Same-Side Flavor Tagging at CDF

Nuno Leonardo Massachusetts Institute of Technology

- Flavor tagging
- Reconstructing the B decays
- Fragmentation track correlations
- Selecting the Same Side Tag
- Measuring the tagger properties
 Efficiency, Dilution, εD²
- Summary

May 7, 2004 - Fermilab

B-flavor tagging

Observation of mixing in a neutral B system (B_d or B_s) relies on determination of production flavor: b or anti-b

Tagging methods used at CDF:

- Same-Side Tagging (SST)
- Opposite-Side Tagging (JETQ, SLT)
 (see I.Kravchenko's talk for details on OST)

Tagger properties are better accessed in fully reconstructed charged B meson decays (see J.Piedra's talk for SST applied to neutral B decays)

Reconstructing the B decays (1)

$$B^+ \rightarrow J/\psi K^+$$
, $J/\psi \rightarrow \mu^+ \mu^-$

J/ψ

$$-p_{\tau}(\mu^{\pm}) > 1.5 \text{ GeV/c}$$

K

 $_{\text{-}}p_{_{\text{T}}} > 2 \text{ GeV/c}$

B

- $-p_{T}>6.5 \text{ GeV/c}$
- -Vertex probability > 0.1%
- $-L_{xv} > 100 \mu m$

Reconstructing the B decays (2)

$$B^+\! o\!ar D^0\pi^+$$
 , $ar D^0\! o\!K^+\pi^-$

•
$$\chi^2(r,\phi) < 14$$

•
$$\Delta R(D,\pi_{_{\rm R}}) < 1.5$$

 $\pi_{_{\text{B}}}$

B

•
$$\chi^2(r,\phi) < 15$$

•
$$|d0| < 80 \, \mu m$$

•
$$L_{xy}(B->D) > -150 \mu m$$

•
$$L_{xy} > 300 \, \mu m$$

Fragmentation track correlations

The SST method is based on expected *flavor-charge correlations*:

- between B meson and particles produced in fragmentation
- between B meson and pions coming from B** decays $B^+(B^-)$ are accompanied by negative (positive) pions $B^0(\overline{B^0})$ are accompanied by positive (negative) pions

Mistagging probability for neutral decays is expected to be larger

tracks from K* do not contribute in the neutral case

Selecting the Same Side Tag

The identification of the flavor of a neutral B meson can make use of hadrons produced nearby in phase space.

M.Gronau, J.Rosner, Phys.Rev. D49 (1994) 254-264

Consider tracks:

•close to the B meson

$$\Delta R \equiv \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.7$$

- • p_{τ} > 350 MeV
- originating from Primary Vertex
 (impact parameter within 3σ of P.V.)
- track quality cuts
- •multiple track candidates:
- select track with minimum p_T^{rel}

Measuring the tagger properties

Each B candidate is assigned to one of 3 classes:

- →Right-Sign (RS), if production flavor = decay flavor
- →Wrong-Sign (WS), if production flavor ≠ decay flavor
- ◆Not Tagged (NT), if no SST tag track candidates are found
- •Definition of tagger properties:

• Efficiency:
$$\epsilon = \frac{N_{tagged}}{N_{total}} = \frac{N_{RS} + N_{WS}}{N_{RS} + N_{WS} + N_{NT}}$$

• Dilution:
$$D = 1 - 2 P_{mistag} = \frac{N_{RS} - N_{WS}}{N_{RS} + N_{WS}}$$

Sample is further subdivided in bins of p₊ and ct of the B meson

Same-Side Tagger efficiency (1)

B transverse momentum [GeV]

$$\varepsilon = 63.5 \pm 1.2 \%$$

$$B^{\pm} \rightarrow J/\psi K^{\pm}$$

$$[J/\psi \rightarrow \mu^+ \mu^-]$$

Same-Side Tagger efficiency (2)

B transverse momentum [GeV]

$$\varepsilon = 62.4 \pm 0.8 \%$$

$$B^{+} \rightarrow \overline{D}^{0} \pi^{+}$$

$$[\overline{D}^{0} \rightarrow K^{+} \pi^{-}]$$

Same-Side Tagger dilution (1)

B transverse momentum [GeV]

Same-Side Tagger dilution (2)

B transverse momentum [GeV]

$$D = 20.2 \pm 2.4 \%$$

$$B^{+} \rightarrow \overline{D}^{0} \pi^{+}$$

$$[\overline{D}^{0} \rightarrow K^{+} \pi^{-}]$$

Summary

- The Same-Side Tagging technique has been studied in two fully reconstructed charged B meson decays
- The observed behavior and tagger properties agree well for the studied decays
- •The measured tagger properties for charged decays is

$$\epsilon(B^+) = 62.7 \pm 0.7 \text{ (stat.) } \%$$

$$D(B^+) = 21.2 \pm 2.0 \text{ (stat.) } \%$$

$$\epsilon D^2(B^+) = 2.8 \pm 0.5 \text{ (stat.) } \% \neq \epsilon D^2(B^0) \neq \epsilon D^2(B_S)$$

- Further SST studies under way towards B_s mixing
- →Optimize tagger for B⁰ mixing
- →Reproduce SST with Monte Carlo
- →Include particle identification (TOF, dE/dx)