/ σC2) ).

Rz ≤ RFm and is the expected skill of the system when all ensembles agree.  

Finally the ensemble spread is adjusted to its optimum value by applying a correction proportional to the ratio of the optimum spread and the actual spread over a historical set of forecasts.

               

F"i  = ( F'i  - Fm)(E'/E) +   Fm .

Ensembles from any given model are assumed to be equal skill.  Forecasts from different models are weighted according to skill and co-linearity, and entered into the ensemble system prior to the computation of Kernel statistics.  Kernel statistics are then computed according to each tools’ weighted contribution. 
SYMBOLS AND DEFINITIONS:

F = Forecast ,  O = Observation, C = Climatology, F = Mean forecast over many cases.

σ = Standard deviation of  the forecasts, or observations.  Standard deviations are computed with annual climatological mean removed, and are based on a substantial portion of the hindcast record.

S = Standard deviation of forecast errors,  (F-O) ,  S  is also based on a substantial portion of the hindcast record.

R = The correlation coefficient between F and O.

E = A measure of the ensemble spread over n individual forecasts for a given initial time.

E2 = Σ(Fi -Fm)2/n  

Subscripts on F:

Unsubscripted or with subscript i = individual ensemble member, m= ensemble mean

Subscripts on S, σ, or R:  

F = individual ensemble forecast, Fm = Ensemble mean, z = Gaussian kernel.
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4. Practicalities

1) We restrict ourselves to hindcasts initiated in 1981-2003 (this will increase), because the CFS is available for 1981 forward.

2) Hindcasts of tools are collected. Each tool first gets a workout to make sure the details (grid, units, etc) are correct. A basic judgement has to be made whether or not we TRUST the hindcast data set. More tools can and will be added over time.

3) An 11 year running mean (lf) is removed from the observations as well as the forecasts, leaving only the higher frequencies (hf). The lf is set aside until the end. The consolidation is done on the hf part. Take Higgins et al (2004) as a protoype example as to how the lf/hf separation can be done.

4) Reduce co-linearity by removing doubles (via (A,B) buddy checks), assigning ‘equal’ members of ensemble equal weights a-priori, removing lf, and possibly pooling data in a) space, and maybe months b) m-1,m,m+1, and leads c) l-1, l, and l+1.

5) Cross Validation, to be worked out (a major issue)
6) Normal period for verification
7) Dealing with methods that have already been CV-ed in their own right and suffer  degeneracy
8) The lf part (observed) is put back into the point forecast

5. Links to other activities

It goes without saying that our work will be done in close collaboration with EMC. Within NCEP consolidation is an important near-term focus for the CTB. In addition, we will work with the IRI, as they face the same problem.  At the very least we could learn from each other about methods of consolidation. The practicalities at IRI  and CPC, however, are very different. We should also maintain communication with CDC on consolidation and with DEMETER on multi-model ensembles. We have downloaded their forecasts and can use the DEMETER data set for experimentation, and to see where CFS stands relative to the European efforts.

6. Timetable and workplan

Yr 1.  Collect as many hindcast data sets of as many in-house methods as we can collect at short notice. Subject each hindcast data set to basic sanity check, and verify the units, grid, periods, range of leads etc etc. Experiment with the ridge regression method to assign weights to methods. Do this for any combination of M methods out of N (M<N) so as to make sure that using all N at the same time produces reasonable answers.  Preliminary test of the GDK method.

Beyond the first year we envision the following:

Yr 2.  Collect more hindcast data sets. Formulate a protocol for any new methods to participate. Finalize the ridge regression method and generate weights. Prepare article about consolidation as per ridge regression+GDK. Organize a workshop (paid for by??) for interested parties (IRI, Europeans) focused on tool consolidation. 

Yr3.  Guide implementation, make adjustments. Implement a procedure that can adjust to change (at least in terms of participating methods). Prepare final paper on results. Hold the workshop and prepare recommendations for the future.

7. Readiness

We claim CPC is ready for the proposed work because it is clearly in CPC’s interest, and we have people with the right talent and interest to guide this work. In summer 2005 CPC will have a framework for a consolidated forecast in place so any results of this proposal should flow into operations without further difficulty.

8. BUDGET ($K)
Title of proposal: Consolidation of multi-method Seasonal Forecasts at CPC

Principal Investigators: H. van den Dool 

Year



1st


Salaries and Overhead*



Huug van den Dool (1 mo/yr)
N/C


David Unger (1 mo/yr)
N/C


Technician (0.5 mo/yr)
 N/C


1 or 2 Contract Support Scientists






145.0     

--------------




Sub-totals


145.0     

Equipment
Computer &


6.0


Hard Disk

Travel



 5.0


Publications


4.0






------------------------



TOTALS        


160.0

* Salaries include an overhead and benefits factor of 1.75 for contractor support.  Note the large  CPC/NCEP contribution in personnel plus partial computer costs at NC to CDEP/OGP.

Explanation of the budget items

Salaries and Overhead

H. van den Dool, with help of  David Unger, will lead this project as the PI, and is responsible for the overall coordination and management of all the work related to the project. No cost to the project.

One or two contractors will work full time on this project mainly in program coding, model output processing, verification and analysis.

Technician, will partially provide technical support with no cost to the project.

Equipment: Support is being sought for purchasing a stand-alone PC or workstation and hard disk during the lifetime of the proposal to handle model data sets and analysis. 

Computer time: Computer time and partial file-server storage will be supported by CPC/NCEP with no cost to the project.

Travel: Support is being sought for one or two domestic scientific and technical meetings per year.

Publications: Partial support is being sought to cover page charges for about 1 or 2 publications per year

Note. Since this only a one-year proposal it may be hard to hire anyone (unless OGP promises funding for more years). Quite possibly we need to hire someone in-house at NCEP who needs to be carried forward.
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Appendix. 

We have created a technically unsolvable problem with 66 coefficients. We made 30 equations (not shown), and the remaining 33 are just linear combinations of the first 30. The simple-minded solution would feature positive weights for all 66 coefficients. The first Table below is the solution. Given are 66 coefficients. On the far right are three control quantities, the sum of the weights, the sum of the square of the weights and the sume of the absolute values of the weights. Clearly the solution makes little sense.

 
1 -2.38  11   .27  21  -.58  31   .69  41 -1.00  51  -.80  61 -1.65   14.83Σw
2 -4.31  12  2.09  22  4.04  32  5.14  42 -5.01  52-11.79  62 -2.89 1250.21Σw*w
3   .73  13  6.60  23  7.15  33   .58  43  3.58  53  2.27  63  6.97 213.27Σ|w|
4 -1.53  14 -3.40  24 -2.06  34   .39  44 -3.46  54  4.72  64  3.01    
5  2.80  15  4.03  25 -4.35  35 -1.37  45  1.47  55  5.17  65-12.07   
6  1.93  16 -1.39  26 -2.40  36   .77  46  1.27  56  1.55  66 -2.40   
7   .69  17  -.72  27  2.56  37  3.95  47 -4.41  57 14.55  
8  3.82  18  -.19  28  -.16  38   .12  48  -.77  58 -9.84  
9   .48  19 -2.00  29   .59  39 -2.59  49  2.25  59  7.10  
10  3.96  20 -5.52  30 -3.52  40  3.48  50 -4.67  60  3.28  
 
After adding  =0.000000000000005 to the main diagonal of the covariance matrix (not shown) the solution is already very reasonable:
 
   1   .13  11   .06  21   .12  31   .03  41   .01  51   .04  61   .04  2.45 Σw 
 2   .12  12   .10  22   .07  32   .00  42   .02  52  -.01  62   .07  .23Σw*w
 3   .19  13   .06  23  -.07  33   .01  43   .04  53   .00  63   .01 3.04Σ|w| 
 4  -.03  14   .04  24  -.01  34  -.04  44   .01  54  -.01  64   .04     
 5  -.04  15   .09  25   .02  35   .04  45   .05  55   .07  65   .04     
 6   .06  16   .11  26   .06  36   .04  46   .05  56   .03  66   .05     
 7   .00  17   .06  27   .09  37  -.03  47   .05  57   .05  
 8   .10  18   .10  28   .00  38   .07  48   .04  58   .03  
 9   .06  19   .04  29   .03  39   .00  49   .02  59   .04  
10   .01  20  -.02  30   .02  40  -.04  50  -.01  60   .04  

Suddenly the sum of the square of the weights goes down from 1250.21 to 0.23. Indeed ridging is enormously powerful in stabilizing the solution of linear system. If one cannot live with negative weights (a lot) more ridging needs to be applied.

Fig.1  A real life example of a consolidation map used at CPC for the AMJ2005 forecast. Only two methods are combined here, CCA and OCN. The forecasts are expressed as anomalies in units of standard deviation times 10. Positives are in red, negatives in blue. The a-priori skill estimate is conveyed by the size of the numeral. In areas where the skill, in terms of correlation, is less than 0.3 no forecast is given at all – in this case the location of the [image: image1.png]o1 b Ens 1 ——
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station is shown by the plus sign, where the color indicates the sign of the anomaly. 

Fig.2 shows the probability shift (contours), relative to 100*1/3rd, in the above normal class as a function of a-priori correlation (R , y-axis) and the standardized forecast of the predictand (F, x-axis). The prob.shifts increase with both F and R. The R is based on a sample of 30, using a Gaussian model to handle its uncertainty. The same diagram is automatically usuable for probability shift for the B class. For the N class we have another diagram. Notice the asymmetry for large values of the predictand – the extreme class cannot give up more than 33.1/3rd while it can gain 66.2/3rd at the expense of both [image: image2.png]W
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 Figure 3.  Diagram of Gaussian kernel density method to form a probability distribution function from individual ensemble forecasts.   Four ensemble members are used in this example to produce a consolidation forecast distribution.  E represents the spread, Fm is the ensemble mean, and Sz  is the standard deviation of the Gaussian kernel distribution.  The x-axis represents some forecast variable, such as air temperature in Degrees F, and the y-axis is probability density. Sz is the same for all 4 kernels but the area underneath each kernel varies according to the weight assigned to the member.
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