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ABSTRACT

Correlation scales have been used in the traditional scheme of three-dimensional variational data assim-
ilation (3DVAR) to estimate the background (or first guess) error covariance matrix (the B matrix in brief)
for the numerical forecast and reanalysis of ocean for decades. However, it is challenging to implement this
scheme. On the one hand, determining the correlation scales accurately can be difficult. On the other hand,
the positive definite of the B matrix cannot be guaranteed unless the correlation scales are sufficiently small.
Xie et al. indicated that a traditional 3DVAR only corrects certain wavelength errors, and its accuracy
depends on the accuracy of the B matrix. Generally speaking, the shortwave error cannot be sufficiently
corrected until the longwave error is corrected. An inaccurate B matrix may mistake longwave errors as
shortwave ones, resulting in erroneous analyses.

A new 3DVAR data assimilation scheme, called a multigrid data assimilation scheme, is proposed in this
paper for quickly minimizing longwave and shortwave errors successively. By assimilating the sea surface
temperature and temperature profile observations into a numerical model of the China Seas, this scheme
is applied to a retroactive real-time forecast experiment and favorable results are obtained. Compared to
the traditional scheme of 3DVAR, this new scheme has higher forecast accuracy and lower root-mean-
square errors. Note that the new scheme demonstrates greatly improved numerical efficiency in the analysis
procedure.

1. Introduction

The ocean is not observed frequently enough in
space or time to allow for a direct and reasonably ac-
curate description of the large-scale oceanic state and
its variability. Such limitations can be improved by ap-

plying a data assimilation scheme that makes use of
observation and background information in space and
time as well as physics constraints. Many ocean data
assimilation schemes have been substantially developed
since the mid-1980s (Derber and Rosati 1989; Behr-
inger et al. 1998; Gaspari and Cohn 1999; Weaver and
Courtier 2001).

A three-dimensional variational data assimilation
(3DVAR) technique could usually be accomplished by
using correlation scales (Derber and Rosati 1989) to
form the background (or first guess) error covariance
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matrix (hereafter, B matrix), which plays an important
role in data assimilation by determining the spatial
spreading of observational information. However, a
real field at different locations may have different cor-
relation scales which are flow dependent and difficult to
estimate. In addition, the B matrix cannot be guaran-
teed to be positive definite numerically unless the cor-
relation scales are small enough. Another method to
estimate the B matrix involves using a recursive filter
(Hayden and Purser 1995), which can ensure that the B
matrix is positive definite. In the context of variational
analysis, the recursive filter is often interpreted as a
covariance function of background errors. However,
the traditional 3DVAR, using either correlation scales
or recursive filters, can only correct certain wavelength
errors (Xie et al. 2005). Note that the shortwave errors
should not be sufficiently corrected until the longwave
ones are corrected; otherwise, longwave errors could be
mistakenly treated as shortwave errors, resulting in er-
roneous analyses.

To correctly minimize the longwave and shortwave
errors in turn, a new 3DVAR data assimilation scheme,
called the multigrid data assimilation scheme, is pro-
posed in this paper. The multigrid technique is often
used to solve numerical differential equation by allow-
ing long waves to converge faster than short ones
(Briggs et al. 2000). In the variational data assimilation,
the multigrid technique also allows longwave errors to
be corrected faster than short ones. This could prevent
the longwave errors from being incorporated into
shortwave analyses. For example, at observation sta-
tions in one area, observation errors contain a 1000-km
wavelength error component and a 100-km wavelength
error component. Before removing the 1000-km wave-
length error from the observation, if an incorrect esti-
mation of correlation scales suggests a 100-km correla-
tion scale, the traditional 3DVAR will provide an
analysis meeting the observation by taking the 1000-km
wavelength error into the 100-km scale correction.
However, a multigrid data assimilation scheme does
not allow this to happen because the 100-km wave-
length error is never corrected until the 1000-km wave-
length error is removed from the observation, and it can
thus provide a better or more accurate analysis. In this
paper, the multigrid data assimilation scheme is applied
to assimilate SST and temperature profiles of the China
Seas into a numerical model in a retroactive real-time
forecast experiment. A comparison of the results to
those of the traditional 3DVAR using correlation scales
is presented.

In the following section, the theory and verification
of the multigrid data assimilation scheme are intro-
duced. The numerical model and observational data

used in the retroactive real-time forecast experiments
are described in sections 3a and 3b, respectively. In
section 3c, the results of the forecast experiments are
presented. A summary and conclusions are presented
in section 4.

2. Theory and verification

Taking the standard 3DVAR cost functional form,
which includes a background and observational term,
operating on the field of temperature correction instead
of the temperature itself (Derber and Rosati 1989), the
cost functional to be minimized is

J �
1
2

XTB�1X �
1
2

�HX � Y�TR�1�HX � Y�, �1�

where X is the correction of temperature referred to
the background, B is the background error covariance
matrix, Y is the difference between the observations
and the interpolated background temperature at the
observation locations, R is the observation error covari-
ance matrix, and H is a simple bilinear interpolation
operator from model space to observation space.

In a correlation-scale method, correlation scales are
critically important in the estimation of a B matrix,
which plays a major role in data assimilation methods
such as optimal interpolation (OI) or 3DVAR. Derber
and Rosati (1989) adopted an empirical formula to cal-
culate the B matrix in which the correlation scales are
dependent only on latitude. Behringer et al. (1998)
modified this formula by considering the anisotropy in
the zonal and meridional directions. Gaspari and Cohn
(1999) discussed the construction of covariance func-
tions for data assimilation. Weaver and Courtier (2001)
described a practical algorithm that can be used to
model correlation functions on the sphere. A wide
range of functions can be adopted to determine the
correlation with spatial distance. The commonly used
formula is a Gaussian-type function in which the cor-
relations are weighted by the separate latitudinal and
longitudinal distances and/or depths. In this study, the
element B takes the following form (Derber and Rosati
1989; Behringer et al. 1998; Zhou et al. 2004):

Bi,j � ah exp��
�xij

2

Lx
2 �

�yij
2

Ly
2 �, �2�

where Lx and Ly are characteristic of length scales that
reflect the extent of spatial correlation, x and y are
model coordinates, and ah is the first-guess error vari-
ance.

The distribution of observations in the ocean is
highly inhomogeneous, and inaccurate correlation
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scales could result in more errors for regions with
sparse observations. For a given observation system,
data-sparse regions could provide longwave informa-
tion and data-dense regions could provide both long-
wave and relative shortwave information. An ideal data
assimilation scheme would retrieve longwave informa-
tion over the whole domain and shortwave information
over data-dense regions. One way to realize this idea is
to obtain an accurate flow-dependent B matrix, which
is practically impossible. The other way is to retrieve
these waves by a sequence of 3DVAR and combine
these waves together for the final analysis. This has to
be done from longwave to shortwave. Otherwise, the
shortwave information will meet the observation per-
fectly and mistakenly destroy the longwave informa-
tion.

For instance, a temperature field can be separated
into longwave information and shortwave information
using the Fourier theory

Xb � XL
b � XS

b and �3�

XL � XL
a � XL

b , �4�

where the subscript L represents the longwave infor-
mation and S the shortwave information. The super-
script b represents the background field and a the
analysis field. The longwave and shortwave errors can
be minimized in turn and the cost functional for retriev-
ing longwave information can be modified as follows:

J �
1
2

XL
TBL

�1XL �
1
2

�HXL � YL �TR�1�HXL � YL �.

�5�

The analysis of temperature becomes

Xa � Xb � XL � XL
b � XS

b � XL
a � XL

b � XL
a � XS

b ,

�6�

which means that the final analysis is a combination of
the analyzed longwave information obtained from the
observations and the shortwave information obtained
from the background field. A functional for relative
shortwave information can be iteratively formed by
keeping the relative longwave information XL. The
multigrid data assimilation scheme will be applied to
correct the longwave and shortwave errors successively.

A multigrid technique is initially developed for dif-
ferential equations (Briggs et al. 2000). To solve differ-
ential equations numerically, a finite difference scheme
is usually used. However, the oscillatory modes of the
error are eliminated effectively, whereas smooth modes
are corrected very slowly for many numerical iterative
methods. To overcome such limitations, the multigrid

technique is developed because coarse grids can be
used to speed up the convergence of smooth modes
(i.e., longer waves over a coarser grid). Minimizing a
functional over a coarse grid to obtain longwave infor-
mation and a functional over a relative fine grid for
shortwave information could fit the ideal data assimi-
lation scheme discussed above. By introducing the mul-
tigrid technique into the 3DVAR data assimilation,
called the multigrid data assimilation scheme hereafter,
the cost functional should take the following form:

J �n� �
1
2

X �n�TX �n�

�
1
2

�H�n�X �n� � Y �n��TR �n��1�H�n�X �n� � Y �n��,

�n � 1, 2, 3, . . . , N �, �7�

where the superscript n represents the nth level grid
and N is the final level (which depends on the obser-
vations’ distribution).

Let Y (1) � Yobs � HXb in the first-level grid be the
difference between the observations and the interpo-
lated background temperature at the observation loca-
tions, and in the other grid levels it is defined as

Y �n� � Y �n�1� � H�n�1�X �n�1� �n � 2, 3, . . . , N�.

�8�

Here, coarse grids correspond to smooth modes
(longwave information) and fine grids correspond to
oscillatory modes (shortwave information). The B ma-
trix is simplified to an identity matrix because the cor-
relation scales are reflected by coarse or fine grids. Dur-
ing the procedure of sequential multiple-scale analysis,
the half V cycle (Briggs et al. 2000) property of the
multigrid technique is employed as it continuously re-
fines the resolutions. The final analysis is

Xa � Xb � XL � Xb � �
n�1

N

X �n�. �9�

An idealized experiment is performed to verify the
validity of this new data assimilation scheme. The
model domain covers a square region, extending over
30°–40°N in latitude and 100°–110°E in longitude (Fig.
1). Figure 1 shows the distribution of observations (Fig.
1a), which includes 600 random points, and the profile
of the true temperature field (Fig. 1b). The true tem-
perature field, simulating a warm front, is depicted in
Fig. 2f.

In the traditional 3DVAR using correlation scales,
the cost functional is minimized by the preconditioned
conjugate gradient algorithm via an iterative procedure
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(Navon and Legler 1987; Derber and Rosati 1989).
The analyses by 3DVAR using different correlation
scales—500, 200, 100, and 50 km, respectively—are
shown in Fig. 2. The results demonstrate that the larger
the correlation scale is, the longer the corrected error

wavelength becomes. In the multigrid data assimilation
scheme, five-level grids with a grid ratio of 0.5 [i.e., the
grid spacing in the nth level grid is half of that in the
(n � 1)th-level grid] are employed, ranging from 5° 	
5° to 0.3125° 	 0.3125°. Figure 2e gives the result of the

FIG. 2. Analysis results by using 3DVAR of different correlation scales: (a) 500, (b) 200, (c) 100, and
(d) 50 km. (e) The analysis result of the multigrid data assimilation scheme; (f) the true temperature
field.

FIG. 1. The distribution of (a) 600 random observations and (b) the true profile.
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multigrid data assimilation scheme, which is better than
the former ones, compared to the true field in Fig. 2f.
Table 1 shows the RMS difference of different methods.

3. Retroactive real-time forecast experiment

Section 2 has demonstrated that the proposed multi-
grid data assimilation scheme can give much higher ac-
curacy compared to the traditional 3DVAR using cor-
relation scales in the idealized experiment. To examine
the performance of the new scheme in numerical fore-
casts of temperature, a retroactive real-time forecast
experiment is carried out as described in this section.

a. The numerical model

The numerical model used in the following retroac-
tive real-time forecast experiment is a coastal ocean
circulation model based on the Princeton Ocean Model
with generalized coordinate system (POM; POMgcs) in
which sigma- and/or z-level vertical grids can be chosen
(Ezer and Mellor 2004). This is a fully nonlinear, prog-
nostic model incorporating the free surface and the

Mellor and Yamada (1974, 1982) level-2.5 turbulent
closure scheme for vertical mixing. The z-level coordi-
nate system of POMgcs is employed in this paper.

The model domain covers the China Seas, including
the Pohai (or Bohai) Sea, the Yellow Sea, the East
China Sea, and the South China Sea (Fig. 3c), and an
adjacent sea area extending 10°S–41°N in latitude and
99°–142°E in longitude. The bathymetry employed in
the simulations is based on 5-min gridded elevations/
bathymetry for the world (ETOPO5). The bathymetry
values provided by ETOPO5 in shallow regions (e.g.,
the Pohai Sea) are found to be highly questionable.
Therefore, the bathymetry of these regions is modified
by local nautical charts to obtain a more realistic coast-
line. The model grid spacing is varied from 1⁄12° to 1⁄2°,
which produces a moderate number of computational
points in the model domain, thereby reducing the com-
putation time. There are 20 vertical level of which 13
are above 450 m. In the retroactive real-time forecast
experiment, the model is forced by wind stress and air
temperature reanalysis products from the National
Centers for Environmental Prediction (NCEP), and
heat flux is calculated using bulk formulas. The open
boundary conditions of currents are provided by a glob-
al model. Orlanski radiation conditions are employed
in open boundary conditions for temperature, salinity,
and sea surface height, which are relaxed to those of the
global model.

b. Observational data processing

The data type, accuracy, and distribution in space
and time govern the quality of the results produced by
the data assimilation system. If all predicted variables

FIG. 3. The distribution of (a) temperature profiles and (b) shipboard SST in August 2004. (c) Place names used in this paper. PS:
Pohai Sea; YS: Yellow Sea; ECS: East China Sea; SCS: South China Sea; JS: Japan Sea.

TABLE 1. The RMS difference between the analysis results of
the multigrid data assimilation scheme (short for multigrid) and
the traditional 3DVAR using correlation scales (short for corre-
lation scales) and the true temperature field.

Scheme RMS (°C)

Multigrid 9.28 	 10�6

Correlation scales 500 km 0.845
200 km 0.570
100 km 0.474

50 km 0.957
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were observed perfectly and continuously in space and
time, there would be little need for a data assimilation
system as long as the numerical model could handle the
shortest waves. Unfortunately, this is not the case. The
observational system, which is highly inhomogeneous,
typically covers large regions either without observa-
tions or without measuring all of the forecast variables.
Thus, in this study we would like to use as many types
of observations as possible. The conventional tempera-
ture observations used in the following experiments
consist of shipboard SST and temperature profiles in-
cluding expendable bathythermograph (XBT) ocean
station data and conductivity–temperature–depth
(CTD) data, obtained from the Global Temperature
and Salinity Profile Project (GTSPP). A typical

monthly distribution (August 2004) of temperature
profiles and shipboard SST is shown in Fig. 3. The un-
conventional temperature observations used consist of
satellite remote sensing SST of Advanced Very High
Resolution Radiometer (AVHRR) Pathfinder Version
5.0 (hereafter, AVHRR SST in brief) and Argo pro-
files.

The shipboard SST and temperature profiles contain
observations with errors, making it necessary to per-
form quality control on them. For example, the ship-
board SST observations are grossly checked by omit-
ting the data with deviations larger than 3.5
. Here, 
 is
the standard deviation statistically obtained from sev-
eral decades’ observations. A similar gross check is also
done for temperature profiles. After that, the tempera-
ture profiles are vertically interpolated to the top 13
model levels. No information is inserted below level 13
because of the lack of data and our focus being primar-
ily in the upper ocean.

As for AVHRR SST, the quality control procedure
consists of four steps:

Step 1: The dataset undergoes a gross check by omit-
ting the SST data with quality flags less than 3.
(The overall quality flag is a relative assignment of
SST quality based on a hierarchical suite of tests.
The quality flag varies from 0 to 7, with 0 being
the lowest quality and 7 the highest. See http://
www.nodc.noaa.gov/SatelliteData/pathfinder4km/
userguide.html). Then the SST data are averaged
in each 1⁄6° 	 1⁄6° bin.

Step 2: Compared with the monthly averaged ship-
board SST, the AVHRR SSTs which have a devia-

FIG. 4. The deviation of AVHRR SST from shipboard SST in
the period of the experiment. The triangle represents the global
ocean; the circle is for the China Seas.

FIG. 5. The distribution of AVHRR SST data on (a) 19 Apr and (b) 24 Apr 2004.
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tion larger than the standard deviation of the ship-
board SST are removed. The deviation of the re-
maining AVHRR SST from shipboard SST is
shown in Fig. 4.

Step 3: The AVHRR SST is further controlled by
omitting AVHRR SSTs that have deviations from
the daily averaged shipboard SST larger than
1.5°C. About 1⁄3 of the data that have passed step 1
are omitted in steps 2 and 3. The remaining
AVHRR SST data can still cover the whole study
domain and are shown in Fig. 5.

Step 4: The remaining AVHRR SSTs are adjusted by
making the daily averaged AVHRR SST equal to
that of the shipboard SST in the whole domain.
For the global ocean, the RMS differences be-
tween shipboard SST and AVHRR SST are 1.05°
and 0.83°C, respectively, before and after such ad-
justment, whereas for the China Seas, the RMS
differences are 1.20° and 1.16°C, respectively.

c. Retroactive real-time forecast experiment and
results

The retroactive real-time forecast experiment in-
cludes three subexperiments, denoted Emodel, ETV,

and EMG: EMG is the proposed model, Emodel is the
model run without assimilation, and ETV employs the
traditional 3DVAR data assimilation using correlation
scales.

Similar to the traditional 3DVAR scheme imple-
mented by Derber and Rosati (1989), data assimilation
is performed on each model level with the vertical cor-
relations ignored for both ETV and EMG. In ETV, the
B matrix takes the form in Eq. (2). The correlation
scales Lx � 240 km and Ly � 70 km in the China Seas
are selected from tuning experiments to optimize the
results (see Table 2 for temperature forecasts results
using the traditional 3DVAR with some selected dif-
ferent correlation scales for demonstration). In EMG,
five-level grids are employed, ranging from about 10° 	
10° to the model horizontal resolution. A grid ratio of
0.5 is employed in the first four levels, and the horizon-
tal resolution of last grid is the same as that of model

FIG. 6. Time series of RMS difference between analyzed and
observed SST.

FIG. 7. Time series of RMS difference between the analyzed
profiles and observations.

FIG. 8. The vertical structure of the RMS difference between
the analyzed profiles and observations.

TABLE 2. The RMS difference of temperature forecasts using
the traditional 3DVAR with different correlation scales.

Correlation scales

SST (°C)
Temp

profiles (°C)Lx (km) Ly (km)

1000 500 1.58 1.72
500 250 1.53 1.68
240 70 1.51 1.46
100 50 1.54 1.61

10 5 1.93 1.88
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grid. At each stage of the sequential multiple-scale
analyses in EMG, the procedure is similar to ETV, ex-
cept that the B matrix is implemented as an identity
matrix. The observation error covariance matrices used
in the two schemes, which are assumed to be diagonal,
are the same.

The model is initialized by using the monthly average
(January) temperatures and salinities from the National
Marine Data and Information Service (NMDIS) of the

State Oceanic Administration of the People’s Republic
of China and is spun up over 1 yr in the diagnostic mode
with temperature and salinity held to reach a steady
state. The observational data of January and February
2004 processed in section 3b are then assimilated into
the model. After the 2-month run, the initial field of the
forecast is obtained. Three sets of 72-h forecasts, each
of which spans 10 months from March to December
2004, are carried out afterward.

FIG. 9. (a) AVHRR SST observations, (b) AMSR-E SST observations, (c) SST forecast, and (d) surface circulation forecast using
the multigrid data assimilation scheme on 31 Oct 2004. Note that AMSR-E was not assimilated in this experiment.
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The analyses from the assimilation are compared to
the observations. Because the observations are used in
the assimilation, this comparison is a measure of the
assimilation technique’s ability to force the model so-
lution toward the data. Figure 6 depicts the RMS dif-
ferences between the analyzed SST and observations;
Fig. 7 depicts the RMS difference between the analyzed
temperature profiles and observations. Figure 8 is the
vertical structure of the RMS differences between the
analyzed temperature profiles and observations. In
Figs. 6–8, the RMS difference in EMG is the smallest,
which indicates that the multigrid data assimilation
scheme can provide better analysis.

Figure 9 shows AVHRR SST observations, AMSR-E
SST observations, the forecast SST, and the forecast
surface circulation derived by using the multigrid data
assimilation scheme on 10 November 2004. The fore-
casts of SST coincide well with AVHRR SST (assimi-
lated) and the Advanced Microwave Scanning Radiom-
eter for the Earth Observing System (AMSR-E SST),
which is not assimilated in this experiment. In Fig. 9d,
the main current systems are well presented, for ex-
ample, Kuroshio and its extension, a southward coastal
jet off the west coast of Kyushu as part of a Kuroshio
meander, the Tsushima Warm Current, the Ryukyu
Current, the China Coastal Current, the Taiwan Warm
Current entering the East China Sea from Taiwan
Strait while turning anticyclonically, the Mindanao
Current, and the circulation in South China Sea. Figure
10 shows the time series of RMS differences between
forecasts and SST observations. The RMS differences
curve for the multigrid data assimilation scheme dis-
plays obvious improvement. For SST observations, the
forecast RMS error is 1.51°C in ETV and 1.21°C in
EMG, which indicates that the new scheme has higher

forecast accuracy and a smaller forecast RMS error by
about 0.30°C, and the rate of improvement is about
19.9%.

Figure 11 shows the time series of RMS differences
between the forecasts and profile observations. The
RMS differences between the forecasts of the multigrid
data assimilation scheme and profile observations are
less than those of the other two forecasts, indicating the
advantage of the new method. Figure 12 shows the ver-
tical structure of the RMS differences. For profile ob-
servations, the forecast RMS error is 1.46°C in ETV
and 1.06°C in EMG, which indicates that the new
scheme has higher forecast accuracy and a lower fore-
cast RMS error by about 0.40°C, and the improvement
is about 27.4%.

Figure 13 displays the spatial distribution of RMS

FIG. 12. The vertical structure of the RMS difference between
the profile forecasts and observations.

FIG. 10. Time series of RMS difference between SST forecasts
and observed SST. FIG. 11. Time series of RMS difference between the profile

forecasts and observations.
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differences of SST in these retroactive real-time fore-
casts. In Emodel, large RMS differences appear almost
everywhere. RMS differences are reduced only in some
regions in ETV; however, most of the RMS differences
are reduced in EMG, especially in the South China Sea
and the northwestern Pacific Ocean. The possible rea-
sons for regions where RMS differences are large in
both EMG and ETV are varied. For instance, in the
area near the southern and northern boundaries, in-
cluding the southern part of the Japan Sea, the RMS
differences could be caused by the poor open boundary
conditions that should be improved in further studies;
inhomogeneous distribution of observations might be
another reason. As for the Pohai Sea, the Yellow Sea,
and part of the East China Sea, there are some impor-

tant near-shore fronts, such as the Changjiang River
plume and tidal fronts. The grid resolution in this area
is about 1⁄2° 	 1⁄4°, which cannot simulate these fronts
very well. The large RMS differences may partly be the
result of coarse model grid resolution. Another reason
could be that the observations are relatively sparse in
the above region. In the Kuroshio extension, the large
RMS differences for SST forecasts also can perhaps be
attributed to poor distribution of SST observations.
The vertical average RMS differences of the three fore-
cast results are drawn in Fig. 14. It can be observed in
Fig. 14 that another area with large RMS difference is
the Mindanao Current, where there is an eddy; the po-
sition cannot be well simulated by the model. Although
all the above-mentioned large RMS difference areas

FIG. 14. Spatial distribution of vertical averaged RMS difference of the profile forecasts between observations and (a) Emodel, (b)
ETV, and (c) EMG. The contour interval is 0.5°C and the black shading is for values greater than 1.5°C.

FIG. 13. Spatial distribution of RMS difference of SST forecasts between (a) Emodel, (b) ETV, and (c) EMG and the observed
SST. The contour interval is 0.5°C and the black shading is for values greater than 1.5°C.
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exist not only in EMG but also in ETV, EMG has a
relatively small RMS difference area and smaller RMS
differences, which indicates that the multigrid data as-
similation scheme can produce more accurate forecasts
and can generate a better forecast initial field under an
identical forecast environment.

Forecasts using the multigrid data assimilation
scheme are better than those using the traditional
3DVAR on nearly every day during the experimental
period. With the exception of the assimilation scheme,
the common influence factors (such as open boundary
conditions, atmospheric forcing conditions, and
datasets used) are the same in these subexperiments. It
can be concluded that the new method proposed in this
paper generates substantially better initial conditions
for temperature forecasts.

4. Summary and conclusions

In this paper, a new data assimilation scheme, called
the multigrid data assimilation scheme, was developed.
The idealized experiment to verify the validity of this
new data assimilation scheme was made by comparing
it to the traditional 3DVAR using correlation scales.
The new scheme was applied to assimilate the ship-
board and AVHRR SST and a variety of temperature
profile observations in a retroactive real-time forecast
experiment in the China Seas. The main conclusions
can be summarized as follows:

(i) For the traditional 3DVAR using correlation
scales, only the errors matching the specified length
scales can be corrected, and thus its analysis criti-
cally depends on how accurate the correlation
scales are. In general, in a complex multiscale SST
field, for example, it is almost impossible to obtain
accurate correlation scales, as demonstrated in the
idealized experiment. In addition, shortwave errors
should not be corrected until longwave errors are
corrected; otherwise, corrections in the short cor-
relation scales make the analysis fit observations
too closely, so that longwave information is mistak-
enly treated as shortwave information. However,
the multigrid data assimilation scheme always per-
forms well, producing an analysis with much higher
accuracy than the traditional 3DVAR, because it
can minimize the longwave and shortwave errors in
turn.

(ii) In the retroactive real-time sea temperature fore-
cast experiment, the forecast accuracy of profiles
and SST by using the multigrid data assimilation

scheme is much higher than that of the traditional
3DVAR, so it can be concluded that the multigrid
data assimilation scheme can generate a substan-
tially better initial field for numerical sea tempera-
ture forecasts.

Acknowledgments. The authors thank two reviewers
for their thorough and helpful comments and sugges-
tions, which contributed to greatly improving the origi-
nal manuscript. The research for this paper was jointly
supported by grants of the National Basic Research
Program of China (2007CB816001), the National Natu-
ral Science Foundation of China (40776016, 40476006,
and 40231014), the National High-Tech R&D Program
of China (2006AA09Z138), and CAS Key Laboratory
of Tropical Marine Environmental Dynamics (LED).

REFERENCES

Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved
coupled model for ENSO prediction and implications for
ocean initialization. Part I: The ocean data assimilation sys-
tem. Mon. Wea. Rev., 126, 1013–1021.

Briggs, W. L., V. E. Henson, and S. F. McCormick, 2000: A Mul-
tigrid Tutorial. 2nd ed. Society for Industrial and Applied
Mathematics, 193 pp.

Derber, J., and A. Rosati, 1989: A global oceanic data assimilation
system. J. Phys. Oceanogr., 19, 1333–1347.

Ezer, T., and G. L. Mellor, 2004: A generalized coordinate ocean
model and a comparison of the bottom boundary layer dy-
namics in terrain-following and in z-level grids. Ocean Mod-
ell., 6, 379–403.

Gaspari, G., and S. E. Cohn, 1999: Construction of correlation
functions in two and three dimensions. Quart. J. Roy. Meteor.
Soc., 125, 723–757.

Hayden, C. M., and R. J. Purser, 1995: Recursive filter objective
analysis of meteorological fields: Applications to NESDIS
operational processing. J. Appl. Meteor., 34, 3–15.

Mellor, G., and T. Yamada, 1974: A hierarchy of turbulence clo-
sure models for planetary boundary layers. J. Atmos. Sci., 31,
1791–1806.

——, and ——, 1982: Development of a turbulence closure model
for geophysical fluid problems. Rev. Geophys., 20, 851–875.

Navon, I. M., and D. M. Legler, 1987: Conjugate-gradient meth-
ods for large-scale minimization in meteorology. Mon. Wea.
Rev., 115, 1479–1502.

Weaver, A., and P. Courtier, 2001: Correlation modelling on the
sphere using a generalized diffusion equation. Quart. J. Roy.
Meteor. Soc. 127, 1815–1846.

Xie, Y., S. E. Koch, J. A. McGinley, S. Albers, and N. Wang, 2005:
A sequential variational analysis approach for mesoscale data
assimilation. Preprints, 21st Conf. on Weather Analysis and
Forecasting/17th Conf. on Numerical Weather Prediction,
Washington, DC, Amer. Meteor. Soc., 15B.7. [Available on-
line at http://ams.confex.com/ams/pdfpapers/93468.pdf.]

Zhou, G., W. Fu, J. Zhu, and H. Wang, 2004: The impact of
location-dependent correlation scales in ocean data assimila-
tion. Geophys. Res. Lett., 31, L21306, doi:10.1029/2004GL020579.

2116 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 25




