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Outline

• Motivation: XMHD and the tyranny of scales

• Parabolization of XMHD: key for SCALABILITY

• 3D compressible resistive MHD

• 3D extended MHD

• Massively parallel performance
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�The tyranny of scales�

(a) Time scales in fusion plasmas (FSP report) (b) Length scales in a typical fusion
plasma (Tang, Phys. Plasmas, 9 (5),
2002)

"The tyranny of scales will not be simply defeated by building bigger and faster

computers" (SBES report, p. 30)
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Algorithmic challenges in XMHD

• XMHD has mixed character, with strongly hyperbolic and parabolic components.

• Numerically, XMHD is a nonlinear algebraic system of very sti� equations:

� Elliptic sti�ness (di�usion): κ(J) ∼ ∆t D
∆x2 � 1

� Hyperbolic sti�ness (linear and dispersive waves): κ(J) ∼ ∆t ω f ast ∼ ∆t
∆tCFL

� 1

• Brute-force algorithms will not be able to cover the span between disparate time/length scales,

regardless of computer power (SBES report).

• Key algorithmic requirement: SCALABILITY [CPU ∼ O(N/np)]!

� Minimize number of degrees of freedom N: spatial adaptivity.

� Follow slowest time scales (application dependent): implicit time stepping.

• Scalable implicit methods require MULTILEVEL approaches:

CPU ∼ O
(

N log(N)

nβ
p

)
, β . 1
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Why multilevel (multigrid) methods?

• MG employs a divide-and-conquer approach to attack error components in the solution.

� Oscillatory components of the error are �EASY� to deal with (if a SMOOTHER exists)

� Smooth components are DIFFICULT.

Idea: coarsen grid to make "smooth" components appear oscillatory, and

proceed recursively

• SMOOTHER is make or break of MG!

• In general, smoothers are easy to �nd for parabolic systems: PARABOLIZATION!
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Parabolization and Schur complement: an example

• PARABOLIZATION EXAMPLE:

∂tu = ∂xv , ∂tv = ∂xu.

un+1 = un + ∆t∂xvn+1, vn+1 = vn + ∆t∂xun+1.

(I − ∆t2∂xx)un+1 = un + ∆t∂xvn

• PARABOLIZATION via SCHUR COMPLEMENT:[
D1 U

L D2

]
=

[
I UD−1

2

0 I

] [
D1−UD−1

2 L 0

0 D2

] [
I 0

D−1
2 L I

]
.

Sti� o�-diagonal blocks L, U now sit in diagonal via Schur complement D1−UD−1
2 L. The

system has been �PARABOLIZED.�

D1−UD−1
2 L = (I − ∆t2∂xx)
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Our approach to a successful fully implicit algorithm for XMHD

• Even if a smoother exists, MG is remarkably temperamental.

• Combination of Krylov methods and MG preconditioning is optimal:

� MG preconditioning provides scalability

� Krylov solver provides robustness

We seek to develop a successful algorithm for XMHD based on

Newton-Krylov-MG

• Rest of the talk focuses on preconditioning development!

• Prove the concept in resistive MHD, and then move to XMHD.
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Massively parallel performance of 3D resistive MHD

with PETSc toolkit
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Jacobian-Free Newton-Krylov Methods

• Objective: solve nonlinear system ~G(~xn+1) =~0 e�ciently (scalably).

• Converge nonlinear couplings using Newton-Raphson method:
∂~G
∂~x

∣∣∣∣∣
k

δ~xk = −~G(~xk) .

• Jacobian-free implementation:

(
∂~G
∂~x

)
k

~y = Jk~y = lim
ε→0

~G(~xk + ε~y)− ~G(~xk)
ε

• Krylov method of choice: GMRES (nonsymmetric systems).

• Right preconditioning: solve equivalent Jacobian system for δy = Pkδ~x:

JkP−1
k Pkδ~x︸︷︷︸

δ~y

= ~−Gk

Approximations in preconditioner do not affect accuracy of

converged solution; they only affect efficiency!

• The rest of the talk will discuss the development of suitable preconditioners Pk!
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3D resistive MHD implicit solver
L. Chacón, Phys. Plasmas 15, 056103 (2008)
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Resistive MHD model equations

∂ρ

∂t
+ ∇ · (ρ~v) = 0,

∂~B
∂t

+ ∇× ~E = 0,

∂(ρ~v)
∂t

+∇ ·
[
ρ~v~v− ~B~B − ρν∇~v +

←→
I (p +

B2

2
)
]

= 0,

∂T
∂t

+~v · ∇T + (γ− 1)T∇ ·~v = 0,

• Plasma is assumed polytropic p ∝ nγ.

• Resistive Ohm's law:

~E = −~v× ~B + η∇× ~B
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Resistive MHD Jacobian block structure

• The linearized resistive MHD model has the following couplings:

δρ = Lρ(δρ, δ~v)

δT = LT(δT, δ~v)

δ~B = LB(δ~B, δ~v)

δ~v = Lv(δ~v, δ~B, δρ, δT)

• Therefore, the Jacobian of the resistive MHD model has the following coupling structure:

Jδ~x =


Dρ 0 0 Uvρ

0 DT 0 UvT

0 0 DB UvB

Lρv LTv LBv Dv




δρ

δT

δ~B

δ~v


• Diagonal blocks contain advection-di�usion contributions, and are �easy� to invert using MG

techniques. O� diagonal blocks L and U contain all hyperbolic couplings.
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PARABOLIZATION: Schur complement formulation

• We consider the block structure:

Jδ~x =

[
M U

L Dv

](
δ~y

δ~v

)
; δ~y =


δρ

δT

δ~B

 ; M =


Dρ 0 0

0 DT 0

0 0 DB


• M is �easy� to invert (advection-di�usion, MG-friendly).

Schur complement analysis of 2x2 block J yields:

[
M U

L Dv

]−1

=

[
I 0

−LM−1 I

] [
M−1 0

0 P−1
Schur

] [
I −M−1U

0 I

]
,

PSchur = Dv − LM−1U .

• EXACT Jacobian inverse only requires M−1 and P−1
Schur.

• Schur complement formulation is fundamentally unchanged in Hall MHD!
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Physics-based preconditioner (I): small-�ow approximation

• The Schur complement analysis translates into the following 3-step EXACT inversion algorithm:

Predictor : δ~y ∗ = −M−1Gy

Velocity update : δ~v = P−1
Schur[−Gv − Lδ~y ∗], PSchur = Dv − LM−1U

Corrector : δ~y = δ~y ∗ −M−1Uδ~v

• MG treatment of PSchur is impractical due to M−1.

Need suitable simpli�cations (SEMI-IMPLICIT)!

• We consider the small-�ow-limit case: M−1 ≈ ∆t

• This approximation is equivalent to splitting �ow in original equations.
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Physics-based preconditioner (II)

• Small �ow approximation: M−1 ≈ ∆t in steps 2 & 3 of Schur algorithm:

δ~y ∗ = −M−1 Gy

δ~v ≈ P−1
SI [−Gv − Lδ~y ∗] ; PSI = Dv − ∆tLU

δ~y ≈ δ~y ∗ − ∆tUδ~v

where:

PSI = ρn
[←→

I /∆t + θ(~v0 · ∇
←→

I +
←→

I · ∇~v0− νn∇2←→I )
]
+ ∆tθ2W(~B0, p0)

W(~B0, p0) = ~B0×∇×∇× [
←→

I × ~B0]−~j0×∇× [
←→

I × ~B0]−∇[
←→

I · ∇p0 + γp0∇ ·
←→

I ]

• PSI is block diagonally dominant by construction!

• We employ multigrid methods (MG) to approximately invert PSI and M: 1 V(4,4) cycle
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Serial performance (2D tearing mode)

∆t convergence study (128x128)

∆t GMRES/∆t CPUexp/CPU ∆t/∆tCFL

0.5 8.0 8.0 380

0.75 9.5 10.0 570

1.0 11.2 12.7 760

1.5 14.6 14.6 1140

Grid convergence study (∆t = 1200∆tCFL)

N GMRES/∆t CPUexp/CPU ∆t/∆tCFL

32x32 14 2.43 159

64x64 11.8 5.8 322

128x128 11.2 13.3 667

256x256 11.4 28.5 1429

CPU ∼ O(N) OPTIMAL SCALING!
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Serial performance (3D island coalescence)

10 time steps, ∆t = 0.1, V(3,3) cycles, mg tol=1e-2

Grid GMRES/∆t CPU

163 5.5 81

323 7.9 1176

643 7.0 11135
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Application: m=n=1 kink mode in 3D CDXU Tokamak

64x32x32 mesh with 16 processors
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3D extended MHD implicit solver
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Extended MHD model equations

∂ρ

∂t
+ ∇ · (ρ~v) = 0,

∂~B
∂t

+ ∇× ~E = 0,

∂(ρ~v)
∂t

+∇ ·
[
ρ~v~v− ~B~B − ρν∇~v +

←→
I (p +

B2

2
)
]

= 0,

∂Te

∂t
+~v · ∇Te + (γ− 1)Te∇ ·~v = 0,

• Plasma is assumed polytropic p ∝ nγ.

• We assume cold ion limit: Ti � Te ⇒ p ≈ pe .

• Generalized Ohm's law:

~E = −~v× ~B + η∇× ~B− di

ρ
(~j× ~B−∇pe)
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Extended MHD Jacobian block structure

• The linearized extended MHD model has the following couplings:

δρ = Lρ(δρ, δ~v)

δT = LT(δT, δ~v)

δ~B = LB(δ~B, δ~v, δρ, δT)

δ~v = Lv(δ~v, δ~B, δρ, δT)

• Jacobian coupling structure:

Jδ~x =


Dρ 0 0 Uvρ

0 DT 0 UvT

LρB LTB DB UvB

Lρv LTv LBv Dv




δρ

δT

δ~B

δ~v


• We have added o�-diagonal couplings.
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Extended MHD Jacobian block structure (cont.)

• The coupling structure can be substantially simpli�ed if we note (p ≈ pe):

1
ρ
(~j× ~B−∇pe) ≈

D~v
Dt

and therefore:

~E ≈ −~v× ~B + η∇× ~B− di
D~v
Dt

• This transforms jacobian coupling structure to:

Jδ~x ≈


Dρ 0 0 Uvρ

0 DT 0 UvT

0 0 DB UR
vB + UH

vB

Lρv LTv LBv Dv




δρ

δT

δ~B

δ~v


We can therefore reuse ALL resistive MHD PC framework!
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Extended MHD preconditioner

• Use same Schur complement approach.

• M block contains ion scales only! Approximation M−1 ≈ ∆t is very good in extended MHD (ion

scales do NOT contribute to numerical sti�ness).

• Additional block UH
vB results, after the Schur complement treatment, in new term in Schur

complement:

PSI = ρn
[←→

I /∆t + θ(~v0 · ∇
←→

I +
←→

I · ∇~v0− νn∇2←→I )
]
+ ∆tθ2W(~B0, p0)

W(~B0, p0) = ~B0×∇×∇× [
←→

I × ~B0−
di

θ∆t
←→

I ]−~j0×∇× [
←→

I × ~B0]−∇[
←→

I · ∇p0 + γp0∇ ·
←→

I ]

• This system supports dispersive waves ω ∼ k2!

• We have shown analytically that additional term is amenable to damped JB smoothing!

We can use classical MG!
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Preliminary serial performance results (2D tearing mode)

di = 0.05

1 time step, ∆t = 1.0, V(3,3) cycles, mg tol=1e-2

Grid GMRES/∆t CPUexp/CPU ∆t/∆texp

32x32 32 0.9 110

64x64 9 9.3 384

128x128 8 37.9 1436

256x256 10 117.0 5660
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Massively parallel performance
L. Chacón, Phys. Plasmas 15, 056103 (2008)
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Approach to parallelization

• We employ the PETSc toolkit (Parallel Extensible Toolkit for Scienti�c computing)

• In our preconditioner, we have parallelized our own multigrid solver (using PETSc's distributed

arrays constructs)

� We implement a matrix-light multigrid, where only diagonals are stored; residuals are calculated

matrix-free.

� Operator coarsening is done via rediscretization (instead of Galerkin procedure); this avoids

forming a matrix at any grid level: avoids communication of matrix elements.

� Prolongation and restriction are performed with second-order splines locally at each processor:

no communication required.

• As a result, our MG implementation features excellent parallel scalability.

• We do not feature a coarse-solve beyond the processor skeleton grid.

� This eventually degrades algorithmic scalability (only shows at > 1000-processor level).
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Massively parallel performance with PETSc toolkit

(3D island coalescence, 163 grid points per processor,

on Cray XT (Franklin) at NERSC)
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Conclusions

• Developed a scalable, multilevel-based, fully implicit NK-MG solver for XMHD.

Key algorithmic breakthrough: PARABOLIZATION + MG.

• Equivalence between parabolization and the Schur decomposition:

� Provides a rigorous foundation for the parabolization step.

� Provides a path to generalize approach when more complete XMHD models are considered.

• Demonstrated excellent algorithmic performance under grid re�nement and with time step.

• Demonstrated excellent parallel performance in massively parallel environments.

• Future work:

� Bring Hall MHD to production stage (high-order dissipation required).

� Add MG coarse-grid solve to avoid algorithmic performance loss with thousands of processors.

� Extend MG functionality to singular-point coordinate systems.
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