Tevatron Support

Ina Reichel

February 19th 2004

Acknowledgments:

Keith Gollwitzer, Elvin Harms and Steve Werkema (FNAL) Massimo Placidi, Mike Zisman (LBNL)

Contents

- 1. Introduction
- 2. Problems that have been studied
- 3. Plans for the future
- 4. Summary

Beamline Layout

- AP2 transports anti-protons from the target to the Debuncher ring
- line starts with a lithium lens to focus the beam
- line consists of a FODO section and a bending section with matching sections in between and at the ends

The Problem

- After some upgrades the Debuncher will have an acceptance of 40π mm mrad and $\pm 2.25\%$
- Currently AP2 has an acceptance of about 20π mm mrad and $\pm 2.25\%$
- Anti-Protons are expensive \Rightarrow need to maximize transmission
- Increase in acceptance increases anti-proton yield which in turn increases the luminosity
- Acceptance of AP2 has been studied before and upgrades have been implemented but so far the acceptance has not increased significantly

Measurements

- The beam consists of about 1% anti-protons and 99% other particles like kaons and muons with the same rigidity
- Decay particles make measurements difficult
- Not all instrumentation currently works for reverse protons
- Tuning is usually done on stacking efficiency in Debuncher which suffers from high shot-to-shot fluctuations

Current Schedule

by February 2004: Finish model including chromatic effects on anti-proton yield

Suggest some experiments to test model, some of which have already been done by Fermilab staff

- by July 2004: Analyze experiments and develop a lattice with reduced chromatic effects
- **by September 2004:** Proposal for reducing chromatic effects (including cost estimate and schedule)

Studies Done so Far

- Machine errors
 - Lithium lens mismatch
 - Mismatch into Debuncher
 - Random errors
- Problems due to limited number of corrector magnets
- Chromatic effects combined with large momentum spread
 - Tracking
 - W-Functions

Problems due to Residual Dispersion

- Large residual vertical dispersion can create aperture problems in small vertical apertures at the end of the line
- Caused by vertical alignment errors (0.5 mm RMS) of quadrupole magnets
- Particularly sensitive to alignment errors of first doublet/triplet

Chromatic Effects

- Chromatic Functions not matched into Debuncher
- Tracking particles with initial offsets (no angles) corresponding to 0, \pm 12, \pm 28 and \pm 40 π mm mrad
- final amplitudes and phases depend strongly on momentum deviation

Plans

- Study effect of measured fields in injection line quadrupoles
- Optimize lattice for better chromatic behavior
 - Rematch with existing hardware
 - Rematch allowing quadrupoles to move and/or add quadrupoles
 - Add sextupoles for chromatic corrections

Summary

- Increasing the acceptance of AP2 can significantly increase the anti-proton yield
- Problems due to large momentum spread
- Working on lattice with improved chromatic behavior