Performance Evaluation and Analysis Consortium (PEAC) End Station

Presented by

Patrick H. Worley

Computational Earth Sciences Group Computer Science and Mathematics Division

Overview

The PEAC End Station provides the performance evaluation and performance tool developer communities access to the Leadership Computing Facility (LCF) systems.

n goals
 Evaluate the performance of LCF systems using standard and custom micro-, kernel, and application benchmarks
 Port performance tools to LCF systems and make them available to National Center for Computational Sciences (NCCS) users
 Further develop the tools to take into account the scale and unique features of LCF systems
 Validate the effectiveness of performance modeling methodologies
 Modify methodologies as necessary to improve their utility for predicting resource requirements for production runs on LCF systems

Overview (continued)

Consortium	n goals (continued)
Application analysis and optimization	 Analyze performance Help optimize current and candidate LCF application codes
Performance and application community support	 Provide access to other performance researchers who are interested in contributing to the performance evaluation of the LCF systems or in porting complementary performance tools of use to the NCCS user community
	 Provide access to application developers who wish to evaluate the performance of their codes on LCF systems

All of this must be accomplished while adhering to the "Golden Rules" of the performance community:

- Low visibility (no production runs!)
- Open and fair evaluations
- Timely reporting of results

Status as of 8/28/07

32 active users,39 active projects:

- 13 application performance analysis and optimization
- 8 system evaluation
- 8 tool development
- 6 infrastructure development
- 4 application modeling

Consuming:

XT4: 1,168,000
 processor hours
 (exceeding 1,000,000
 processor-hour
 allocation)

Contributing to:

- 1 refereed journal paper
- 1 invited journal paper
- 6 refereed proceedings papers
- 10 proceedings papers
- 2 book chapters
- Numerous oral presentations

System evaluation

LBNL	Memory, interprocess communication, and I/O benchmarks
	APEX-MAP system characterization benchmark
	Lattice-Boltzman kernels and mini applications
	Application benchmarks from Astrophysics (Cactus), Fluid Dynamics (ELBM3D), High Energy Physics (BeamBeam3D, MILC), Fusion (GTC), Materials Science (PARATEC), AMR Gas Dynamics (HyperCLaw)
ORNL	Computation, memory, interprocess comm., and I/O benchmarks
	Application benchmarks from Astrophysics (Chimera), Climate (CAM, CLM, FMS, POP), Combustion (S3D), Fusion (AORSA, GTC, GYRO, XGC), Molecular Dynamics (NAMD)
SDSC	Subsystem probes for system characterization needed for convolution- based performance modeling
Purdue	Computation, memory, and interprocess comm. benchmarks
Univ.	Application benchmarks from Chemistry (GAMESS), High Energy Physics (MILC), Seismic Processing (SEISMIC), Weather (WRF)

Performance tools

HPCToolkit	Tool suite for profile-based performance analysis
Modeling assertions	Performance model specification and verification framework
mpiP	MPI profiling infrastructure
PAPI	Performance data collection infrastructure
Scalasca	Scalable trace collection and analysis tool
SvPablo	Performance analysis system
TAU	Performance analysis system
MRNet	Scalable performance tool infrastructure

Application performance analysis and optimization

Chombo	AMR gas dynamics model
DeCart	Nuclear code
FACETS	Framework application for core-edge transport simulation
GADGET	Computational cosmology
GTC_s	Shape plasma version of GTC gyrokinetic turbulence code
NEWTRNX	Neutron transport code
PDNS3D/SBLI	Ab initio aeroacoustic simulations of jet and airfoil flows
PFLOTRAN	Subsurface flow model
PNEWT	Combustion code

Application code scaling, optimization, and/or performance evaluation

POLCOMS	Coastal ocean model
S3D	Combustion model
TDCC-9d	Nuclear code
-	Lattice-Boltzman applications

System infrastructure

cafc	Co-array Fortran compiler for distributed-memory systems
GASNet	Runtime networking layer for UPC and Titanium compilers
PETSc	Toolset for numerical solution of PDEs
PVFS/Portals	PVFS file system implementation on native Portals interface
UPC	Extension of C designed for high-performance computing on large-scale parallel systems
-	Reduction-based communication library

Performance modeling

PMAC	Genetic algorithm-based modeling of memory-bound computations
ORNL	NAS parallel benchmarks; HYCOM ocean code
Texas A&M Univ.	GTC fusion code
Univ. of Wisconsin	Reusable analytic model for wavefront algorithms, applied to NPB-LU, SWEEP3D, and Chimaera
	LogGP model for MPI communication on the XT4

Subsystem evaluations

I/O performance characterization (LBL)

Ratio of time for all processes sending in halo update to time for a single sender

System	4 neighbors		8 Neighbors	
	Periodic			Periodic
BG/L	2.24		2.01	
BG/L, VN	1.46		1.81	
XT3	7.5	8.1	9.08	9.41
XT4	10.7	10.7	13.0	13.7
XT4 SN	5.47	5.56	6.73	7.06

Identifying performance anomalies (ANL)

Dual vs. single core performance evaluation using APEX-MAP (LBL)

MPI performance characterization (ORNL)

Application analyses and benchmarks

Scalability optimizations (ORNL)

Processing of genomes into domain maps: need improved load balancing that takes into account scale-free nature of the graphs.

> Porting and optimizing new applications (RENCI/NCSA)

ClockX2

MMX2

S3D Sensitivity

L1X2

Performance sensitivities (SDSC)

L2X2

3X2

Tool development

SvPablo source code-correlated performance analysis (RENCI)

🖉 bin	- 0
Project Instrument View GenCallGraph Scale	ability <u>H</u> elş
Project Description: Lattice QCD - MILC	P _{abl}
Source Files:	Performance Contexts:
control.c update.c ./generic_ks/dslash_fn2.c ./generic_ks/fermion_force_asqtad3.c	STD MILC, 24x24x24x24, 8 Procs STD MILC, 24x24x24x24, 16 Procs STD MILC, 24x24x24x24, 32 Procs STD MILC, 24x24x24x24, 32 Procs STK MILC, 24x24x24x24, 64 Procs STD MILC, 24x24x24x24, 128 Procs STD MILC, 24x24x24x24, 258 Procs
Routines in Source File	Routines in Performance Data
main Initialize_machine remap_stdlo_from_args terminate g_sync	update f_meas_imp measure main initialize_machine
Source File: //autofs/spin/home/yingz/newmilc/milc/k	<s_imp_dyn control.c<="" td=""></s_imp_dyn>
51 avspect_iters = avs_it 52 for(traj_done=0; traj 53 /* do the trajectori 54	:ers = avbcorr_iters = 0; j_done < trajecs; traj_done++){ ies */
56 /* measure every "pr 57 /* measure every "pr 58 if((traj_done%propi 59 0 60 /* call gauge_variable fe 61 0.4 * results are printed if	ropinterval" trajectories */ interval)==(propinterval-1)){ ermion_variable measuring routines */ n output file */
<pre>> 62 Urephase(orr), >> 63 Ug_measure(); > 64 Urephase(ON); 65 Urephase(ON); 66 U/* Measure pbp, etc */</pre>	
67 #ifdef ONEMASS 68 □f_meas_imp(F_OFFSET(phi), 69 #else ∧ > 70 □f_meas_imp(F_OFFSET(phi)	,F_OFFSET(xxx),mass); l), F_OFFSET(xxx1), mass1);
71 □f_meas_imp(F_OFFSET(phi2 72 #endif 73	<pre>2), F_OFFSET(xxx2), mass2);</pre>
⇒ Instrument/Clear Line	♦ View Line Data

				i i i i i i
ID Lev File/Address	Line Parent_Funct	MPI_Call Parat		prof
2 0 0x0000000000000206b49	mod_xc_xcgetc_ mod_xc_xcaput4_	Bcast Waitall		
3 0 0x000000000020d1c7	mod_xc_xcsum_	Bcast		(LL
4 0 0x00000000000210e53	mod_xc_xctilr_ mod_xc_xctilr	Startall Pequest	free	(
6 0 0x0000000000210e6c	mod_xc_xctilr_			
7 0 0x00000000000205e5a	mod_xc_xcaget4_			X
9 0 0x000000000020dc21	mod_xc_xcsumj_	@ Aggreg	ate Time (top t	wenty, descen
10 0 0x000000000000206628 11 0 0x00000000000206a16	mod_xc_xcaput4_ mod_xc_xcaput4	C-11	 Sito	Timo
12 0 0x000000000210d30	mod_xc_xctilr_	Waitall	18	1,96e+08
13 0 0x00000000000210e3f	mod_xc_xctilr_	Allreduce	27	1,4e+08
15 0 0x00000000000210e06	mod_xc_xctilr_	Waitall Beast	5	8,05e+07 9 89e+06
16 0 0x000000000020d7e1	mod_xc_xcsumj_	Barrier	25	5,8e+06
17 0 0x00000000000211956	mod_xc_xctmrp_ mod_xc_xctilr	Send	42	5,79e+06
19 D 0x0000000000208f5f	mod_xc_xcmaxr_1_	Barrier Barrier	30 29	5,25e+06 4.1e+06
/call		Startall	28	1.42e+06
		Startall	4	1.2e+06
		Recv	41 22	2.61e+05
		Send	39	1,92e+05
		Send Allreduce		1./5e+05 1.74e+05
		Request_fre	e 24	6,43e+04
		Recv	32	4.16e+04
		kecv Weitall	45	2.9e+04
		-		
X CUBE: epik_smg2000_jaguar_22528/trac	e_solve.cube			
<u>File View H</u> elp				
Metrics	Call Tree Flat Profile		System Tree To	pology View
Root percent	/ Selection percent		Peer percent	
	- U.U HYPRE_StructSM	GSolve		
	0.0 hypre_sividson	ve MatrixDestru		
0.0 Communication	0.0 hypre_Struct	VectorDestr		
0.0 Collective	0.0 hypre_Struct	MatrixRef		
0.0 Early Reduce	0.0 hypre_Struct	VectorRef		
0.0 Early Scan	0.0 hypre_Struct	InnerProd		
0.0 Late Broadcast	0.0 hypre_SMGF	RelaxSetRec	4	
	0.0 hypre_SMGF	RelaxSetZer		
14.5 Point-to-point	0.0 hypre_SMGF	Relax		
	0.0 hypre_SM	GRelaxSet		
0.0 Late Receiver		VIGResidual		
0.0 Synchronization		MGSolve		
	U U U U U U U U U U U U U U U U U U U	GSetStruct		
	5.6 nypre_SMGF	lestrict		
100.0 Visits		interp		
	U.0 hypre_Struct	Ахру		
0.0 Synchronizations	7 L	Ахру 🔽		
91 140 454 (48 3%)	5 42 345 535 (46 59)	911/0+04	√ ∞1 880 + 19 2% -	
1.0078+0	······································	3.1146704	_×1.000 ± 13.2 %≫	
22528 x 1				

X xterm

R--- Callsites: 47 --

mpiP callsite filing NL/ORNL)

$\Theta \Theta \Theta$		X	xterm				
Aggregate	Time (top to	venty, descu	ending,	millisecc	nds)		
 all	Site	Time	Арр%	MPI%	COV		
aitall	18	1,96e+08	14,46	43,39	0,84		
llreduce	27	1.4e+08	10.31	30,93	0,21		
aitall	6	8,06e+07	5,95	17,84	1,28		
cast	3	9,89e+06	0.73	2.19	0.92		
arrier	25	5,8e+06	0,43	1,28	0,04		
end	42	5.79e+06	0.43	1.28	0.04		
arrier	35	5,25e+06	0.39	1.16	0.04		
arrier	29	4.1e+06	0.30	0.91	0.04		
tartall	28	1.42e+06	0.10	0.31	0.53		
tartall	4	1.2e+06	0,09	0,27	0,28		
ecv	41	8.64e+05	0.06	0.19	0.41		
ecv	22	2.61e+05	0.02	0,06	1.45		
end	39	1.92e+05	0.01	0.04	0.44		
end	38	1.75e+05	0.01	0.04	0.46		
llreduce	19	1.74e+05	0.01	0.04	0.56		
equest free	24	6.43e+04	0,00	0.01	0.47		
ecv	32	4.16e+04	0.00	0.01	0.00		
ecv	43	3.74e+04	0.00	0.01	0.57		
litall	2	2.9e+04	0.00	0.01	0.59		
	-					1341,2	5

			1
UBE: epik_smg2000_jaguar_22528/trace_sol	live.cube		
<u>V</u> iew <u>H</u> elp			
		a l T Truckens Minu	
rics	Call Tree Flat Profile	System Tree Topology View	
t percent 📝 💈	Selection percent	Peer percent	
- 0.0 Time	= 0.0 HYPRE_StructSMGSolve	(31, 31, 21]	
🖃 🔲 34.8 Execution	0.0 hypre_SMGSolve	(31, 31, 20	
-p 0.0 MPI	0.0 hypre_StructMatrixDestr	(31, 31, 19	S(
	0.0 hypre_StructVectorDestr	(31, 31, 18	
-e- 0.0 Collective	0.0 hypre_StructMatrixRef	(31, 31, 17	l tra
0.0 Early Reduce	0.0 hypre_StructVectorRef	(31, 31, 16	นอ
0.0 Early Scan	0.0 hypre_StructInnerProd	(31, 31, 15	no
0.0 Late Broadcast	0.0 hypre_SMGRelaxSetRec	(31, 31, 14	l he
2.4 Wait at N × N	0.0 hypre_SMGRelaxSetMa	(31, 31, 13	
0.0 N × N Completi	0.0 hypre_SMGRelaxSetZer	(31, 31, 12	an
-e-14.5 Point-to-point	0.0 hypre_SMGRelax	(31, 31, 11	
		(31, 31, 10	(E
0.0 Late Receiver		(31, 31, 9)	
0.0 Synchronization		(31, 31, 8)	
0.0 MPI I/O		(31, 31, 7)	
0.0 Init/Exit		(31, 31, 6)	
0.0 Overhead		(31, 31, 5)	
- 100.0 Visits		(31, 31, 4)	
- 100.0 Communications	0.0 hypre_StructAxpy	(31, 31, 3)	
0.0 Synchronizations	L . 0.0 hypre_SMGAxpy	(31, 31, 2)	
40.454 (48.3%) 1.88/e+05	42,345.535 (46.5%) 9.114e+U4	«1.880 ± 19.2%» 3.239e+00	

ALASCA ce-based rformance alysis Z-Jülich, 'enn)

Co-principal investigators

Contact

Patrick H. Worley

Computational Earth Sciences Group Computer Science and Mathematics Division (865) 574-3128 worleyph@ornl.gov

Barbara Helland

DOE Program Manager Office of Advanced Scientific Computing Research DOE Office of Science

