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Abstract

The importance of molecular electrostatic interactions in aqueous solution has motivated ex-

tensive research into physical models and numerical methods for their estimation. In particular,

the computational costs associated with simulations with explicit water have driven the develop-

ment of implicit-solvent models, with generalized-Born (GB) models among the most popular of

these. In this paper, we present a boundary-integral equation interpretation for the Coulomb-field

approximation (CFA), which plays a central role in most GB models. This interpretation offers

new insights into the nature of the CFA and its inaccuracies. In particular, it becomes clear that

the CFA is most accurate when the molecular charge distribution generates a uniform normal

displacement field at the solute–solvent boundary, and it is least accurate for distributions that

give rise to rapidly varying or highly localized normal displacement fields. Supporting this analy-

sis are comparisons of the reaction-potential matrices calculated using boundary-element-method

(BEM) simulations and GB methods. We then introduce a similar approximation to the CFA that

exhibits complementary behavior, with superior accuracy for charge distributions that generate

rapidly varying normal fields and poorer accuracy for distributions that produce smooth fields.

This approximation, which we call boundary-integral-based electrostatics estimation (BIBEE), is

closely related to preconditioned Krylov-subspace iterative methods for BEM simulations. The pre-

sented CFA and BIBEE results suggest that improved electrostatics models may be obtained by

exploiting the invariance of molecular charge distributions. The boundary-integral interpretation

also leads naturally to methods to eliminate the interpolation inaccuracies associated with the Still

equation, and may therefore have implications for electrostatic component analysis. Furthermore,

iterative refinement of the BIBEE results recovers the BEM solution, and we show that excellent

agreement can be obtained in only a few iterations. Finally, the boundary-integral-equation frame-

work may provide a means to derive rigorous results explaining how the empirical correction terms

in many modern GB models significantly improve accuracy in spite of their simple analytical form.
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1. INTRODUCTION

The aqueous environment surrounding biological molecules significantly complicates the-

oretical and computational studies of inter- and intramolecular interactions [1–3]. Implicit-

solvent models [3–8], which estimate a potential of mean force that the solvent exerts on a

solute, are an attractive alternative to time-consuming simulations with explicit solvent [9–

13]. Many implicit-solvent models treat electrostatic interactions using macroscopic con-

tinuum theory based on the Poisson–Boltzmann equation, which can be solved numeri-

cally [3, 4, 14–16]. However, because even these calculations generally demand a great deal

of computational effort, still faster and more approximate models have been introduced for

applications involving dynamics and rapid screening [17–21]. The generalized-Born (GB)

model has become extremely popular for these purposes, in large part due to its agreement

with more expensive PB calculations (see, for instance, [22]) and to the availability of high-

quality implementations that can be employed in dynamics simulations [23–26]. Still et al.

presented the original generalized-Born model [17], which approximates electrostatic inter-

actions using effective Born radii that capture the degree to which the charges on solute

atoms are screened by solvent. Pairwise energies are then evaluated according to an interpo-

lation formula that recovers the correct self-energy for each atom (i.e., at zero separation),

and in the limit of infinite separation estimates the pairwise interaction as the interaction

between isolated charges in solvent. The number of excellent reviews of generalized-Born

models (see, e.g., [27–29]) underscores the models’ popularity, and no attempt will be made

here to outline the field.

This paper analyzes one of the central assumptions employed in many GB models: the

Coulomb-field approximation (CFA) introduced by Qiu et al. [23]. In the CFA, one assumes

that when only a single nonzero charge resides in the actual solute cavity, the dominant

contribution to the overall electrostatic free energy arises from the energy density inte-

grated over the solute volume [30]. The CFA therefore usually leads to an expression for an

atom’s effective Born radius in terms of a volume integral over the solute volume. Ghosh

et al. demonstrated that application of the divergence theorem allows the radius to be

written instead in terms of a surface integral over the solute–solvent boundary [31], and

noted that the CFA is exact for a spherical boundary with a single central charge. The

inaccuracies associated with GB methods based on the CFA have led to several empirical
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corrections [25, 30–34] that offer substantially improved agreement compared to more ex-

pensive simulations [35]. As Ghosh et al. noted, the surface-integration form of the CFA

is closely related to a boundary-integral equation formulation for the electrostatic problem,

which is known as the apparent-surface-charge (ASC) method or the polarizable-continuum

model (PCM) [14, 15, 36].

The full extent of the relationship, and its attendant implications, do not appear to have

been discussed previously, however. These details represent the main contribution of the

present work. The shortcomings of the CFA are examined from the boundary-integral-

equation perspective, which lends new insights into possibilities for improving approximate

electrostatics models. We introduce an approximation that is entirely analogous to the CFA

except that it is most accurate where the CFA is least accurate, and vice versa. This approx-

imation, which is closely related to preconditioning methods for boundary-element method

(BEM) simulations, forms the basis for an alternative approach to estimating free energies,

the boundary-integral-based electrostatics estimation (BIBEE) method. The performance

of the new approach is compared to GBMV [25] and the original Generalized-Born ap-

proach [23] using a surface formalism as in Ghosh et al. and Romanov et al. [30, 31].

High-resolution boundary-element-method (BEM) simulations of the continuum electro-

static model are used as reference calculations [37]. Modern GB methods like GBMV exhibit

excellent agreement with Poisson–Boltzmann calculations that are hundreds or thousands of

times more computationally expensive (for recent comparisons, see [25, 33, 35, 38–44]). To

better highlight how current models may be improved further, we introduce a more discrim-

inating comparison than is usually reported. Instead of comparing total electrostatic free

energies calculated by different methods, we compare the reaction-potential matrices that

they generate. The reaction-potential matrix offers a more detailed picture of the strengths

and weaknesses of modeling assumptions and approximations.

The BIBEE technique exceeds the requirements of many modeling applications, and in its

present form the model is unsuitable for dynamics, because it is not clear whether calculated

forces are continuous functions of position. However, the method’s theoretical foundations

and accuracy suggest that further research in this direction is warranted. The primary

goal of this research is to improve computationally efficient methods for reproducing more

expensive simulations of the Poisson equation. Comparisons of GB calculations to explicit-

solvent simulations are of interest as well [40, 45–48], but are beyond the scope of this
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paper.

The following section presents the basic theoretical and numerical techniques used in this

paper, including linear continuum-electrostatic theory for molecular solvation, boundary-

integral formulations of the linear continuum problem, and the generalized-Born method

for approximating electrostatic interactions. Section 3 describes the relation between the

GB Coulomb-field approximation and integral equations, and illustrates the use of reaction-

potential matrices as a more detailed means to compare methods for estimating electrostatic

energies. Section 4 discusses the significance and implications of the present work. The final

section summarizes the paper and suggests areas for future research.

2. THEORY

We consider the following linear-response continuum electrostatic model (extensive dis-

cussions of this model may be found in many reviews; see, e.g., [3]). The solute and solvent

regions are separated by a boundary Ω, which we take here to be the Richards and Con-

nolly solvent-excluded (molecular) surface defined by rolling a probe sphere around the set

of spheres that define the solute [49, 50]. The dielectric constant in the solute and solvent

regions are denoted by ǫI and ǫII . The solute charge distribution ρ(r) polarizes the solvent,

which in turn creates a reaction potential in the solute. In this paper, ρ(r) is assumed to be

a set of m discrete point charges located at the sphere centers, and then the electrostatic free

energy due to solvent polarization is E = 1
2
qT ϕREAC , where q represents the m-length vector

of point charge values and ϕREAC the vector of reaction potentials at the charge locations.

Determining ϕREAC is the computational challenge in most calculations. We assume that

the Poisson equation governs the potential in the solute, that the Laplace equation holds

in the solvent, and that continuity and regularity conditions at Ω and infinity hold [51, 52].

Assuming linear response, the electrostatic response ϕREAC can be written as

ϕREAC = Mq, (1)

where the symmetric and positive definite m-by-m matrix M is called the reaction-potential

matrix. The following sections present boundary-element and generalized-Born methods for

calculating M .
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2.1. Boundary-Integral Formulations for Molecular Electrostatics

Boundary-element methods for solving this coupled PDE problem first convert it to

boundary-integral-equation form, so that the unknowns are no longer the potential every-

where in space (as in finite-difference [4, 53, 54] or finite-element [55, 56] methods), but

functions defined on the boundary Ω [8, 14–16, 52, 57–64]. In the popular apparent-surface-

charge (ASC), or polarizable continuum model (PCM), formulation [14, 15, 36, 65], the

unknown function is the polarization charge σp(r) that develops at a dielectric interface in

response to a field, and the integral equation can be written

(

1 −
ǫI

ǫII

)

(

∂

∂n(r)

m
∑

i=1

qi

4π||r − ri||
+

∂

∂n(r)

∫

Ω

σp(r
′)

4π||r − r′||
dA′

)

= σp(r), (2)

Given the surface-charge distribution, the reaction potential ϕREAC at a charge location ri

is

ϕREAC(ri) =
1

ǫI

∫

Ω

σp(r
′)

4π||ri − r′||
dA′. (3)

To solve (2) numerically, one may use the boundary-element method (BEM) [57]. For

clarity, we present here only a simple BEM, approximating the boundary Ω with a set

of n planar triangles, the unknown σp(r) on Ω as a weighted combination of piecewise-

constant basis functions defined on the boundary elements, and using accurate discretization

techniques [65–67]. This process generates the finite-dimensional linear system

A2x = A1q, (4)

in which the n-by-m matrix A1 maps the vector of charge values, q, to the discretized form

of the right-hand side of (2), A2 is the n-by-n BEM matrix, and x is the vector of unknown

basis-function weights. The diagonal entries of A2 take the form

A2,ii = αi

(

1

2
−

(

1 −
ǫI

ǫII

)

−1
)

, (5)

where αi is the area of boundary element i; more complete discussions of the discretization

may be found in [65–67].

Using this discretization, the integral operator in (3), which maps the BEM approximation

to σp(r) to the reaction potentials at the charge locations, is transformed into an m-by-n

matrix A3, and thus the m-by-m reaction-potential matrix M can be expressed succinctly as
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a product of three matrices: M = A3A
−1
2 A1. In typical electrostatic free energy calculations,

one solves a single linear system by setting the elements of vector q to the desired values.

The reaction-potential matrix M is usually calculated one column at a time (e.g., for each

atom i one sets qi = 1 and the rest to zero) [68].

2.2. Generalized-Born Models

In the generalized-Born (GB) method [17, 23], Mij , the pairwise energy between two unit

charges i and j is defined by the Still equation

Mij =
1

8π

(

1

ǫII

−
1

ǫI

)

1
√

r2
ij + RiRj exp(−r2

ij/4RiRj)
, (6)

where the parameters Ri and Rj, called effective Born radii, represent the degree of solvent

screening seen by each charge. Each effective Born radius Ri is defined according to

Ri =
1

8π

(

1

ǫII
−

1

ǫI

)

1

Ei
, (7)

where Ei, the self-energy of atom i, denotes the electrostatic free energy of the system when

atom i has unit charge and the rest are neutral. Because the self-energies vary with the

molecular geometry, dynamics or Monte Carlo methods based on GB electrostatics require

very efficient methods for determining the Ei. Calculating effective radii using direct Poisson

simulations produces energies that agree best with Poisson-calculated free energies [41].

However, such an approach clearly offers no reduction in computational cost, and therefore

more inexpensive methods have been developed that calculate only approximate effective

radii [23, 25, 26, 32, 33]. Other generalized-Born-like approaches, such as the pairwise

descreening approximation (PDA) [69, 70], also exist.

A simplifying assumption that plays a central role in most GB methods is called the

Coulomb-field approximation (CFA). In the CFA one assumes that Ri is a function of the

volume integral of the energy density induced in a homogeneous dielectric, where the volume

V is that of the solute volume enclosed by Ω:

R−1
i =

1

(4π)2

∫

V

1

||ri − r′||4
dV ′, (8)

with related expressions typically used for convenient volume integration [71]. Ghosh et al.

applied the divergence theorem to (8) to obtain a surface-integral expression for Ri [31]:

R−1
i =

1

(4π)2

∫

Ω

(r′ − ri)
T n̂(r′)

||r′ − ri||4
dA′. (9)
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Ghosh et al. noted that for a spherical solute with central charge at ri, substituting (7) into

(9) and solving for Ei produces an expression closely related to the ASC boundary-integral

formulation (2). In particular, for this symmetric case, the total value of the boundary

integral in (2) is zero and therefore the surface-charge density at any point r is exactly

equal to the value of the charge-induced normal displacement field at r. The equivalence

between the CFA volume and surface integrals then suggests that the CFA itself rests on the

assumption that at every point on the boundary, the boundary integral evaluates to zero.

It is true that for a spherical boundary with one central charge, the total value of the

surface integral in (2) equals zero, being equal to the jump in the normal displacement field

(1/2) plus the principal value of the integral (−1/2) [51]. However, the crucial point that

we wish to make in this paper is that the cancellation arises not from symmetry per se but

from the fact that the actual distribution of induced charge is uniform everywhere, and will

hold for any closed boundary. As Mongan et al. note, the CFA is exact for the sphere

only if the charge is at the center, and the error between the CFA self-energy and the true

self-energy approaches 100% as the charge approaches the surface [72]. It is the error in the

CFA assumption of a uniform induced density that gives rise to this discrepancy. For highly

non-spherical solutes like biomolecules, a single point charge almost never induces a uniform

normal displacement field, and this fact motivates the examination of the reaction-potential

matrix as a means to assess what determines the accuracy of the CFA.

The relationship between between the CFA surface integral (9) and the ASC integral

equation holds even in the nonsymmetric case. As shown above, the CFA assumes that

at any point r on Ω the local surface charge density σp(r) is exactly equal to the normal

displacement field induced by the solute charge distribution

σp,CFA(r) =

(

1 −
ǫI

ǫII

)

∂

∂n(r)

m
∑

i=1

qi

4π||r − ri||
. (10)

The resulting reaction potential at ri in the solute is then

ϕREAC(ri) =

(

1

ǫI

−
1

ǫII

)
∫

Ω

(

1

4π||ri − r′||

m
∑

j=1

−(r′ − rj)
T n̂(r′)

4π||r′ − rj||3

)

dA′, (11)

and the surface integral is equivalent to (9) if m = 1 and q1 = 1. Note that (11) indicates

that the same computational effort required for SGB methods [31] can give electrostatic

energies directly, without use of the interpolative Still equation.
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3. BOUNDARY-INTEGRAL-BASED ELECTROSTATICS ESTIMATION

We now detail how the uniform-normal-field assumption of the CFA affects the accuracy of

GB/CFA methods, and how alternative approximations, with different regimes of accuracy,

suggest that future electrostatic models may be improved on a physically rigorous basis.

We use as a model problem the neutral tripeptide Ala-Tyr-Phe with acetylated N-

terminal and N-methylamide C-terminal blocking groups. The molecular-mechanics pro-

gram CHARMM [73] (version 34a1) was used to generate the tripeptide, with the geom-

etry used as built. This 56-atom molecule has sufficient complexity to demonstrate that

the analysis applies to nontrivial surfaces, yet has a small enough reaction-potential ma-

trix M to allow methods to be compared by visual inspection. All calculations employed

CHARMM22 [74] radii and charges, a probe radius of 1.4 Å, ǫI = 1, and ǫII = 80. The

program MSMS [75] was used to generate planar boundary-element representations of the

Connolly molecular surface, at a vertex density of 20/Å2; the resulting discretization con-

sisted of 15212 triangular boundary elements. The FFTSVD fast solver was used to solve

the BEM problems and determine the radii used for SGB-based calculations [37, 76]. The

BEM-based reaction-potential matrices were calculated using preconditioned GMRES [77]

with a tolerance of 10−4. Calculations using the GBMV module [25, 34, 35] used grid-based

integration to determine radii and energies. All eigenvalue decompositions

M = V ΛV T , (12)

where V is the matrix whose columns are the eigenvectors of M and Λ is the diagonal matrix

with diagonal entries equal to the corresponding eigenvalues of M , were computed with

MATLAB [78]. Because the eigendecomposition explicitly details the shape and curvature

of the electrostatic free energy, which is a quadratic function of the m charges, it enables more

fine-grained assessments of the strengths and weaknesses of different electrostatic models.

Figure 1(a) is a plot of the magnitudes of the eigenvalues of the BEM-calculated reaction-

potential matrix MBEM ; throughout the text, the subscript on a reaction-potential matrix

denotes the method by which it was calculated. Figure 1(b) contains plots of the eigen-

vectors associated with λ1, λ2, λ20, and λ40; as can be seen in the Figure, the eigenvector

V1 represents a relatively homogeneous charge distribution. This distribution generates an

approximately uniform normal displacement field at the boundary, as can be seen in Fig-

ure 2(a).
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Eigenvectors associated with smaller-magnitude eigenvalues represent charge distribu-

tions that generate progressively less smooth and more rapidly varying normal displacement

fields. Figure 2(b) is a plot of the normal displacement field if the charge distribution q = V2,

illustrating that the eigenvector generates a normal field resembling that of a dipole. In con-

trast, the normal displacement fields generated by the eigenvectors that correspond to much

smaller eigenvalues are highly localized, with the normal displacement very near zero over

most of the surface. This can be seen in Figure 2(c) and (d), which are plots of the induced

normal displacement field when q = V20 and q = V40.

The dependence of the CFA on the assumption of a uniform distribution of induced charge

can be assessed by comparing the eigendecomposition of the SGB/CFA reaction-potential

matrix MCFA to that of the boundary-element reaction-potential matrix MBEM . As shown

in Figure 3(a), the largest-magnitude approximate eigenvalues match very closely those of

the more accurate simulations. Also, from Figure 3(b), which is a plot of the magnitudes of

the entries of

S = V T
BEMVCFA, (13)

which is the projection of VCFA onto VBEM . The magnitude of the matrix entry Sij therefore

represents the degree to which eigenvector j of the approximate reaction-potential matrix is

aligned with that of eigenvector i of MBEM . Perfect alignment between the eigenvectors of

VCFA and VBEM would produce a matrix with zeros on the off-diagonal entries; conversely,

nonzero values off the diagonal indicate imperfect alignment. It can be seen that just as

with the largest-magnitude eigenvalues, the dominant eigenvectors of MCFA and MBEM

agree well, with the quality of approximation deteriorating for smaller eigenvalues.

A different diagonal approximation, which we now detail, produces complementary be-

havior, with excellent agreement for the eigenvalues of smallest magnitude. This alternative

approach is based on diagonal preconditioning of the BEM linear systems. Because BEM

matrices are dense—i.e., they generally have no non-zero entries—explicitly forming a BEM

matrix and factorizing it with Gaussian elimination is impractical for a problem with more

than several thousand unknowns. Alternative techniques, known as Krylov-subspace iter-

ative methods, are therefore typically employed to solve the linear systems approximately.

Methods such as the conjugate gradient method (CG) and GMRES [77] solve, at iteration

j, the BEM matrix equation A2x = A1q approximately, choosing an approximate solution
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x̂j that lies in the subspace

A1q, A2A1q, . . . , A
j−1
2 A1q. (14)

The iteration is terminated when the residual ||A1q − A2x̂
j || is less than a specified tol-

erance ǫTOL.

Noting that the application of the integral operator A2 entails the calculation of the po-

tential (more precisely, its gradient) due to a set of n sources, it is clear that algorithms like

the fast-multipole method [59, 64, 79, 80] can be used to calculate the needed matrix–vector

products in O(n) time rather than the O(n2) time normally required for dense matrix–vector

multiplication. To further reduce computational effort, preconditioning is often employed

to reduce the total number of matrix–vector products required to reach the specified toler-

ance. Preconditioned Krylov iterative methods solve the linear system PA2x = Pb, where

the preconditioner matrix P is designed so that it may be applied rapidly and so that the

eigenvalues of PA2 are more tightly clustered than those of A2 [81]. The diagonal matrix

entries of discretized electrostatic integral operators are typically significantly larger in mag-

nitude than the off-diagonal entries, and therefore diagonal preconditioners with Pii = A−1
2,ii

are often very effective [61, 65, 82, 83].

Because P is a reasonable approximation to A−1
2 , we define the approximate reaction-

potential matrix

MB−0 = A3PA1, (15)

to be the 0-step BIBEE method, because zero applications of the operator A2 are required.

Figure 4(a) and 4(b) allow a comparison between MBEM and MB−0.

The 0-step BIBEE reaction-potential matrix has eigenvalues that closely match those of

MBEM for the smallest-magnitude eigenvalues, and are increasingly inaccurate for larger

eigenvalues. This phenomenon arises because the diagonal entries of the BEM matrix in-

clude the discontinuity of 1
2

in the normal displacement field but neglect the field due to

the surface charge density elsewhere on the surface. Thus, both the CFA and 0-step BIBEE

methods include first-order corrections to the effects of the charge distribution on the rest

of the boundary. Whereas the CFA assumes a uniform distribution and thus a contribution

of −1
2

from the remainder of the boundary, the 0-step BIBEE method assumes zero con-

tribution. The methods’ complementary performance in different regions of the spectrum

illustrates that the quality of these corrections depends on the details of the charge distribu-
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tion. One may also design a preconditioner that uses the CFA normalization instead of the

BEM normalization. The resulting reaction-potential matrix M̂B−0/CFA compares similarly

to MBEM as does MCFA, as can be seen by comparing Figure 3(a) and Figure 4(a); the

eigenvalues of largest magnitude are matched well, with the approximation decreasing in

quality for smaller eigenvalues. The eigenvectors of MB−0 and MB−0/CFA are almost iden-

tical (data not shown), which suggests that the misalignment of the eigenvectors of MCFA

relative to those of MBEM may arise due to the GB interpolation.

The 0-step calculations may be refined iteratively, and will eventually converge to the full

BEM solution. Writing

A2 = D − E, (16)

where D = P−1 and E has zeros on the diagonal and Eij = −A2,ij otherwise. The precon-

ditioned linear system is then

(I − PE)x = PA1q, (17)

and refined approximations may be found using the k-term truncated Neumann series ap-

proximations to (I − PE)−1:

x ≈ (I + PE + (PE)2 + . . . + (PE)k)PA1q. (18)

The kth iterate of the Krylov-subspace iterative method GMRES [77] uses the same basis

vectors as the k − 1-term truncated Neumann-series expansion, as can be seen by compar-

ing (14) and (18), but weights the basis vectors differently [57].

We now describe a physical interpretation for the refinement process, neglecting pre-

conditioning for clarity. At any point r on the surface, the dominant contribution to the

normal electric-displacement field arises from the surface-charge density σp at r. Thus, in

the first-order approximation one neglects completely the field induced by σp elsewhere on

the boundary. The second- and higher-order terms may be accounted for, approximately,

by successively calculating the normal displacement field induced at r by the off-diagonal

entries given the approximate σp already obtained. The extra surface charge induced at r

is then determined by applying the inverse of the diagonal component of the total integral

operator. This type of refinement is therefore related to what is known the integral equation

literature as the method of iteration [57].

The 1- and 2-step BIBEE methods are obtained by using one and two GMRES iterations

to obtain refined estimates of the surface charge distribution, and the corresponding reaction-
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potential matrices MB−1 and MB−2. Their eigenvalues and eigenvectors are compared to

those of MBEM in Figures 5 and 6. The failure of the 1-step method to achieve even

comparable results to the 0-step method may be due to the means by which Krylov-subspace

iterative methods find approximate solutions. Neglecting preconditioning, the ith iteration

of GMRES chooses a polynomial of degree i − 1 in A2, p(A2), that minimizes the norm of

the residual ||p(A2)A1q|| [81]. Whereas 0-step BIBEE does not involve a polynomial at all,

and the 2-step method can use complex conjugate roots, the 1-step method must choose

a single real root. Although the residual must decrease as basis vectors are added to the

subspace from which the approximate solution is found, the actual energetics associated with

the approximate surface-charge distribution may not improve if the actual characteristic

polynomial of A2 is poorly approximated. This seems plausible because the electric-field

kernel is antisymmetric and therefore has complex eigenvalues, but further research is needed

to establish this connection more definitively.

The GBMV module of CHARMM was employed to compare the BIBEE methods to

modern GB methods, which employ empirical correction terms beyond the CFA. Figure 7(a)

and (b) are plots of the MGBMV eigenvalues and the projections of its eigenvectors onto those

of MBEM . It is clear that the empirical correction terms in GBMV improve the eigenvalue

estimates relative to those of the purely CFA-based MCFA.

4. DISCUSSION

The alignment of the eigenvectors between approximate methods and the more expensive

reference calculation has physical meaning. Assuming that the approximate eigenvalues ex-

actly equal those of the reference calculation, misalignment of the eigenvectors corresponds

to a rotation of the energy landscape in charge space, relative to the reference landscape.

Consequently, component analysis based on an electrostatics method known to produce inac-

curate eigenvectors may generate misleading or incorrect results. Second, although GBMV

produces clearly superior eigenvalue approximations compared to SGB/CFA, the similarity

of the projections of VGBMV and VCFA onto VBEM suggests that the SGB/CFA and GBMV

models have at least one weakness in common. It is possible that these weaknesses result

from the interpolation associated with the Still equation. It may be that the misalignment

of eigenvectors despite the presence of good eigenvalue estimates is responsible for the seem-
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ingly conflicting results found in the literature; some authors note that GB and PB methods

calculate very similar energies ([22, 39, 40]) and others report that GB methods fail to ac-

curately reproduce certain energy landscapes [42, 84–86]. Because the simple 0-step BIBEE

calculation gives rise to a reaction-potential matrix with eigenvectors that are much better

aligned with the reference calculation, and are, surprisingly, better aligned than those from

GBMV, investigations that employ component analysis may benefit from BIBEE.

Section 3 demonstrated that the 0-step method and the SGB/CFA method both calculate

m surface integrals, with the methods employing only slightly different integrands. First, as

discussed, the methods scale the induced normal displacement field by different constants.

Second, the SGB/CFA method places a unit charge on each atom in succession, using the

resulting surface integral to determine the corresponding effective Born radius, and then

these radii are used in the Still equation. In contrast, the 0-step BIBEE method sets all

charges to the appropriate values, with the resulting approximation to the surface charge

density used to calculate the reaction potentials at the m charge locations. Although m

surface integrations are required for a naive implementation, fast-multipole methods can

accelerate the calculation so that these integrations are performed simultaneously. Thus,

as mentioned in Section 2, surface-integration GB methods already implemented can be

modified to eliminate the need for the Still equation, if energies rather than forces are to be

calculated; the treatment of dynamics is more complex and not yet resolved.

The higher-order terms associated with the series expansion for the iterative refine-

ments may be related to the empirical corrections used in modern generalized-Born meth-

ods [25, 26, 30, 32, 33]. It is intriguing that GBMV, which is one of the most recently

developed GB methods, exhibits improved correspondence to the BEM calculations near

the middle of the spectrum. It is possible that the GBMV corrections are especially well-

suited for correcting the errors in the CFA given charge distributions such as those found

in the corresponding eigenvectors. Finally, in most calculations with nonpolarizable force

fields, the atomic charges remain constant, and this invariance has not yet to be exploited

computationally. A simple method might be to use multi-step BIBEE infrequently to accu-

rately estimate the influence of the remainder of the surface charge, with updates based on

0-step BIBEE applied in between more accurate BIBEE calculations. This type of approach

would enable accurate inclusion of nonlocal solvent-polarization forces without sacrificing

computational efficiency. Not only dynamics, but also Monte Carlo methods [18, 87, 88]
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and protein engineering calculations [89, 90] could benefit from such a strategy.

5. SUMMARY

This paper has used a boundary-integral-equation framework to analyze the Coulomb-

field approximation (CFA) that plays a major role in most generalized-Born (GB) models

for molecular electrostatics in aqueous environments. It has been shown that the CFA im-

plicitly assumes that the solute charge distribution generates a uniform normal displacement

field on the boundary. A simple model problem illustrates that this assumption holds for

some types of charge distributions but not all, and that some charge distributions are poorly

treated with the CFA. A slightly different technique, BIBEE, has also been presented in the

boundary-integral framework, and shown to exhibit a complementary relationship between

the charge distribution and resulting accuracy. The BIBEE method also allows straightfor-

ward refinement towards a rigorous solution to the electrostatic problem, without recourse

to empirical corrections. The reaction-potential matrix has been used as a means to compare

electrostatics simulation methods such as GB and BIBEE. In this paper the eigendecom-

position has been used exclusively, but alternative projection schemes may be useful for

component analysis and for investigating the relationships between problem geometry, elec-

trostatic model, and simulation accuracy. To study these relationships and the previously

reported shortcomings of the GB approach[13, 38, 42, 84–86, 91, 92], future studies will

compare the reaction-potential matrices generated by modern GB techniques and standard

approaches to simulating electrostatics.

Clearly, many issues remain to be addressed before BIBEE can be a viable approach for

general use. One obvious advantage of existing GB and GB-like methods is that they may

be used for dynamics. Refining BIBEE to enable its use in dynamics is therefore a primary

goal of current research. Fast-multipole methods [59, 79], which have a long history in

biophysical simulations [93–96] offer an attractive route, although significant complications

may arise if current approximations to the solute–solvent interface (see, for instance, [34])

are not amenable to rapid, and easily updated, surface discretization. However, Totrov

and Abagyan have already demonstrated a simplified boundary-element method used in

Monte Carlo simulations of peptide folding, using their fast contour-buildup algorithm to

discretize the surface [21, 97]. The BIBEE method follows their approach in retaining a
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high-resolution discretization of the solute–solvent interface and only later approximating

solution of the BEM problem itself; it has been noted that accurate representation of the

dielectric boundary is important for obtaining high-quality electrostatic energies [98].

In this paper, a diagonal preconditioner has been used to elucidate the connection between

boundary-integral equation methods for electrostatics and the generalized-Born method.

Such a preconditioner allows the development of a simple BIBEE method that requires a

small number of matrix–vector products. Many other preconditioners have been described

in the boundary-element method literature [83], including the H-matrices introduced by

Hackbusch et al. [99–101] and overlap preconditioners [102]. Their use may permit superior

approximations to the calculations presented here. Furthermore, alternative second-kind

integral-equation formulations of the electrostatic problem, like that of Juffer et al. [52],

allow treatment of problems in which the linearized Poisson–Boltzmann equation is used

to model the potential in the solvent region. An analogous approach to BIBEE can be

employed for that formulation as well, which would give rise a rigorous approach to GB-like

electrostatics in ionic solutions [103, 104].

It is also of interest to investigate whether the boundary-integral interpretation may be

used to analyze membrane GB models [29, 105, 106], and whether it is related to recent

work by Egwolf and Tavan [107, 108]. It has been noted that some of the deficiencies of

purely implicit-solvent models are endemic and that improved methods are warranted [109].

We hope that the present analysis may eventually be useful for the refinement of hybrid

models that use explicit solvation-shell waters and implicit water elsewhere [88, 110–114].
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FIG. 1: The eigendecomposition of the tripeptide reaction-potential matrix calculated using

boundary-element methods. (a) The eigenvalues of MBEM . (b) Selected eigenvectors of MBEM ,

plotted as a function of atom number.
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(c) (d)

FIG. 2: The normal component of the electric displacement field at the boundary of a tripeptide

given different charge distributions q. (a) q = V1. (b) q = V2. (c) q = V20. (d)q = V40.
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FIG. 3: Comparison of the eigenvectors and eigenvalues of the reaction-potential matrices calcu-

lated by BEM and surface-integration methods for calculating effective Born radii using only the

Coulomb-field approximation (equivalent to the surface generalized-Born method of Ghosh et al.

but without the empirical corrections used in that work) [31].
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FIG. 4: Comparison of the eigenvectors and eigenvalues of the reaction-potential matrices calcu-

lated by BEM and the 0-step BIBEE method.

33



0 10 20 30 40 50 60
10

−1

10
0

10
1

10
2

10
3

10
4

Eigenvalue Index

E
ig

en
va

lu
e 

M
ag

ni
tu

de

 

 

BEM
1−step BIBEE

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

55

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) (b)

FIG. 5: Comparison of the eigenvectors and eigenvalues of the reaction-potential matrices calcu-

lated by BEM and the 1-step BIBEE method.
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FIG. 6: Comparison of the eigenvectors and eigenvalues of the reaction-potential matrices calcu-

lated by BEM and the 2-step BIBEE method.
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FIG. 7: Comparison of the eigenvectors and eigenvalues of the reaction-potential matrices calcu-

lated by BEM and GBMV [25].
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