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Abstract. This paper develops a least-squares approach to the solution of the incompressible
Navier-Stokes equations in primitive variables. As with our earlier work on Stokes equations, we
recast the Navier-Stokes equations as a first-order system by introducing a velocity flux variable
and associated curl and trace equations. We show that a least-squares principle based on L2 norms
applied to this system yields optimal discretization error estimates in the H1 norm in each variable,
including the velocity flux.

An analogous principle based on the use of an H−1 norm for the reduced system (with no curl
or trace constraints) is shown to yield similar estimates, but now in the L2 norm for velocity-flux
and pressure. Although the H−1 least-squares principle does not allow practical implementation,
these results are critical to the analysis of a practical least-squares method for the reduced system
based on a discrete equivalent of the negative norm. A practical method of this type is the subject of
a companion paper. Finally, we establish optimal multigrid convergence estimates for the algebraic
system resulting from the L2 norm approach.
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1. Introduction. In [5], Cai, Manteuffel and McCormick developed least-squares
functionals for first-order system formulation of the Stokes equations (generalized by
a pressure-perturbed form of the continuity equation to allow for linear elasticity).
Full ellipticity was established of the L2-based least-squares formulation in n dimen-
sions by showing that the homogeneous form of the functional is equivalent to the
(H1)n2+n+1 norm applied to the first-order system variables (the new n2-component
velocity flux variable, the n-component velocity variable and the scalar pressure vari-
able). This ellipticity immediately yields optimal discretization error estimates for
standard finite elements in this H1 product norm, as well as optimal convergence
estimates for multigrid methods applied to the resulting discrete systems.

The aim of the present paper is to extend this methodology to the primitive
variable form of the incompressible Navier-Stokes equations in two and three di-
mensions. We make this extension in the same way that the Stokes equations were
reformulated based on the velocity flux variable, but now we include the nonlin-
ear convection term in the first-order system. We first consider an L2-based least-
squares formulation for the Navier-Stokes equations. The Euler-Lagrange equations
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for the corresponding least-squares principle are then recast in the canonical form
F (λ,U) ≡ U + T · G(λ,U) = 0, where T is the least-squares solution operator for
the Stokes equations. This allows us to apply conventional abstract theory and our
Stokes results to obtain optimal discretization and multigrid solution estimates for
each variables (including velocity flux) in the H1 norm.

These are the first H1 product ellipticity results for the Navier-Stokes equations
that admit practical velocity boundary conditions. Earlier work on the Stokes equa-
tions by Chang [7] used an acceleration variable analogous to our velocity flux; how-
ever, velocity was eliminated from the first-order system, which seems to prevent its
extension to the Navier-Stokes equations, and, in any case, the formulation is lim-
ited to two dimensions. In [2], Bochev and Gunzburger developed a least-squares
approach for the velocity-vorticity-pressure form of the Stokes equations, but showed
that it does not allow H1 product ellipticity in the velocity boundary condition case (a
mesh weighting was introduced in the functional to obtain optimal estimates). Finally,
Bochev [1] extended the velocity-vorticity-pressure methodology to the Navier-Stokes
equations, but established H1 product ellipticity only for nonstandard boundary con-
ditions.

Next, we turn our attention to a least-squares functional in which the residual
of the momentum equation is measured in the norm of the negative-order Sobolev
space H−1. For earlier work on H−1 norm functionals, we refer the reader to papers
by Bramble et al. [3]-[4] and Cai, Manteuffel and McCormick [5]. In the present
paper, our analysis again combines previous results on analogous operators for the
Stokes equations with the abstract framework outlined above. Although in both
cases we deal with similar abstract formulations of the least-squares principle, the
use of negative-order norms yields a functional analytic setting in which ellipticity is
established on a product of L2 and H1 spaces. As a result, the optimal discretization
error estimates for the velocity flux are now derived in the L2 norm. These are the first
results concerning error analysis of H−1 functionals in the context of the nonlinear
Navier-Stokes equations. One of the practical advantage of such functionals is their
applicability to problems that do not exhibit H2-regularity. One of the main purposes
of the analysis here of H−1 least-squares principles is to provide the background for
the study of a discrete negative norm least-squares functional. The need to consider
a discrete equivalent arises because negative norm per se involves exact solution of
Poisson equation, making it impractical computationally. Formulation and analysis
of practical negative norm least-squares methods is the subject of a companion paper,
referred to herein as Part II.

Along with discretization error estimates, we present an analysis of well-posedness
of the least-squares variational problems, the importance of which stems from the fact
that application of least-squares principles results in weak problems whose nonlinear
terms are coupled with the Stokes operator. For both the L2 and H−1 approaches,
we show that a nonsingular branch of solutions of the original Navier-Stokes equa-
tions corresponds to a nonsingular branch of solutions of the least-squares variational
problem.

This paper is organized as follows: in the next section, we introduce the Navier-
Stokes equations and their first-order form; in Section 3, we develop the associated
L2 least-squares principle; in Section 4, we recast this L2 principle in canonical form
and apply a corresponding abstract theory to derive error estimates; in Section 5, we
develop a simple but optimal multigrid solver for the resulting discrete L2 system; in
Section 6, we develop the H−1 least-squares approach and derive corresponding error
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estimates; finally, in Section 7, we prove well-posedness of the least-squares canonical
forms for both the L2 and H−1 principles based on well-posedness of the original
Navier-Stokes equations.

Throughout the paper, we use bold face lower case font to denote vectors and
underlined bold face upper case font to denote matrices.

2. Velocity-flux Navier-Stokes equations. In what follows, Ω will denote
a bounded domain in RI n, n = 2, 3, with Lipschitz continuous boundary Γ. The
dimensionless equations governing the steady incompressible flow of a viscous fluid in
domain Ω may be written in the form

−ν4u + (∇ut)tu +∇p = f in Ω(1)
∇tu = 0 in Ω,(2)

where u, p and f denote velocity, pressure and given body force, respectively, and ν
is the inverse of the Reynolds number, λ. The velocity variable u is a column vector
with scalar components ui, so that ∇ut is a matrix with columns ∇ui. Together with
equations (1)-(2), we consider the velocity boundary condition

u = 0 on Γ ,(3)

where Γ is the boundary of Ω. For uniqueness, we also impose the baseline pressure
condition ∫

Ω

pdΩ = 0.(4)

To formulate the least-squares method, equations (1)-(2) will be transformed into an
equivalent first-order system. The first step in this process is to introduce the velocity
flux variable

U = ∇ut ,(5)

which is a matrix with entries Uij = ∂uj/∂xi, 1 ≤ i, j ≤ n. Then

(∇tU)t = 4u

and it is easy to see that the new variable satisfies the identities

trU = 0 , ∇×U = 0 in Ω

and

n×U = 0 on Γ ,(6)

where trU =
∑n

i=1 Uii and n is the outward unit normal on Γ. Furthermore, the
nonlinear term in (1) takes the particularly simple form

(∇ut)tu = Ut u .

As a result, original Navier-Stokes system (1)-(2) can be replaced by the first-order
system

−ν(∇tU)t + Utu +∇p = f in Ω(7)
∇tu = 0 in Ω(8)

U−∇ut = 0 in Ω(9)
∇(trU) = 0 in Ω(10)
∇×U = 0 in Ω(11)
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along with conditions (3), (4) and (6).
The second step in the formulation of a suitable first-order system is to scale

the momentum equation by the Reynolds number and to replace the data f by func-
tions with known boundary values. The resulting form of the equations will provide
insight into the overall approach and facilitate error analysis of the corresponding
least-squares method. For this purpose, we assume that f ∈ L2(Ω)n and consider the
unique solution (u0, p0) of the scaled Stokes problem

−4u +∇p = 1
ν f in Ω

∇tu = 0 in Ω
u = 0 on Γ∫

Ω
pdΩ = 0.

(12)

Letting U0 = ∇ut
0, then equation (7) is replaced by

−(∇tU)t +
1
ν

(U + U0)
t(u + u0) +∇p = 0 in Ω ,(13)

which is the principal equation that relates the perturbation (U,u, νp) to the Stokes
solution (U0,u

t
0, νp0). To summarize, our reformulation yields the system

−(∇tU)t +
1
ν

(U + U0)
t(u + u0) +∇p = 0 in Ω(14)

∇tu = 0 in Ω(15)
U−∇ut = 0 in Ω(16)
∇(trU) = 0 in Ω(17)
∇×U = 0 in Ω(18)

along with conditions (3), (4) and (6).

3. L2 least-squares. The L2 least-squares functional for first-order system (14)-
(18), (3), (4) and (6) is defined as follows:

J(U,u, p) = ‖ − (∇tU)t +
1
ν

(U + U0)
t(u + u0) +∇p‖20

+ ‖∇tu‖20 + ‖U−∇ut‖20 + ‖∇(trU)‖20 + ‖∇ ×U‖20 .(19)

Note that our scaling of (7) by the Reynolds number is equivalent to the use of an L2

norm weighted by λ2 for the residual of this equation; see also [5].
To define the least-squares method, we need a suitable minimization problem.

Let

X =
{(U,u, p) ∈ H1(Ω)n2

×H1(Ω)n ×H1(Ω) ∩ L2
0(Ω)

∣∣∣u = 0 ,n×U = 0 on Γ} ,(20)

where L2
0(Ω) = {p ∈ L2(Ω)

∣∣∣ ∫
Ω

pdΩ = 0}. Then the least-squares principle for func-
tional (19) is

Find (U,u, p) ∈ X such that

J(U,u, p) ≤ J(V,v, q) for all (V,v, q) ∈ X.(21)

It is easy to see that the Euler-Lagrange equation for this minimization problem
is given by the variational problem
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Find (U,u, p) ∈ X such that

B((U,u, p), (V,v, p)) ≡(
−(∇tU)t +

1
ν

(U + U0)
t(u + u0) +∇p,

−(∇tV)t +
1
ν

(
(U + U0)

tv + Vt(u + u0)
)

+∇q

)
0

+(
∇tu,∇tv

)
0

+ (∇(trU),∇(trV))0 +(
U−∇ut,V −∇vt

)
0

+ (∇×U,∇×V)0 = 0(22)

for all (V,v, q) ∈ X.
Let Xh denote a finite-dimensional subspace of X. Then the least-squares dis-

cretization method for the Navier-Stokes equations is defined by the following discrete
variational problem:

Find (Uh,uh, ph) ∈ Xh such that

B((Uh,uh, ph), (Vh,vh, ph)) = 0 for all (Vh,vh, qh) ∈ Xh.(23)

It is easy to see that the discrete variational problem (23) corresponds to the necessary
condition for the following discrete least-squares principle for (19):

Find (Uh,uh, ph) ∈ Xh such that

J(Uh,uh, ph) ≤ J(Vh,vh, qh) for all (Vh,vh, qh) ∈ Xh.(24)

For space Xh, we assume the following approximation property: there exists an integer
d ≥ 1 such that, for all U ∈ Hd+1(Ω)n2

, u ∈ Hd+1(Ω)n and p ∈ Hd+1(Ω), one can
find (Uh,uh, ph) ∈ Xh such that

‖U−Uh‖µ + ‖u− uh‖µ + ‖p− ph‖µ ≤(25)
Chd+1−µ (‖U‖d+1 + ‖u‖d+1 + ‖p‖d+1) ,

µ = 0, 1. (Here and henceforth C is a generic constant that may change values with
each occurrence. We take C to be independent of λ in the sense that it depends only
on the maximum value in the compact set Λ ⊂ RI +. C is also independent of h.) Note,
for example, that (25) can be satisfied with d = 1 by choosing continuous piecewise
linears for all variables.

4. Discretization error estimates. The main goal of this section is to derive
error estimates for least-squares method (23). For this purpose, we show how to cast
nonlinear problems (22) and (23) in the respective canonical forms

F (λ,U) ≡ U + T ·G(λ,U) = 0(26)

and

Fh(λ,Uh) ≡ Uh + Th ·G(λ,Uh) = 0 .(27)

This will allow us to apply the abstract approximation theory of [8]. The following
function spaces will be needed in the sequel (with m representing some nonnegative
integer):

Xm =
[
Hm+1(Ω)n2

×Hm+1(Ω)n ×Hm+1(Ω)
]
∩X ,(28)
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Y = X∗ ,(29)

Z = L3/2(Ω)n2
× L3/2(Ω)n × L3/2(Ω) ;(30)

where X∗ denotes the dual of X with respect to the L2 inner product. The approxi-
mation in (27) is introduced by way of operator Th. Therefore, the error estimates will
depend largely on the nature of operator T and its approximation Th. The basic idea
is to define T to be the least-squares Stokes solution operator and Th its finite element
approximation. The approximation properties of these choices have been studied in
[5]. Now, once T is known, operator G is then defined by the remaining terms in (22).
The key is that the corresponding nonlinear part for Th is also G, as we assert in our
first lemma.

With this in mind, we make the identifications U = (U,u, p), Uh = (Uh,uh, ph),
V = (V,v, q), Vh = (Vh,vh, qh) and λ = 1/ν, and we assume that λ ∈ Λ, where Λ is
a compact subset of RI +. We then introduce the following:

T : Y 7→ X defined by U = Tg for g ∈ Y if and only if

BS(U ,V) ≡
(
−(∇tU)t +∇p,−(∇tV)t +∇q

)
0

+
(
∇tu,∇tv

)
0

+ (∇(trU),∇(trV))0
+

(
U−∇ut,V −∇vt

)
0

+ (∇×U,∇×V)0
= (g1,V) + (g2,v) + (g3, q)(31)

for all (V,v, q) ∈ X;
Th : Y 7→ Xh defined by Uh = Tg for g ∈ Y if and only if

BS(Uh,Vh) = (g1,Vh) + (g2,vh) + (g3, q
h) for all (Vh,vh, qh) ∈ Xh ;(32)

and
G : Λ×X→ Y with g = G(λ,U) for U ∈ X if and only if

(g1,V) + (g2,v) + (g3, q) =(
−(∇tU)t +∇p,

1
ν

(
(U + U0)

tv + Vt(u + u0)
))

0

+(
1
ν

(U + U0)
t(u + u0) ,

−(∇tV)t +∇q +
1
ν

(
(U + U0)

tv + Vt(u + u0)
))

0

(33)

for all (V,v, q) ∈ X.
We then have the following equivalence.

Lemma 4.1. Assume that T , Th and G are defined by (31), (32) and (33),
respectively. Then nonlinear problem (22) is equivalent to (26) and discrete nonlinear
problem (23) is equivalent to (27).

Proof. Assume that U = (U,u, p) solves problem (26) with T and G given by
(31) and (33), respectively. Then U = −Tg if and only if

BS(U ,V) = (g,V) for all V ∈ X ,

and g = G(λ,U) if and only if (33) holds. It follows that U also solves variational
problem (22). Conversely, if U solves (22), let g be defined by (33). Then BS(U ,V) =
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(g,V) for all V ∈ X, i.e., U = −Tg. Thus, (22) and (26) are equivalent. Proof of the
equivalence of (23) and (27) is identical. 2

Error estimates for least-squares method (23) will now be derived from the ab-
stract approximation theory of [8]. Below we state the main result of this theory for
general T and Th, but otherwise specialized to our needs. Here we let DUG(λ,U) and
DUF (λ,U) denote the Fréchet derivative of G and F with respect to U , and we refer
to {(λ,U(λ)) |λ ∈ Λ} as a regular branch of solutions of (26) if U = U(λ) is a weak
solution of (26) for each λ ∈ Λ, λ 7→ U(λ) is a continuous map Λ 7→ X and DUF (λ,U)
is an isomorphism of X.

Theorem 4.2. Let F (λ,U) = 0 denote abstract form (26) and assume that
{(λ,U(λ)) |λ ∈ Λ} is a branch of regular solutions of (26). Furthermore, assume that
T ∈ L(Y,X), that G is a C2 map Λ ×X 7→ Y such that all second derivatives of G
are bounded on bounded subsets of Λ ×X and that there exists a space Z ⊂ Y, with
continuous imbedding, such that DUG(λ,U) ∈ L(X,Z) for all λ ∈ Λ and U ∈ X. If
approximate problem (27) is such that

lim
h→0
‖(T − Th)g‖X = 0(34)

for all g ∈ Y and

lim
h→0
‖T − Th‖L(Z,X) = 0 ,(35)

then:
1. there exists a neighborhood O of the origin in X and, for h sufficiently small,

a unique C2 function λ 7→ Uh(λ) ∈ Xh such that {(λ,Uh(λ)) |λ ∈ Λ} is a
branch of regular solutions of discrete problem (27) and U(λ) − Uh(λ) ∈ O
for all λ ∈ Λ;

2. for all λ ∈ Λ we have

‖Uh(λ)− U(λ)‖X ≤ C‖(T − Th)G(λ,U(λ))‖X ;(36)

3. if the regular branch is such that U(λ) ∈ Xm for some integer m ≥ 1 and
d̃ ≡ min{d, m}, where d is the largest integer satisfying (25), then

‖U(λ)−Uh(λ)‖1 + ‖u(λ)− uh(λ)‖1 + ‖p(λ)− ph(λ)‖1
≤ Chd̃

(
‖U(λ)‖d̃+1 + ‖u(λ)‖d̃+1 + ‖p(λ)‖d̃+1

)
.(37)

In the next few lemmas, we verify the hypotheses of Theorem 4.2 for our least-
squares formulation. We begin by establishing essential properties of operators T
and Th, which for this and the next section we assume are defined by (31) and (32),
respectively.

Lemma 4.3. T ∈ L(Y,X) and Th ∈ L(Y,Xh).
Proof. Form BS(·, ·) is continuous and coercive on X×X (see [5]) and, by virtue

of the inclusion Xh ⊂ X, it is also continuous and coercive on Xh×Xh. Furthermore,
for each g ∈ Y, (g,V) defines a continuous functional on X. Thus, the Lax-Milgram
Theorem implies that, for all g ∈ Y, variational problems (31) and (32) have unique
respective solutions U ∈ X and Uh ∈ Xh, i.e., T : Y 7→ X and Th : Y 7→ Xh are well
defined linear operators. From

C‖U‖2X ≤ BS(U ,U) = (g,U) ≤ ‖g‖Y‖U‖X ,
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it follows that

‖Tg‖X = ‖U‖X ≤ C‖g‖Y ,

i.e., T is in L(Y,X). The proof that Th ∈ L(Y,Xh) is similar.
Before continuing with the approximation properties of Th, consider the choice

of Y and Z in (29) and (30). When Z ⊂ Y with compact imbedding, the proof
of (35) in Theorem 4.2 can be simplified. First, note that Y is not identical to a
product of H−1(Ω) spaces. For instance, with Ui denoting the ith column of U, then
Ui ∈ H1

t (Ω) = {v ∈ H1(Ω)n |n × v = 0 on Γ} , whose dual is not H−1(Ω)n. As
a result, Z will be compactly imbedded in Y if L3/2(Ω) is compactly imbedded in
the duals of H1

0 (Ω), H1
t (Ω) and H1(Ω). The first imbedding follows from Sobolev’s

Imbedding Theorem; see e.g., [8]. Compactness of the other two imbeddings can be
shown along the following lines. Since components of H1

t (Ω) and the space H1(Ω)
are compactly imbedded in L3(Ω) and the adjoint of a compact operator is compact,
it follows that L3/2(Ω)n and L3/2(Ω) are compactly imbedded in the dual spaces of
H1

t (Ω) and H1(Ω).
Lemma 4.4. Convergence properties (34) and (35) hold. If, in addition, g ∈ Y

is such that Tg ∈ Xm for some m ≥ 1 and d̃ = min(d, m), where d is the largest
integer satisfying (25), then

‖(T − Th)g‖X ≤ Chd̃ ‖Tg‖Xd̃+1 .(38)

Proof. First note that (35) follows from (34) when the imbedding Z ⊂ Y is
compact. It thus suffices to establish (34), i.e., that

‖(T − Th)g‖X = ‖U−Uh‖1 + ‖u− uh‖1 + ‖p− ph‖1 → 0

when h → 0. Recall that T : Y 7→ X. Therefore, from g ∈ Y it follows that U ∈ X,
i.e., that U ∈ H1(Ω)n2

, u ∈ H1(Ω)n and p ∈ H1(Ω). Then the above limit follows
from the definition of Xh, (25), Cea’s Lemma and the standard approximation result
for v ∈ H1(Ω):

lim
h→0

inf
vh
‖v − vh‖1 = 0 .

(See [6] for an analogous result for scalar elliptic equations.)
To prove the second part of the lemma, suppose U = Tg ∈ Xm. Then an

immediate consequence of (25) and the continuity and coercivity of BS(·, ·) is the
Stokes error estimate

‖(T−Th)g‖X = ‖U−Uh‖1+‖u−uh‖1+‖p−ph‖1 ≤ Chd̃
(
‖U‖d̃+1 + ‖u‖d̃+1 + ‖p‖d̃+1

)
.

The only hypotheses of Theorem 4.2 that remain to be verified are the assumptions
concerning the nonlinear operator G. For this purpose, we need the weak and strong
forms of the first Fréchet derivative DUG(λ,U) and the weak form of the second
Fréchet derivative D2

UG(λ,U). To determine the weak form of DUG(λ,U), let Û ∈ X,
substitute U + Û into (33) and expand about U . This yields the following weak
representation of DUG(λ,U):

DUG(λ,U) : Λ×X→ Y defined by g = DUG(λ,U)Û for U ∈ X if
and only if
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(g1,V) + (g2,v) + (g3, q) =(
−(∇tU)t +∇p,

1
ν

(
Û

t
v + Vtû

))
0

+(
−(∇tÛ)t +∇p̂,

1
ν

(
(U + U0)

tv + Vt(u + u0)
))

0

+(
1
ν

(U + U0)
t(u + u0),

1
ν

(
Û

t
v + Vtû

))
0

+(
1
ν

(
(U + U0)

tû + Û
t
(u + u0)

)
,

−(∇tV)t +∇q +
1
ν

(
(U + U0)

tv + Vt(u + u0)
))

0

(39)

for all (V,v, q) ∈ X.
The strong form of DUG(λ,U)Û can be found from (39) using standard integration

by parts:

g1 =
1
ν
û

(
−(∇tU)t +∇p +

1
ν

(U + U0)
t(u + u0)

)t

+
1
ν

(u + u0)
(
−(∇tÛ)t +∇p̂ +

1
ν

(
(U + U0)

tû + Û
t
(u + u0)

))t

+
1
ν
∇

(
(U + U0)

tû + Û
t
(u + u0)

)t

,(40)

g2 =
1
ν
Û

(
−(∇tU)t +∇p +

1
ν

(U + U0)
t(u + u0)

)
+

1
ν

(U + U0)
(
−(∇tÛ)t +∇p̂ +

1
ν

(
(U + U0)

tû + Û
t
(u + u0)

))
,(41)

g3 = −1
ν
∇t

(
(U + U0)

tû + Û
t
(u + u0)

)
,(42)

for all (V,v, q) ∈ X.
Finally, the weak form of the second Fréchet derivative is

D2
UG(λ,U) : Λ×[X×X]→ Y defined by g = D2

UG(λ,U)[Û ,
ˆ̂U ] for U ∈

X if and only if

(g1,V) + (g2,v) + (g3, q) =(
−(∇t ˆ̂U)t +∇ˆ̂p +

1
ν

(
ˆ̂U

t

(u + u0) + (U + U0)
t ˆ̂u

)
,

1
ν

(Û
t
v + Vtû)

)
0

+

1
ν

(
−(∇tÛ)t +∇p̂ + Û

t
(u + u0) + (U + U0)

tû,
1
ν

( ˆ̂U
t

v + Vt ˆ̂u)
)

0

+(
1
ν

(
Û

t ˆ̂u + ˆ̂U
t

û
)

,

−(∇tV)t +∇q +
1
ν

(
(U + U0)

tu + Vt(u + u0)
))

0

(43)
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for all (V,v, q) ∈ X.
The next lemma summarizes technical results that we use in the sequel.
Lemma 4.5. Let Di denote the derivative with respect to the ith coordinate vari-

able in RI n, 1 ≤ i ≤ n, and assume that u, v, w and z are in H1(Ω). Then∣∣∣∣∫
Ω

Diu v w dΩ
∣∣∣∣ ≤ C‖u‖1 ‖v‖1 ‖w‖1 ,(44)

1 ≤ i ≤ n, and ∣∣∣∣∫
Ω

u v w z dΩ
∣∣∣∣ ≤ C‖u‖1 ‖v‖1 ‖w‖1 ‖z‖1 .(45)

Moreover, (u, v) 7→ uv is a continuous bilinear mapping from L2(Ω) × H1(Ω) into
L3/2(Ω) and (u, v, w) 7→ uvw is a continuous trilinear mapping from H1(Ω)×H1(Ω)×
H1(Ω) into L3/2(Ω), i.e.,

‖uv‖0,3/2 ≤ C‖u‖0,2‖v‖1,2 for all u ∈ L2(Ω) and v ∈ H1(Ω) ,(46)

‖uvw‖0,3/2 ≤ C‖u‖1,2‖v‖1,2‖w‖1,2 for all u, v, w ∈ H1(Ω) .(47)

Proof. The first part of the lemma follows easily from the imbedding H1(Ω) ⊂
L4(Ω) in two and three dimensions and the Hölder inequality. The second part follows
directly from a result in [8] (see Corollary 1.1, p.5).

For a more general version of (44) and (45), see [10].
In the next lemma, we establish properties of G that are required for the validity

of the approximation result in Theorem 4.2.
Lemma 4.6. Assume that mapping G is defined by (33). For X, Y and Z given

by (20), (29) and (30), respectively, the following are true:
1. For all U ∈ X, DUG(λ,U) ∈ L(X,Z).
2. The second Fréchet derivative D2

UG(λ,U) is bounded on bounded subsets of
Λ×X.

Proof. To prove 1, consider strong form (40)-(42) of DUG(λ,U). By assumption,
U ∈ X, i.e., U ∈ H1(Ω)n2

, u ∈ H1(Ω)n and p ∈ H1(Ω). Now each equation (40),
(41) and (42) consists of terms of the form Diu v and uvw, where u, v and w belong
to H1(Ω), so the second part of Lemma 4.5 implies that (g1,g2,g3) ∈ Z. Using (46)
and (47), it also follows that

‖DUG(λ,U)Û‖Z ≤ C‖Û‖X ,

i.e., that DUG(λ,U) ∈ L(X,Z).
To prove 2, consider weak form (43) of the second Fréchet derivative. Assume

that (λ,U) belongs to a bounded subset of Λ×X and let Û , ˆ̂U ∈ X be arbitrary. Then
it is not difficult to see that weak form (43) involves only terms of the form Diuvw
and uvwz, where u, v, w and z belong to H1(Ω). Thus, each term can be estimated
using (44) or (45):

|(g1,V)| ≤ C1(λ,U ,U0)(‖Û‖X + ‖ ˆ̂U‖X)‖V‖1 ;

|(g2,u)| ≤ C2(λ,U ,U0)(‖Û‖X + ‖ ˆ̂U‖X)‖u‖1 ;
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|(g3, q)| ≤ C3(λ,U ,U0)(‖Û‖X + ‖ ˆ̂U‖X)‖q‖1 ;

where Ci is polynomial function of λ, ‖U‖X, and ‖U0‖X. In combination with the
fact that λ and ‖U‖X are in bounded subsets of Λ ×X, and that ‖U0‖X is fixed, it
follows that D2

UG(λ,U) is bounded in the norm of L(X, L(X,Y)).
This completes verification of all assumptions of Theorem 4.2. As a result, we can

conclude that error estimates (36) and (37) hold for the least-squares finite element
approximation as long as problem (22) has a regular branch of solutions with sufficient
regularity.

5. Multigrid Solver. Here we consider a simple iterative method applied to
(27) and show that it converges linearly with bound uniform in h and λ. Our approach
rests on using a multigrid preconditioner for Th and observing that the operator in
(27) is well-conditioned uniformly in h and λ. The development is greatly simplified by
basing the analysis on inner product BS(·, ·) defined in (31) and by choosing elements
of the multigrid-based algorithm that are very easy to analyze. (Most assumptions
are made only for convenience; more general conditions can be handled with more
cumbersome but straightforward arguments. However, allowing for the more effective
direct treatment of the nonlinearity within the multigrid process would require much
more sophisticated analysis tools than we use here.)

Let Mh be defined so that Uh = Mhg represents one or more cycles of (additive
or multiplicative) multigrid applied to problem (32), starting from the initial guess
Uh = 0. For simplicity, assume that Mh is symmetric in the BS(·, ·) inner product
(e.g., Mh may consist of one relaxation of point Gauss-Seidel with a given ordering
before coarsening and one relaxation with the reverse ordering afterwards). Again for
simplicity, assume that Mh is so effective that

δBS(ThVh,Vh) ≤ BS(MhVh,Vh) ≤ BS(ThVh,Vh)(48)

for all Vh ∈ Xh and for some positive constant δ independent of h and λ. The upper
bound can be assured simply by dividing the result of the usual multigrid cycle by 2,
and the lower bound follows from the product H1 equivalence of BS(·, ·) established
in [5]. Assume that

{(λ,U(λ)) |λ ∈ Λ}

is a branch of regular solutions of (26), and let Fh(λ,Uh) = 0 denote canonical form
(27). Then it is easy to see that there exists a neighborhood O of the origin in X and
positive constants γ and ρ, independent of h and λ, such that

γBS(Vh,Vh) ≤ BS(DUFh(λ,U)Vh,Vh) ≤ ρBS(Vh,Vh)(49)

for all Vh ∈ Xh, where (λ,U) is any element of Λ × Xh for which U(λ) − U ∈ O.
The lower bound follows from our regular branch assumption, and the upper bound
follows from Lemma 4.3 and property 1 of Lemma 4.6.

The iterative method that we consider for solving (27) is given by the expression

Uh ← Uh − sMh∇J(Uh),(50)

where J(Uh) is the functional in (19) and s = 1
ρ . Suppose for the moment that Mh =

Th. Then the proof of local linear convergence of (50) in the BS(·, ·) norm with linear
factor bounded by

√
1− γ

ρ would follow from: linearizing ∇J(Uh) about the solution
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of (27); the relation Th∇J(Uh) = Fh(λ,Uh); and the symmetry of DUFh(λ,U) in the
BS(·, ·) inner product. For (50) with general Mh, we can then use (48) to prove local

linear convergence in the BS(·, ·) norm with factor bounded by
√

1− δγ
ρ .

This establishes optimality of our simple iterative method based on a multigrid
Stokes preconditioner. It is straightforward to extend this result to a full-multigrid-
like scheme, where an approximation to the solution of the Navier-Stokes equations is
achieved with accuracy up to discretization error at the cost of a few fine grid operator
evaluations.

6. H−1 least-squares. Here we take as a starting point for the development of
a least-squares method for the Navier-Stokes equations another functional that uses
norms of negative-order Sobolev spaces. As with the previous method, this functional
has its origin in the Stokes problem. Thus, among other things, we demonstrate that
a least-squares method for the linear Stokes equations involving negative-order norms
can be successfully extended to a method for the Navier-Stokes equations along the
same lines as in Sections 3 and 4. In contrast to L2 least-squares, the negative norm
approach does not immediately admit a practical implementation. The culprit here is
the negative norm whose evaluation requires the exact solution of a Poisson problem
(54)-(55). Nevertheless, practical methods can be developed by replacing these norms
with discrete negative norms, which involves approximate Poisson solvers. In Part
II of this paper, we develop practical negative-norm methods of this type. There we
establish error estimates based on the fundamental results obtained here in Part I.
Thus, the main focus of this section is on applying the abstract nonlinear theory to
the new H−1 functional.

Let H−1(Ω) denote the dual of H1
0 (Ω). Using the equivalence of the seminorm

and norm on H1
0 (Ω), we equip H−1(Ω) with the norm

|f |−1 = sup
φ∈H1

0 (Ω)

(f, φ)
|φ|1

, ∀f ∈ H−1(Ω) ,(51)

for which the following representation result holds (cf. [3]).
Lemma 6.1. For all f ∈ H−1(Ω), we have

|f |−1 = (Sf, f)(52)

and

‖Sf‖1 ≤ C|f |−1 ,(53)

where S : H−1(Ω) 7→ H1
0 (Ω) is the solution operator of the Dirichlet problem

−4u = f in Ω(54)
u = 0 on Γ ,(55)

that is, u = Sf is the solution of (54)-(55).
The inner product associated with norm (51) is given by

(f, g)−1 = (Sf, g) = (f, Sg) ∀f, g ∈ H−1(Ω) .(56)

Regularity properties of inverse Laplace operator S are summarized in the next
theorem, the proof of which can be found in [9].
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Theorem 6.2. Let Ω ∈ RI n be a bounded open set with Ck+1 boundary Γ. Assume
that f ∈ W k,p(Ω), 1 < p < ∞. Then the solution u of (54)-(55) satisfies u ∈
W k+2,p(Ω) and

‖u‖k+2,p ≤ C‖f‖k,p .

When Ω ∈ RI 2 is a bounded polygon with no reentrant corners, there exists a real
pΩ > 2 depending on the greatest inner angle of Γ such that u ∈W k,p(Ω), 1 < p < pΩ,
whenever f ∈ Lp(Ω). If Ω is a bounded convex polyhedron in RI 3, then this result is
valid for the homogeneous Dirichlet problem.

Using a negative-order Sobolev norm in the least-squares approach enables us to
restrict the functional to the simplest first-order system for the Navier-Stokes equa-
tions, namely, (7)-(9). (It can be advantageous to include terms involving inverse-
order norms applied to trace equation (10) and curl equation (11); cf., Remark 3.2 in
[5]; however, we restrict ourselves here to the simpler system to avoid further com-
plications in the discussion.) We are also able to make the more general assumption
that body force f ∈ H−1(Ω)n. Accordingly, we define

J(U,u, p) = | − (∇tU)t +∇p +
1
ν

(
Utu− f

)
|2−1

+‖∇tu‖20 + ‖U−∇ut‖20 .(57)

A necessary condition for minimization of J over the space

X = L2(Ω)n2
×H1

0 (Ω)n × L2
0(Ω)(58)

is
Find (U,u, p) ∈ X such that

B((U,u, p), (V,v, p)) ≡(
−(∇tU)t +∇p +

1
ν

(
Utu− f

)
,−(∇tV)t +

1
ν

(
Utv + Vtu

)
+∇q

)
−1

+(
∇tu,∇tv

)
0

+
(
U−∇ut,V −∇vt

)
0

= 0(59)

for all (V,v, q) ∈ X.
Assume that Xh is a finite-dimensional subspace of X. Then the least-squares

method based on (57) is defined by restricting variational problem (59) to Xh. How-
ever, due to the choice of X, space Xh must possess an approximation property that
is different than what we needed for the L2 least-squares method: there exists an
integer d ≥ 1 such that, for all U ∈ Hd(Ω)n2

, u ∈ Hd+1(Ω)n and p ∈ Hd(Ω), one can
find (Uh,uh, ph) ∈ Xh such that

‖U−Uh‖0 + ‖u− uh‖1 + ‖p− ph‖0 ≤ Chd (‖U‖d + ‖u‖d+1 + ‖p‖d) .(60)

Note, for example, that (60) can be satisfied with d = 1 by choosing either continuous
piecewise linears for all unknowns, or piecewise constants for Uh and ph and linears
for uh.

In the present context, we make the following identification:

Y = L2(Ω)n2
×H−1(Ω)n × L2(Ω) .(61)

We then define operators T , Th and G analogous to those in (31), (32) and (33):
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T : Y 7→ X defined by U = Tg for g ∈ Y if and only if

BS(U ,V) ≡
(
−(∇tU)t +∇p,−(∇tV)t +∇q

)
−1

+
(
∇tu,∇tv

)
0

+
(
U−∇ut,V −∇vt

)
0

= (g1,V) + (g2,v) + (g3, q) ,(62)

for all (V,v, q) ∈ X;
Th : Y 7→ Xh defined by Uh = Thg for g ∈ Y if and only if

BS(Uh,Vh) = (g1,Vh) + (g2,vh) + (g3, q
h) for all (Vh,vh, qh) ∈ Xh ;(63)

and
G : Λ×X→ Y with g = G(λ,U) for U ∈ X if and only if

(g1,V) + (g2,v) + (g3, q) =(
−(∇tU)t +∇p,

1
ν

(
Utv + Vtu

))
−1

+
(

1
ν

(
Utu− f

)
,−(∇tV)t +∇q +

1
ν

(
(Utv + Vtu

))
−1

(64)

for all (V,v, q) ∈ X.
Along the same lines as in Lemma 4.1, we can show that problem (59) and its discrete
counterpart admit canonical representations of the respective forms (26) and (27).
Thus, our goal now is to establish a result similar to Theorem 4.2, which in the
present setting specializes as follows.

Theorem 6.3. Let F (λ,U) denote abstract form (26) and assume that T , Th and
G are defined by (62), (63) and (64), respectively. Suppose also that {(λ,U(λ)) |λ ∈
Λ} is a branch of regular solutions of (26). Furthermore, assume that T ∈ L(Y,X),
that G is a C2 map Λ × X 7→ Y such that all second derivatives of G are bounded
on bounded subsets of Λ ×X, and that there exists a space Z ⊂ Y, with continuous
imbedding, such that DUG(λ,U) ∈ L(X,Z) for all λ ∈ Λ and U ∈ X. If approximate
problem (27) is such that (34) and (35) hold, then:

1. there exists a neighborhood O of the origin in X and, for h sufficiently small,
a unique C2 function λ 7→ Uh(λ) ∈ Xh such that {(λ,Uh(λ)) |λ ∈ Λ} is a
branch of regular solutions of discrete problem (27) and U(λ) − Uh(λ) ∈ O
for all λ ∈ Λ;

2. for all λ ∈ Λ we have

‖Uh(λ)− U(λ)‖X ≤ C‖(T − Th)G(λ,U(λ))‖X ;(65)

3. if the regular branch is such that U(λ) ∈ Hm(Ω)n2 × Hm+1(Ω)n × Hm(Ω)
for some integer m ≥ 1 and d̃ ≡ min{d,m}, where d is the largest integer
satisfying (60), then

‖U(λ)−Uh(λ)‖0 + ‖u(λ)− uh(λ)‖1 + ‖p(λ)− ph(λ)‖0
≤ Chd̃

(
‖U(λ)‖d̃ + ‖u(λ)‖d̃+1 + ‖p(λ)‖d̃

)
.(66)

To establish the conditions of abstract Theorem 6.3 for our specific application,
we need the additional technical results summarized in the next lemma.

Lemma 6.4.
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1. For 2 ≤ q ≤ 6, we have H1(Ω) ⊂ Lq(Ω) with compact imbedding.
2. For p > 6/5, we have Lp(Ω) ⊂ H−1(Ω) with compact imbedding.
3. For any u ∈ L2(Ω) and v ∈ H1(Ω), we have

|∇u|−1 ≤ C‖u‖0(67)

|uv|−1 ≤ ‖u‖0‖v‖1 .(68)

4. {u, v} 7→ uv is a continuous bilinear mapping from H1(Ω) × H1(Ω) into
W 1,2−ε(Ω) for any 0 < ε ≤ 1, i.e.,

‖uv‖1,2−ε ≤ C‖u‖1‖v‖1 for u, v ∈ H1(Ω) .(69)

Proof. The first two statements follow directly from the Sobolev Imbedding The-
orem. To prove 3, we use definition (51), bound (46) and the imbedding of H−1 in
L3:

|∇u|−1 = sup
φ∈H1

0 (Ω)n

(∇u, φ)
|φ|1

= sup
φ∈H1

0 (Ω)n

(u,∇tφ)
|φ|1

≤ sup
φ∈H1

0 (Ω)n

‖u‖0‖∇tφ‖0
|φ|1

≤ ‖u‖0

and

|uv|−1 = sup
φ∈H1

0 (Ω)

(uv, φ)
|φ|1

≤ sup
φ∈H1

0 (Ω)

‖uv‖0,3/2‖φ‖0,3

|φ|1

≤ sup
φ∈H1

0 (Ω)

‖u‖0‖v‖1|φ|1
|φ|1

≤ ‖u‖0‖v‖1 .

Finally, 4 follows from a general result on multiplication in Sobolev spaces (see [8],
Corollary 1.1). .

The aim now is to verify the assumptions of Theorem 6.3 for our negative-order
least-squares approach applied to the Navier-Stokes equations. In the present setting,
we make the following identification:

Z = W 1,3/2(Ω)n2
× L3/2(Ω)n ×W 1,3/2(Ω) .(70)

By virtue of compactness of the imbeddings W 1,3/2(Ω) ⊂ L2(Ω) and L3/2(Ω) ⊂
H−1(Ω), space Z is compactly imbedded in space Y.

The assumptions of Theorem 6.3 that concern (62) are established in [5]. Since
Z is compactly imbedded in Y, then (35) follows again from (34). Hence, it remains
to verify that DUG(λ,U) ∈ L(X,Z) when Z is chosen as in (70), and that D2

UG(λ,U)
is bounded on all bounded subsets of Λ×X.

Lemma 6.5. Assume that G, X, Y and Z are defined by (64), (58), (61) and
(70), respectively. Then DUG(λ,U) ∈ L(X,Z) for all U ∈ X. Moreover, the second
Fréchet derivative D2

UG(λ,U) is bounded on bounded subsets of Λ×X.
Proof. We omit derivation of the Fréchet derivative DUG(λ,U) for (64) because

it is analogous to that for (33). Let DUG(λ,U)Û = g = (g1, g2, g3). Then, using (56),
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the equation corresponding to test function V can be written as

(g1,V) =
(

1
ν

S(Utû + Û
t
u),−(∇tV)t +

1
ν
Vtu

)
0

+
(

S(−(∇tU)t +∇p +
1
ν

(
Utu− f

)
),

1
ν
Vtû

)
0

+
(

S(−(∇tÛ)t +∇p̂),
1
ν
Vtu

)
0

=
(

1
ν

S(Utû + Û
t
u),−(∇tV)t

)
0

+
(

1
ν

S(Utû + Û
t
u) · ut,

1
ν
V

)
0

+
(

S(−(∇tU)t +∇p +
1
ν

(
Utu− f

)
) · ût,

1
ν
V

)
0

+
(

S(−(∇tÛ)t +∇p̂) · ut,
1
ν
V

)
0

=
(

1
ν2
∇(S(Utû + Û

t
u),V

)
0

+
(

1
ν

S(−(∇tÛ)t +∇p̂ +
1
ν

(
Utû + Û

t
u
)
) · ut,V

)
0

+
(

1
ν

S(−(∇tU)t +∇p +
1
ν

(
Utu− f

)
) · ût,V

)
0

.

Here we have used the fact that Sf satisfies the homogeneous Dirichlet boundary
condition. Hence, g1 can be identified as

g1 = ∇ 1
ν2

S(Utû + Û
t
u)

+
1
ν

S(−(∇tÛ)t +∇p̂ +
1
ν

(
Utû + Û

t
u
)
) · ut

+
1
ν

S(−(∇tU)t +∇p +
1
ν

(
Utu− f

)
) · ût .(71)

From Lemma 4.5, it follows that Utû + Û
t
u ∈ L3/2(Ω), so regularity of operator S

(see Theorem 6.2) implies that ∇S(Utû + Û
t
u) ∈ W 1,3/2(Ω)n2

. For the remaining
terms in (71), we have that

S(−(∇tÛ)t +∇p̂ +
1
ν

(
Utû + Û

t
u
)
) ∈ H1

0 (Ω)n ,

S(−(∇tU)t +∇p +
1
ν

(
Utu− f

)
) ∈ H1

0 (Ω)n .

Using 4 of Lemma 6.4 with ε = 1/2, we conclude that the last two terms in (71) are
also in W 1,3/2(Ω)n.

Similarly, g3 can be identified as

g3 = −1
ν
∇t(S(Utû + Û

t
u),

so g3 ∈W 1,3/2(Ω).



VELOCITY-FLUX FOSLS FOR NAVIER-STOKES: I 17

Finally, for g2 we find

g2 =
1
ν

S(−(∇tÛ)t +∇p̂ +
1
ν

(
Utû + Û

t
u
)
) ·U

+
1
ν

S(−(∇tU)t +∇p +
1
ν

(
Utu− f

)
) · Û .

Since U and Û are in L2(Ω)n2
and the terms with S are in H1(Ω), we can conclude

that g2 ∈ L3/2(Ω)n. Thus, g ∈ Z and the first assertion is proved.
Let D2

UG(λ,U) : Λ ×X 7→ L(X, L(X,Y)) denote the second Fréchet derivative

of G, that is, D2
UG(λ,U)[Û ,

ˆ̂U ] = g = (g1, g2, g3) ∈ Y for Û ,
ˆ̂U ∈ X. We want to

establish that D2
UG(λ,U) is bounded in the norm of L(X, L(X,Y)) on all bounded

subsets of Λ×X. For this purpose, it suffices to show that ‖g1‖0, ‖g2‖−1 and ‖g3‖0
are bounded from above by ‖Û‖X, ‖ ˆ̂U‖X and λ, respectively. For brevity, we only
establish the bound for ‖g3‖0; the other bounds follow in a similar fashion. Similar
to (43), we find that

(g3, q) =
1
ν

(
ˆ̂U

t

û + Û
t ˆ̂u,∇q

)
−1

.(72)

Choosing q = g3 in (72) and using equivalent representation (56), the imbedding of
H1 in L3, apriori estimate (53) and bound (67), we obtain

‖g3‖20 =
1
ν

(
ˆ̂U

t

û + Û
t ˆ̂u, S(∇g3)

)
0

≤ 1
ν

(
‖ ˆ̂U

t

û‖0,3/2 + ‖Û
t ˆ̂u‖0,3/2

)
‖S(∇g3)‖0,3

≤ 1
ν

(
‖ ˆ̂U‖0‖û‖1 + ‖Û‖0‖ˆ̂u‖1

)
‖g3‖0 .

.
Lemma 6.5 completes verification of all assumptions of Theorem 6.3. We have

thus demonstrated that, a least-squares approach based on the Sobolev space H−1

can be successfully extended to the nonlinear Navier-Stokes equations. The next
step towards development of a numerical method based on this approach involves
formulation of a computationally feasible discrete analogue of the H−1 inner product.
Such a method and its analysis are considered in Part II of this work.

7. Well-Posedness. In this section, we address the question of the well-posedness
of least-squares formulations (22) and (59). More precisely, our aim is to show that if
{(λ, (u(λ), p(λ))) |λ ∈ Λ} is a branch of regular solutions of original velocity-pressure
Navier-Stokes problem (1)-(4), then

{(λ, (U(λ),u(λ), p(λ))) |λ ∈ Λ}

is a regular branch for variational problems (22) and (59). This is an important
question, not only because application of Theorems 4.2 and 6.3 requires a regular
branch, but also because it would assert that the least-squares formulation does not
introduce bifurcation phenomena that are not already present in the original equa-
tions. The question is also nontrivial since nonlinear variational problems (22) and
(59) involve coupling between the velocity-flux Stokes operator and the convective
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term Utu. As a result, the equivalent strong form of (22) now involves derivatives of
nonlinear equations (1)-(2).

Assume that (u(λ), p(λ)) ∈ H1
0 (Ω)n × L2

0(Ω) yields a regular branch of solutions
of (1)-(4), i.e., for every λ ∈ Λ, the pair (u(λ), p(λ)) is a nonsingular (weak) solution
of the Navier-Stokes equations. We recall the result of [8] that (u, p) is a nonsingular
solution if and only if the linearized problem

−ν4û + (∇ût)tu + (∇ut)tû +∇p̂ = f∗ in Ω(73)
∇tû = 0 in Ω(74)

û = 0 on Γ(75) ∫
Ω

p̂dΩ = 0(76)

has a unique (weak) solution (û, p̂) ∈ H1
0 (Ω)n × L2

0(Ω) for each f∗ ∈ H−1(Ω)n.
Under this assumption, well-posedness of (22) and (59) would follow if we could

establish that U(λ) = (U(λ),u(λ), p(λ)) with U(λ) = ∇u(λ)t is a nonsingular solution
of (22) and (59) for all λ ∈ Λ. In terms of canonical representation (26), this amounts
to showing that the linearized mapping DUF (λ,U) is an isomorphism of X, i.e., that
the linearized equation

DUF (λ,U)Û = (I + T ·DUG(λ,U))Û = V(77)

has a unique solution Û ∈ X for all V ∈ X. To show this, we first establish that
operator (I +T ·DUG(λ,U)) is a compact perturbation of unity, that is, the Fredholm
alternative applies to (77). Compactness of T : Z 7→ X follows from (35), which asserts
that it is a uniform limit of compact operators Th. Assuming for the moment that
DUG(λ,U) ∈ L(X,Z), it follows that operator T · DUG(λ,U) : X 7→ X is compact.
Thus, the Fredholm alternative applies to (77), and we can assert that DUF (λ,U) is
indeed an isomorphism of X if and only if the homogeneous equation

DUF (λ,U)Û = (I + T ·DUG(λ,U))Û = 0(78)

has only trivial solution Û = 0 in X. Note that this argument is carried out entirely
in terms of abstract problem (26). Since (35) and the property DUG(λ,U) ∈ L(X,Z)
(see Lemmas 4.6 and 6.5) are valid for both (22) and (59), then the above con-
clusions remain valid for these problems, that is, in both cases associated operator
T ·DUG(λ,U) is compact. Hence, well-posedness of (22) and (59) would follow if we
could show that corresponding problem (78) has only the trivial solution. This will
be established in the next two respective lemmas using our nonsingularity assumption
on (u(λ), p(λ)).

Lemma 7.1. Assume that (u, p) is such that linearized equations (73)-(76) have
a unique solution for each f∗ ∈ H−1(Ω)n. Then homogeneous problem (78) corre-
sponding to (22) has only the trivial solution.

Proof. Specialized to our needs, the nonsingularity assumption asserts that the
problem

−ν4û + (∇ût)t(u + u0) + (∇(ut + ut
0))

tû +∇p̂ = f∗ in Ω(79)
∇tû = 0 in Ω(80)

û = 0 on Γ(81) ∫
Ω

p̂dΩ = 0(82)
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has a unique (weak) solution (û, p̂) ∈ H1
0 (Ω)n ×L2

0(Ω) for each f∗ ∈ H−1(Ω)n, where
(u0, p0) solves Stokes problem (12) with the original data f . Furthermore, using
definitions (31) and (33), one can easily verify that (78) is equivalent to the variational
problem

Find (Û, û, p̂) ∈ X such that

B((Û, û, p̂), (V,v, p)) =(
−(∇tÛ)t +

1
ν

((U + U0)
tû + Û

t
(u + u0)) +∇p̂,

−(∇tV)t +
1
ν

(
(U + U0)

tv + Vt(u + u0)
)

+∇q

)
0

+(
∇tû,∇tv

)
0

+
(
∇(trÛ),∇(trV)

)
0(

Û−∇ût,V −∇vt
)

0
+

(
∇× Û,∇×V

)
0

= 0(83)

for all (V,v, q) ∈ X,
where the space X is given by (20).

Variational problem (83) is evidently the Euler-Lagrange equation for the mini-
mization problem

Find (Û, û, p̂) ∈ X such that

Jl(Û, û, p̂) ≤ Jl(V,v, q) for all (V,v, q) ∈ X,(84)

where

Jl(Û, û, p̂) = ‖ − (∇tÛ)t +
1
ν

((U + U0)
tû + Û

t
(u + u0)) +∇p̂‖20

+ ‖∇tû‖20 + ‖Û−∇ût‖20
+ ‖∇(trÛ)‖20 + ‖∇ × Û‖20(85)

Thus, nonsingularity of (U,u, p) would follow if we could show that (84) has no
nontrivial minimizers. Assume the contrary. Then the nontrivial minimizer (Û, û, p̂)
satisfies

−(∇tÛ)t +
1
ν

((U + U0)
tû + Û

t
(u + u0)) +∇p̂ = 0(86)

Û−∇ût = 0(87)
∇tû = 0 .(88)

Then from equations (86), (87) and identities U = ∇ut, U0 = ∇ut
0, we conclude that

the pair (û, p̂) satisfies

−ν4û + (∇(ut + ut
0))

tû + (∇ût)t(u + u0) +∇p̂ = 0 .

Now the premise that (Û, û, p̂) is nontrivial, together with (87), implies that (û, p̂)
is nontrivial. Since (88) is also satisfied, then (û, p̂) is also a nontrivial solution of
(79)-(82), which is a contradiction.

Lemma 7.2. Assume the conditions of Lemma 7.1. Then homogeneous problem
(78) corresponding to (59) has only the trivial solution.

Proof. Similar to the proof of Lemma 7.1, we find that, in the present context,
abstract homogeneous problem (78) corresponds to the Euler-Lagrange equation of
the minimization problem
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Find (Û, û, p̂) ∈ X such that

Jl(Û, û, p̂) ≤ Jl(V,v, q) for all (V,v, q) ∈ X,(89)

where the space X is now given by (58), and

Jl(Û, û, p̂) = ‖ − (∇tÛ)t +
1
ν

(Utû + Û
t
u) +∇p̂‖2−1

+ ‖∇tû‖20 + ‖Û−∇ût‖20 .(90)

Assuming again that (Û, û, p̂) is a nontrivial minimizer of (90), we immediately obtain
that the pair (û, p̂) is a nontrivial solution of (73)-(76) with f∗ ≡ 0, which is a
contradiction.
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