Table of contents for Modern sensors handbook / edited by Pavel Ripka, Alois Tipek.

Bibliographic record and links to related information available from the Library of Congress catalog.

Note: Contents data are machine generated based on pre-publication provided by the publisher. Contents may have variations from the printed book or be incomplete or contain other coding.


Counter
Table of contents
Chapter 1	1
Pressure Sensors	1
1.1. Introduction	1
1.2. Pressure	2
1.2.1. Pressure as a physical quantity	2
1.2.1.1. Static pressure	2
1.2.1.2. Units	3
1.2.2. Absolute, relative and differential sensors	3
1.2.3. Fluid physical properties	5
1.2.3.1. Liquids	5
1.2.3.2. Gases	5
1.2.3.3. Sensor pneumatic connection influence	6
1.3. Pressure ranges	6
1.3.1. Vacuum and ultra-vacuum	6
Various vacuum gauges	7
1.3.2. Middle range pressure	8
1.3.3. High pressure	10
1.4. Main physical principles	10
1.4.1. The sensing device	11
1.4.2. Sensors with elastic element	13
1.4.2.1. Conversion by resistance variation	13
1.4.2.1.1. Potentiometer	13
1.4.2.1.2. Metal strain gauges	15
1.4.2.1.3. Gauges with deposited film	16
1.4.2.1.4. Gauges with diffused piezoresistors	17
1.4.2.1.5. Taut wire gauges	18
1.4.2.1.6. Industrial examples	18
1.4.2.2. Conversion by capacitance variation	21
1.4.2.2.1. Standard capacitive pressure sensors	21
1.4.2.2.2. Capacitance thin - film sensors	23
1.4.2.2.3. Industrial example	24
Model PTA 427 analog barometer from VAISALA	24
MODEL P165 from KAVLICO	25
1.4.2.3. Conversion by inductance variation	26
1.4.2.3.1. Industrial example	26
1.4.2.4. Conversion by piezoelectric effect	27
1.4.2.4.1. Industrial example	29
1.4.2.5. Conversion by oscillators	30
1.4.2.5.1. Oscillator with vibrating blade or cylinder	30
1.4.2.5.2. quartz oscillator	32
1.4.2.5.3. SAW pressure sensors	35
1.4.5.2.4. Industrial example	37
Model RPT series and sensing element in silicon document DRUCK	37
Pressure sensor with vibrating resonant beam principle P90 from THALES	38
1.4.2.6. Optical conversion	38
1.4.2.6.1. Industrial example	39
MODEL PSI Glow from OPTRAND	39
1.4.2.7. Servo controlled sensors with balance of force	40
Principle	40
1.4.3. Vacuum sensors	41
1.4.3.1 Ionization pressure sensors	41
1.4.3.2. Heating effect sensors	42
1.5. Calibration: pressure standards	43
1.5.1. Low pressure standard	43
1.5.2. High pressure standard	43
1.6. Choosing a pressure sensor	45
1.7. References	45
1.8. Other pressure sensors manufacturers	46
1.9 Bibliography	46
Chapter 2	49
Optical Sensors	49
Introduction	49
2.1. Optical waveguides and fibers	49
2.2. Light sources and detectors	51
2.2.1. Light sources	51
2.2.1.1. Semiconductor sources of light	51
Light Emitting Diode Structure	52
2.2.1.2. Lazer diodes	53
2.2.2. Light detectors	54
2.2.2.1. Photoresistors	54
2.2.2.2. Photodiodes	54
Photoconductive mode of operation	55
Photovoltaic mode of operation	55
PIN photodiode	57
2.2.2.3. Phototransistor	57
2.2.2.4. Position Sensitive photo-Detectors (PSD)	57
2.2.2.5. Charged compted device image sensors	59
One-dimensional CCD image sensors	60
Two-dimensional CCD image sensors (2D-CCD sensors)	61
2.3. Sensors of position and movement	62
2.3.1. Position sensors using the principle of triangulation	62
2.3.2. Incremental sensors of position or displacement	63
2.3.2.1. General principles	63
2.3.2.2. Linear incremental encoder	63
2.3.2.3. Optical sensors of displacement with absolute encoding disk	65
2.3.2.4. Sensors with pseudorandom coding	65
2.3.3. Photoelectric switches	66
2.3.3.1. Through beam PES	66
2.3.3.2. Diffuse reflective PES	67
2.3.3.3. Retro-reflective PES	68
2.3.3.4. PES for detection of colors or color marks	70
2.4. Optical sensors of dimensions	71
2.4.1. Dimensional gauge with scanned beam	71
Dimension measurement by means of the light sheet	73
Dimension measurement with digitalized video signal	73
2.5. Optical sensors of pressure and force	74
2.5.1. Pressure sensor using the optical resonator	74
2.6. Optical fiber sensors	75
2.6.1. Introduction and classification of sensors with optical fibers	75
2.6.2. Optical fiber sensors with amplitude modulation	75
Sensors with deformation of fiber	75
Optical liquid level detector	76
Reflective optical fiber sensors of displacement	76
2.6.2. Sensor with wavelength modulation	77
Fiber Bragg Grating sensors (FBG)	77
2.6.4. Optical sensors with phase modulation	78
Interferometers with optical fibers	78
2.6.5. Perspective of optical fiber sensors	79
2.7. Optical chemical sensors	79
2.7.1. Introduction	79
2.7.2. Chemical sensors based on the absorbency measurement	79
2.7.3. Turbidity sensors	80
2.8. Bibliography	82
2.8.1. Books	82
Optics-physical principles	82
Light sources and photodetectors	82
Optical sensors - monographs	82
Books including topics related to "optical sensors"	82
Magazines publishing articles related to Optical sensors	83
2.8.2. Physical background - websites	83
Chapter 3	85
3.1. Introduction	85
3.1.1. Volume flow and mass flow	85
3.1.2. Influences on the flow	87
3.1.3. Bernoulli equation	88
3.2. Flow measurements based on the principle of difference in pressure	90
3.2.1. The Pitot and Prandtl tube	91
3.2.1.1. Principle	91
3.2.1.2. Practical set-up	93
3.2.1.4. Characteristics	95
3.2.2. The orifice plate	95
3.2.2.1. Principle	95
Calculating the flow	96
3.2.2.2. Practical installation	97
3.2.3. The flow nozzle	101
3.2.4. The Venturi tube	101
3.2.5. The Dall tube	102
3.2.6. General guidelines for a correct reading	103
3.3. Flow measurements based on variable passage	105
3.3.1. The float flow meter (rotameter)	105
3.3.1.1. Principle	105
3.3.1.2. Characteristics	106
3.3.2. Target flow meter	107
3.3.2.1. Principle	107
3.3.2.2. Characteristics	108
3.4. Turbine flow meter	108
3.4.1. Principle	108
3.4.2. Practical installation	110
3.4.3. Characteristics	111
3.5. The mechanical flow meter (positive displacement)	112
3.5.1. Principle	112
The oval cogwheel meter	113
The annular piston meter	113
3.5.2. Characteristics	114
3.6. Magnetic flow meter	115
3.6.1. Principle	115
3.6.2. Construction of the measuring instrument	116
3.6.3. Practical installation	118
3.6.5. Characteristics	120
3.7. The vortex flow meter	121
3.7.1. Principle	121
3.7.2. Construction of the vortex flow meter	122
3.7.3. Practical installation	125
3.7.4. Characteristics	126
Specific applications	127
3.8. Ultrasonic flow meter	127
3.8.1. Principle	127
Measuring the flow following the execution time principle	128
Measurements based on the Doppler effect	128
3.8.2. Practical installation	130
3.8.3. Characteristics	130
3.9. Coriolis mass-flow meters	131
3.9.1. Principle	131
3.9.2. Applications	133
3.9.3. Practical installation	133
3.9.4. Characteristics	133
3.10. Flow measurements for solid substances	134
3.10.1. Flow measurement of solids by means of an impact plate	135
Characteristics	136
3.10.2. Flow measurement of solids based on the weighing method	137
3.10.3. Capacitive flow measurement of solid substances	137
Characteristics	138
3.10.4. Detection of solid substances using microwaves	138
Characteristics	139
3.11. Flow measurement for open channels with weirs	139
This type of flow meter is based on the decline in height.	139
3.12. Choice and comparison of flow measurements	141
3.13. Bibliography	141
1. John, H.: Low Reynolds Number Hydrodynamics, Martinus Nijhoff, 1983.	141
2. Wolfgang, R., Bergeles, G.: Engineering Turbulence Modelling and Experiments 3, Elsevier Science, 
1996.	141
3. Borer J.: Instrumentation and Control for the Process Industries, Elsevier Applied Science Publishers, 
1985.	141
4. Doeblin Ernest, O.: Measurement systems: Application and Design, McGraw-Hill International Book 
Company, 1991.	141
5. Endress + Hauser technical documentation.	141
6. Hoffman, K. Eine Einfuhrung in die Technik des Messens mit Dehnungsmebstreifen, HSM, Darmstadt, 
1987.	141
7. ISA: Process Instrumentation Terminology: Apendix A, ISA, 1979.	141
8. Johnson Curtis, D.: Process control instrumentation technology, Wiley and Sons, New York, 2nd ed., 
1982.	141
9. WIKA: Handbook of Pressure Measurement, with Resilient Elements, Gottlob Volkhardtsche Druckerei, 
Anorback, 1981.	141
3.14 Website references	142
Turbines	142
Mechanical	142
Electro-magnetic	142
Ultrasonic	142
Mass-flow (liquids)	142
Mass-flow (gases)	142
Weirs	142
Reynolds number	142
Bernouilli's equation	143
Vortex	143
Pitot tube	143
Venturi tube	143
Chapter 4	145
Intelligent Sensors and Sensor Networks	145
4.1. Introduction	145
4.2. Intelligent sensors	146
4.2.1. Sensors and transducers	147
4.2.1.1. Variable voltage or current source	147
4.2.1.2. Variable resistance	147
4.2.1.3. Variable impedance or mutual impedance	148
4.2.1.4. Charge generator	148
4.2.2. Signal conditioning (SC)	148
4.2.2.1. Amplification and signal conversion	149
4.2.2.2. Sensor insulation	149
4.2.2.3. Filtration	149
4.2.2.4. Detection	149
4.2.2.5. Correction of non-linearity	149
4.2.2.6. Correction of influence of disturbing quantities	150
4.2.2.7. Sensor excitation	150
4.2.3. A/D Conversion	150
4.2.3.1. SAR converters	150
4.2.3.2. Sigma-delta modulator converters	151
4.2.3.3. Flash (pipelined flash) converters	151
4.2.4. Data processing	151
4.2.5. Human Machine Interface	152
4.2.6. Communication interface	152
4.2.6.1. IEEE 1451	152
4.2.7. Industrial examples	153
4.2.7.1. Micronas HAL805 Hall sensor	153
4.2.7.2. Yokogawa DPharp family of pressure sensors	154
4.3. Sensor networks and interfaces	155
4.3.1. Centralized and distributed industrial systems	156
4.3.2. Hierarchical structure of distributed communication	158
4.3.3. Data communication basics	159
4.3.3.1. Open Systems Interconnection (OSI) model	159
4.3.3.2. Physical layer	161
4.3.3.2.1. Baseband and RF band	161
4.3.3.2.2. Channel capacity sharing	162
4.3.3.2.3. Data flow direction	162
4.3.3.2.4. Physical topologies	163
4.3.3.3. Data link layer	164
4.3.3.3.1. MAC control methods	164
4.3.3.3.2. Data link layer addressing	166
4.3.3.3.3. Error control mechanisms	166
4.3.3.4. Network layer	167
4.3.3.5. Transport layer	168
4.3.3.6. Session layer	168
4.3.3.7. Presentation layer	168
4.3.3.8. Application layer	168
4.3.3.9. Data distribution models	169
4.3.4. Simple sensor interfaces	170
4.3.4.1. Analog interfaces	170
4.3.4.2. Digital interfaces	171
4.3.4.2.1. EIA-232	172
4.3.4.2.2. EIA-423	173
4.3.4.2.3. EIA-422	173
4.3.4.2.4. EIA-485	173
4.3.4.2.5. Digital current loop	174
4.3.5. Sensor networks	175
4.3.5.1. AS-Interface	175
4.3.5.1.1. AS-I physical layer protocols	175
4.3.5.1.2. AS-I data link layer protocols	176
4.3.5.1.3. AS-I application layer protocols	177
4.3.5.1.4. AS-I summary	177
4.3.5.2. CAN (Controller Area Network) and CANopen	177
4.3.5.2.1. CAN physical layer protocols	177
4.3.5.2.2. CAN data link layer protocols	178
4.3.5.2.3. CAN application layer protocols	179
4.3.5.2.4. CAN and CANopen Summary	183
4.3.5.3. HART (Highway Addressable Remote Transducer)	184
4.3.5.3.1. HART physical layer protocols	184
4.3.5.3.2. HART data link layer protocols	184
4.3.5.3.3. HART application layer protocols	185
4.3.5.3.4. HART summary	185
4.3.5.4. Foundation Fieldbus (FF)	185
4.3.5.4.1. FF physical layer protocols	186
4.3.5.4.2. FF data link layer protocols	186
4.3.5.4.3. FF application and user layer protocols	187
4.3.5.4.4. FF summary	188
4.3.5.5. Interbus	188
4.3.5.5.1. Interbus physical layer protocols	188
4.3.5.5.2. Interbus data link layer protocols	189
4.3.5.5.3. Interbus application layer protocols	189
4.3.5.5.4. Interbus summary	190
4.3.5.6. M-Bus	190
4.3.5.6.1. M-bus physical layer protocols	190
4.3.5.6.2. M-bus data link layer protocols	190
4.3.5.6.3. M-bus network layer protocols	191
4.3.5.6.4. M-bus application layer protocols	191
4.3.5.6.5. M-Bus summary	192
4.3.5.7. Profibus	192
4.3.5.7.1. Profibus physical layer protocols	193
4.3.5.7.2. Profibus data link layer protocols	193
4.3.5.7.3. Profibus application and user layer protocols	193
4.3.5.7.4. Profibus summary	194
4.3.5.8. Other standards	194
4.3.6. Wireless sensor networks	194
4.3.6.1. IEEE 802.15.4	194
4.3.6.2. ZigBee	195
4.3.6.3. IEEE 802.15.4 and ZigBee summary	196
4.3.6.4. Other wireless standards	196
Chapter 5	197
Accelerometers and Inclinometers	197
5.1. Introduction	197
Absolute accelerometer	197
Relative accelerometer	197
5.2. Acceleration	198
5.2.1. Physical quantity	198
5.2.2. Application to velocity and position measurements	202
Gimbaled navigation systems	202
Strapdown navigational system	202
5.2.3. Application to position measurements	203
5.2.4. The inclinometers	204
5.3. Application ranges	205
5.3.1. Static and low-frequency acceleration	205
5.3.2. Vibrations	206
5.3.3. Shocks	207
5.3.4. Inclination	208
5.4. Main models of accelerometers	209
5.4.1. Piezoelectric accelerometers	210
Natural crystals	211
Ferroelectric crystals	211
Piezoelectric coefficients	211
Maximum temperature	211
Resonance frequency	211
5.4.1.1. General principle	212
5.4.1.2. Accelerometers with compression	212
5.4.1.3. Shear-mode accelerometers	213
5.4.1.4. Features and limits of these accelerometers	213
Influence of the environment	214
1. High and low temperatures	214
2. Thermal fluctuations	214
3. Moisture	214
4. Noise due to connection cables	214
5.4.2. Piezoresistive accelerometers	217
5.4.2.1. General principle	217
5.4.2.2. Silicon semiconductor strain gauges	217
Assembly of the gauges	218
Design examples (Figure 5.18)	220
5.4.2.3. Features and limits of these accelerometers	221
2. Bandwidth	221
1. Influence of temperature	222
2. Technological limitations: connecting cable	222
3. Technological limitations: shocks and vibrations	222
5.4.3. Accelerometers with resonators	223
5.4.3.1. Principle	223
5.4.3.2. Features and limits of these accelerometers	224
5.4.4. Capacitive accelerometers	225
5.4.4.1. Principle	225
EXAMPLES:	226
1. Pendular capacitive detection accelerometer	226
2. Ultra-sensitive Accelerometers	227
5.4.4.2. Features and limits of these accelerometers	228
5.4.5. Potentiometric accelerometers	228
5.4.5.1. Principle	228
5.4.5.2. Features and limits of these Accelerometers	229
5.4.6. Optical detection accelerometers	229
5.4.6.1. Principle	229
5.4.6.2. Features and limits of these accelerometers	230
5.4.7. Magnetic detection Accelerometers	231
5.4.7.1. Principle	231
5.4.7.2. Features and limits of these accelerometers	231
5.4.8. Servo accelerometers with controlled displacement	232
5.4.8.1. Principle	232
5.4.8.2. Servo accelerometers with balance of torque	233
5.4.8.3. Servo accelerometers with balance of force	234
5.4.8.4. Features and limits of these accelerometers	235
5.5. The signal processing associated with accelerometers	235
5.6 Manufacturing process	236
5.6.1. The monolithic processes	236
1. CMOS (Complementary MOS) - BICMOS standard (Bipolar Technology and MOS)	236
2. CMOS - BICMOS standard + back etching	237
3. Above IC	237
4. Specific process	237
5.6.2. Hybrid process	238
5.6.3. Packaging	238
5.7 The calibrations:	239
5.7.1. Inclinometers and accelerometers with range lower than 1 g	239
5.7.2. Acceleration range higher than 1 g	239
The centrifuge	240
The vibrating pot	240
5.8. Examples of accelerometers and inclinometers	240
QAT160/T185 Q-Flex(r) Accelerometers - HONEYWELL	242
 	245
Series 3701 Single Axis Capacitive Accelerometers	245
5.9. List of Manufacturers of Accelerometers	246
5.10. References	247
5.11. Bibliography	247
3. Campbell S.A. and Lewerenz H.J.: Semiconductor Micromachining Vol. 2: Techniques and Industrial 
Applications, Lavoisier, 1998.	248
4. Chauffleur X.: Modelisation par la Methode des Elements finis du Comportement Thermomecanique de 
Capteurs de Pression Capacitifs et Piezoresistifs en Silicium, Thesis, 9th January 1998.	248
5. Esashi M.: Sensors: a comprehensive Survey Pressure Sensors, ed. by Bau H.H., de Rooij N.F., Kloeck 
B., Vol. 7, pp 331-358, 1994.	248
6. Mathieu J.P., Kastler A., Fleury P.: Dictionnaire de physique, Masson & Eyrolles, 1998.	248
7. Middelhoek S.: Celebration of the tenth transducers conference: The past, present and future of 
transducer research and development, Sensors and Actuators, A: Physical 2000, 82:1-3:2-23.	248
8. MST Benchmarking Mission to the USA - 13-25 November 1979. Proceedings: Actes de la 1ere journee 
Nanotechnlogie et Industrie - 13th April 1999	248
10. Jornod R.A., Bergqvist J. and Leuthold H.: Precision Accelerometers with g Resolution, Sensors and 
Actuators, 1990, pp. 297-302.	249
11. Second France-Japan Workshop, ATRIA Hotel Toulouse, 8-10 November 1998, Book of Abstracts.
	249
12. Van Drieenhuizen B.P., Maluf N.I., Opris I.E. and Kovacs G.T.A.: Force-Balanced Accelerometer with 
mG Resolution, Fabricated using Silicon Fusion Bonding and Deep Reactive Ion Etching, International 
Conference on Solid-State, Sensors and Actuators, pp.1229-30, 1997.	249
13. Wiley-VCH Verlag GmbH: Sensors A Comprehensive Survey, Vol. 6, Optical Sensors, Lavoisier, 
1996.	249
Chapter 6	249
6.1. Introduction	249
6.2. What is involved in developing a sensor?	253
6.2.1. Molecular recognition	254
6.2.2. Immobilization of host molecules	256
6.2.3. Transduction of signal	257
6.3. Electrochemical sensors	257
6.3.1. Amperometric and voltammetric sensors	258
6.3.1.1. Cyclic voltammetry	260
6.3.1.2. Hydrodynamic amperometry	261
6.3.2. Potentiometric sensors	262
6.3.2.1. Ion-selective electrodes	263
6.3.2.2. Coated-wire electrodes and polymer-membrane electrodes	264
6.3.2.3. Potentiometric sensor arrays	266
6.3.3. Resistance, conductance and impedance sensors	267
6.4. Optical sensors	269
6.4.1. Methods of detection	269
6.4.1.2. Evanescent wave sensors	270
Figure 6.12. Single mode of guided light in an optical fiber	271
 	271
6.4.2. Reagent-mediated sensors	272
Figure 6.14. Schematic diagram of a membrane-based optrode system	273
6.5. Acoustic (mass) sensors	273
6.5.1. Quartz crystal microbalance sensors	274
6.5.2. Sensor arrays	276
6.6. Biosensors	278
6.6.1. Affinity biosensors	279
6.6.1.1. Electrochemical transduction	279
6.6.1.2. Piezoelectric transduction	280
6.6.1.3. SPR biosensors	282
6.6.1.4. Proteomics	287
6.6.1.5. IAsys biosensor	287
6.6.1.6. Miniature TI-SPR sensor	288
6.6.2. Catalytic biosensors	289
6.6.2.1. Electrochemical transduction	290
6.6.2.2. Calorimetric transduction	294
6.7. Future trends	294
6.7.1. Microanalytical instruments as sensors	295
6.7.1.1. Design considerations	296
6.7.1.2. On-chip chromatographic and electrophoretic separations	298
6.7.2. Autonomous sensing devices	302
6.7.3. Sub-micron dimensioned sensors	302
6.7.3.1. Microamperometric sensors	302
6.7.3.2. Microelectrodes in biological systems	303
6.8. Conclusions	305
6.9. References	306
Chapter 7	309
Level, Position and Distance	309
7.1. Introduction	309
7.1.1. Classification of LPD sensors	309
7.2. Resistive LPD sensors	310
7.2.1. Potentiometer	310
7.2.2. Angular position measurement	311
7.2.3. Draw wire sensors	312
7.2.4. Inclination detectors	312
7.2.5. Application of potentiometers	313
7.3. Inductive LPD sensors	313
7.3.1. Linear variable differential transformers	314
7.3.2. Inductosyns	315
7.3.3. Resolvers	316
7.3.4. Selsyn	317
7.3.5. Inductive sensors of angular velocity	317
7.3.6. Eddy current distance sensors	318
7.4. Magnetic LPD sensors	320
7.4.1. Magnetic field sensors	320
Anisotropic magnetoresistive (AMR) sensors	320
7.4.2. Reed switches	320
7.4.3. Hall sensors	321
7.4.4. Semiconductor magnetoresistors	322
7.4.5. Wiegand wire	322
7.4.6. Magnetostrictive sensor	323
7.5. Capacitive LPD sensors	323
7.5.1. Introduction	323
7.5.2. Signal conditioning circuits for capacitive sensors	324
7.5.3. Using capacitive sensors	325
7.6. Optical LPD sensors	327
7.6.1. Introduction	327
7.6.2. Photo-electric switches (PES)	327
7.6.3. LPD Sensors based on triangulation	331
7.6.4. Optical encoders	332
7.6.4.1. Incremental sensors	333
7.6.4.2. Absolute encoders	333
7.6.4.3. Gray Code	334
7.6.5. Interferometry	334
7.6.6. Optical LPD sensors based on travel time (time-of-fly) measurement	335
Typical parameters	336
Measurement range: up to km range.	336
Resolution: 1mm	336
7.6.7. Image-based measurement-machine vision, videometry	336
7. 6. 7.1. Introduction	336
7.6.7.2. Light sheet method	337
7.7. Ultrasonic sensors	338
7.7.1. Introduction	338
7.7.2. Travel time principle	338
7.7.3. Doppler effect	338
7.8. Microwave distance sensors (radar)	339
7.8.1. Introduction	339
7.8.2. Microwave sensors based on FMCW	340
7.8.3. Properties of microwave sensors	341
7.9 Level measurement	341
7.9.1. Introduction	341
7.9.2. Detection limits	342
7.9.2.1. Capacitive level switch	342
7.9.2.2. Ultrasonic switch	342
7.9.2.3. Vibrational switch	342
7.9.2.4. Conductive sensors	342
7.9.2.5. Floating switch	342
7.9.2.6. Fiber optics level switches	343
7.9.3. Continuous level measurement	343
7.9.3.1. Principles of measurement	343
7.9.3.2. Capacitive sensors	343
 	344
7.9.3.3. Ultrasonic sensors	345
7.9.3.4. Microwave sensors (radar)	346
7.9.3.5. Pressure difference (hydrostatic) sensors	346
7.10. Conclusions and trends	347
7.11. References	347
[1] Profos, Pfeifer: Handbuch der industriellen Messtechnik, Oldenbourg 1994.	347
[2] J. Hoffmann: Messen nichtelektrischer Gro?en, VDI-Verlag.	347
[3] J. Niebuhr: Physikalische Messtechnik mit Sensoren, Oldenbourg 2002.	347
[4] K. Bonfig: Sensoren und Mikroelektronik, expert Ehningen 1993.	347
[5] P. Hauptmann: Sensoren, Hanser Munchen 1990.	347
[6] E. Schoppnies: Lexikon der Sensortechnik, VDE-Verlag Berlin 1992.	347
[7] D. Bimberg: Messtechniken mit Lazern, expert Berlin 1993.	347
[8] Product information of MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Konigbacher Stra?e 15 
D-94496 Ortenburg http://www.wiresensor.de.	347
[9] Product information of Newall Measurement Systems Ltd. http://www.newall.co.uk.	347
7.12. Online references	348
Chapter 8	351
Temperature Sensors	351
8.1. Introduction	351
8.2. Thermal measuring techniques	352
8.2.1. Heat and temperature	352
8.2.2. Static and dynamic readings	352
8.2.3. Time constant and response time	353
8.2.4. Thermal units	353
8.2.5. Thermal equilibrium	354
8.2.6. Temperature measuring options	358
8.2.7. Quality of a measurement	359
8.3. Physical or direct temperature measurement	359
8.3.1. Glass thermometer	359
8.3.2. Liquid filled expansion thermometers	360
8.3.3. Gas filled expansion thermometer or pressure thermometer detector	362
8.3.4. Vapor-pressure systems	363
8.3.5. Bimetallic thermometer	365
8.4. Thermoelectric measurements (thermocouples)	366
8.4.1. Measuring principle: thermoelectricity	366
8.4.2. Thermoelectric laws	368
8.4.3. Practical temperature measurement with thermocouples	371
8.4.4. Technological realizations of thermocouples	374
8.4.5. Applications	377
8.4.6. Parallel and series connections of thermocouples	378
8.5. Resistance temperature detectors (RTDs)	380
8.5.1. Principle	380
8.5.2. Used materials and construction	382
8.5.3. Applications	383
8.6. Thermistors	385
8.6.1. Principle	385
8.6.2. Thermistor technology	386
8.6.3. Application	387
8.7. Monolithic temperature sensors (IC sensor)	387
8.8. Pyrometers	388
8.8.1. Introduction	388
8.8.2. Basic principles of pyrometry	389
8.8.5. Measurement possibilities for pyrometers	390
8.8.6. Implementation and construction of pyrometers	392
List of symbols, acronyms and abbreviations	394
Chapter 9	397
9.1. Introduction	397
9.2. The angular rate	398
Let us consider a massive body in rotation with high initial angular rate ?i and an inertia (inertial moment) 
I. According to the Newton's second law, the angular momentum, I?i of a body remains unchanged unless 
it is acted by a torque. A moment of force ??produces a term ??t, where ??t is an interval of time. Let us 
suppose that this contribution is small, either because the moment of force is weak or because the interval 
of time ??t is short. By adding it vectorially to the great initial value ???i an end value ??f, is found, 
which is not very different from its initial value. Thus, a body in rotation has a kind of gyroscopic stability. 
Gyroscopic stability explains why a spinning top amazingly remains vertical on its pointed end, defying 
gravity.	398
9.2.2. Definition of rate gyro	402
9.2.3. Use of rate sensors	403
Gyro for automotive applications	403
9.3. Different ranges of rate gyro	404
9.3.1. Control of trajectory	404
9.3.2. Piloting and Stabilization	405
9.3.3. Guidance	405
9.3.4. Navigation	405
9.4. Main models of rate gyro	406
9.4.1. Rotary gyrometers	407
9.4.2. Vibrating gyrometers	407
9.4.2.1. Gyrometers with Elementary or coupled bars	409
Industrial example: the GYROSTAR from MURATA	409
Principle	411
9.4.2.2. Gyrometers with a tuning fork	412
Limits	413
9.4.2.3. Gyrometers with coplanar interdigitated comb fingers	414
Micromachined dual input axis angular rate sensor [8]	415
Industrial example: "Butterfly-Gyro" from SensoNor	416
Manufacturing process of the Butterfly-Gyro	417
9.4.2.4. Gyrometers with vibrating shell and cylinder	417
Gyrometer with an optical detector of the position of the nodes of vibration	420
9.4.2.5. Gyrometers with vibrating disk	421
9.4.2.6. Gyroscopes with vibrating ring	422
Features	422
9.4.3. Optical gyrometers	423
9.4.3.1. Ring lazer gyrometers	423
Theoretical difficulties	423
9.4.3.2. Fiber optic gyrometers (FOG)	424
Traditional fiber optic gyrometer	425
Noise and drift	426
Retroreflexion and retrodiffusion	426
Source	427
Coil	427
Detector	428
Conclusion	428
9.4.4. Other original principles	429
9.5. Calibration of rate sensors	429
9.6. General features of the gyrometers	430
9.7. The main manufacturers	432
9.8. References	434
[1] HECHT E., Physique, translation from 1st ed. by Becherrawy T., revision ny Joel Martin, ITP Deboeck 
University S.A. 1999.	434
9.9. Bibliography	435
10.1. Semiconductor magnetic sensors	437
10.1.1. Hall sensors	438
10.1.2. The Hall effect	439
10.2.3. New types of Hall sensors	441
10.2.3.1. High mobility InSb Hall elements	441
10.2.3.2. Integrated Hall sensors	441
10.3. AMR sensors	443
10.3.1. Operating principles of AMR effect	443
10.3.1.1. Geometrical linearization of the AMR	445
10.3.2. Measuring configuration of AMR	447
10.3.3. Flipping	448
10.3.4. Magnetic feedback	449
Sensor temperature drift of sensitivity	449
10.4. GMR sensors	451
10.4.1. Physical mechanism	453
10.4.2. Spin valves	454
10.4.3. Sandwiches and multilayers	456
10.4.3.1. Temperature characteristics	457
10.4.3.2. Cross-field error	457
10.4.3.3. Unpinned sandwich	457
10.4.3.4. GMR multilayer	457
10.4.4. SDT sensors	457
10.4.5. Linear GMR sensors	458
10.4.5.1. Bipolar response using biasing coils	459
10.4.5.2. GMR gradiometer	459
10.4.6. Rotational GMR sensors	460
10.5. Induction and fluxgate sensors	461
10.5.1. Induction coil sensors	461
10.5.2. Fluxgate sensors	462
10.5.2.1. Core shapes of fluxgates	464
10.5.2.2. Double-rod sensors	464
10.5.2.3. Ring-core sensors	464
10.5.2.4. Race-track sensors	465
10.5.2.5. Principles of fluxgate magnetometers	465
10.6 Other magnetic field sensors	467
10.6.1. Resonance sensors	467
10.6.1.1. Magnetic sensors based on electron spin resonance (ESR)	467
10.6.1.2. Overhauser magnetometers	468
10.7. Magnetic position sensors	468
10.7.1. Sensors using permanent magnets	468
10.7.1.1. Induction position sensors	469
10.7.2. Eddy current sensors	469
10.7.3. Linear and rotational transformers	470
10.7.3.1 Linear transformer sensors	470
LVDT	470
Variable gap sensors	471
PLCD sensor	471
Inductosyn	471
10.7.3.2. Rotation transformer sensors	471
Synchros	472
Resolvers	472
10.7.4. Magnetostrictive position sensors	472
10.7.5. Proximity switches	472
10.7.5.1. Reed contacts	473
10.7.5.2. Wiegand sensors	473
10.8 Contactless current sensors	474
10.8.1. Hall current sensors	475
10.8.2. Magnetoresistive current sensors	475
10.8.3. AC and DC Transformers	475
10.8.4. Current clamps	475
10.9 References	476
1.1. Introduction: MEMS	489
11.2. Materials	492
11.2.1. Passive materials	492
11.2.2. Active materials	493
11.2.3. Silicon	494
11.2.4. Other semiconductors	495
11.2.5. Plastics	496
11.2. 6. Metals	498
11.2.7. Ceramics	498
11.2.8. Glass	498
11.3. Silicon planar IC technology	499
11.3.1. The substrate: crystal growth	500
11.3.2. Diffusion and ion implantation	500
11.3.3. Oxidation	501
11.3.4. Lithography and etching	501
11.3.5. Deposition of materials	502
11.3.6. Metallization and wire bonding	502
11.3.7. Passivation and encapsulation	503
11.4. Deposition technologies	503
11.4.1. Introduction	503
11.4.2. Chemical reactions	504
11.4.3. Physical reactions	507
11.4.4. Epitaxial techniques for semiconductor device preparation	510
11.5. Etching processes	512
11.5.1. Wet etching/micromachining	513
11.5.2. Dry etching/micromachining	514
11.6. 3-D microfabrication techniques	515
11.6.1. LIGA	516
11.6.2. Lazer assisted etching (LAE)	516
11.6.3. Photo-forming and stereo lithography	517
11.6.4. Microelectrodischarging (MEDM and WEDG)	518
11.6.5. Microdrip fabrication	519
11.6.6. Manufacturing using scanning probe microscopes and electron microscopes	520
11.6.7. Handling of micro particles with lazer tweezers	520
11.6.8. Atomic manipulation	521
11.7. References	522
List of authors
index

Library of Congress Subject Headings for this publication:

Detectors -- Handbooks, manuals, etc.