N. Mingo
Research interests

back to main page


Legend:
all papers are theoretical/computational. Some additional features are indicated by the following symbols:

Ab initio calculation    
Theoretical paper explaining some published experiment    Joint theoretical-experimental paper

PRESENT PROJECTS:

Nanoscale thermal transport

In this project we study the flow of phonons in nanoscale structures and materials. Thus we are able to obtain predictive calculations of thermal conductivity and other properties. We have developed new theoretical techniques, and successfully applied them to study nanowire thermal transport. Good agreement with experimental results has been obtained in those cases in which experiments are available.


Mingo N. and Broido D. A., Phys. Rev. Lett. 93, 246106 (2004).   (download)

   Lattice thermal conductivity crossovers in semiconductor nanowires  


Shi L., Hao Q., Yu Ch., Mingo N., Kong X., and Wang Z. L., Appl. Phys. Lett. 84, 2638 (2004).   (download)
  Thermal conductivities of individual tin dioxide nanobelts

Mingo N., Phys. Rev. B 68, 113308 (2003).    (download)
Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations 

Mingo N. and Liu Yang, Phys. Rev. B 68, 245406 (2003).   (download)
Phonon transport in amorphous coated nanowires: an atomistic Green function approach

Mingo N., Yang L., Li D., and Majumdar A., Nano Letters 3, 1713 (2003).  (download)
Predicting the thermal conductivity of Si and Ge nanowires


Nanoscale thermoelectricity

This project is aimed at accurately computing the thermoelectric properties of nanoscale structures and materials. By iterative solution of the Boltzmann transport equation, quantitative limitations to the figure of merit enhancement in nanowires are found.

Mingo N., Appl. Phys. Lett. 85, 5986 (2004).   (download)

      Thermoelectric figure of merit of II-VI semiconducting nanowires

Mingo N., Appl. Phys. Lett. 84, 2652 (2004).    (download)
      Thermoelectric figure of merit and maximum power factor of III-V semiconducting nanowires



PREVIOUS RESEARCH:

Molecular electronics

Bauschlicher C. W., Ricca A., Mingo N., and Lawson J., Chem. Phys. Lett. 372 (2003) 723.
On the current flow for benzene-1,4-dithiol between two Au contacts


Electron wind forces. Electromigration

Mingo N., Liu Yang and Jie Han, J. Phys. Chem. B, 105, 11142  (2001).
Current induced forces upon atoms adsorbed on conducting carbon nanotubes


Electron transport through carbon nanotubes

Mingo N. and Jie Han, Phys. Rev. B (rapid communications) , 64, 201401/1-4  (2001).
 
Conductance of metallic carbon nanotubes dipped into metal

Mingo N., Liu Yang, Jie Han and Anantram M. P., Phys. Stat. Sol. B, 226, 79-85 (2001).
 
Resonant versus anti-resonant tunneling at carbon nanotube A-B-A heterostructures

Mingo N., Han J., Anantram M. P., and Yang L., Surf. Sci., 482-485, 1130-4 (2001).
         Potential drop along carbon nanotube devices with current flow


Inelastic electron tunneling

Makoshi K., Mingo N., Surface Science, 502-503 (2002) 34.
 
Theory of inelastic scanning tunneling spectroscopy

Tikhodeev S., Mingo N., Makoshi K., Mii T., and Ueba H.,  Surf. Sci. 493, 63 (2001).
Contribution to a theory of vibrational scanning tunneling spectroscopy of adsorbates. Nonequilibrium Green's function approach

Makoshi K., Mingo N., Mii T., Ueba H. and Tikhodeev S., Surf. Sci. 493, 71-77 (2001).
Theory of vibrational excitations of adsorbates by the scanning tunneling spectroscopy

Mingo N., Makoshi K., Mii T., and Ueba H., Surface Science , 482-485, 96 (2001).
Theory of the relation between Inelastic Scanning Tunneling Spectroscopy of adsorbates and their vibrational deexcitation

Mingo N. and Makoshi K., Phys. Rev. Lett. 84 (2000) 3694.
 
Calculation of the Inelastic Scanning Tunneling Image of Acetylene on Cu(100)

Mingo N. and Makoshi K., Applied Surface Science,162-163(2000)227-232.
 
Calculation of Scanning Inelastic Tunneling Profiles of Adsorbates: acetylene on Cu(100)

Mingo N. and Makoshi K., Surface Science 438(1999)261-270.,
 
Excitation of vibrational modes of adsorbates with the Scanning Tunneling Microscope: many orbital theory

Mingo N., Rose M., and Salmeron M., Journal of Surface Analysis, Vol. 3, No. 2 (1998).
STM induced rotation of acetylene molecules adsorbed on Pd(111)



Theory of Scanning Tunneling Microscopy

Jurczyszyn L., Mingo N., and Flores F., Surface Science, Volumes 402-404, (1998) 459-463.
Influence of the atomic and electronic structure of the tip on STM images and STS spectra

Mingo N. and Flores F., Thin Solid Films 318 (1998), 69-72.
 
Theoretical study of the electric field manipulation of adsorbates using a Scanning Tunnelling Microscope

Mingo N. and Flores F., Surface Science, volume 395, nos. 2 and 3 (1998).
 
Lateral forces and atomic desorption induced by the electric field created by STM tips on metal surfaces

Vazquez de Parga A. L., Hernan O. S., Miranda R., Levy-Yeyati A., Mingo N., and Flores F.,   Phys. Rev. Lett., (1998), vol. 80 (no. 2) 357-60.
 
Electron resonances in sharp tips and their role in tunneling spectroscopy

Jurczyszyn L., Mingo N., and Flores F., Czech. J. of  Phys. Vol 47 (1997), No.4 p.407-413.
 
The influence of the geometry of the tip on STM images

Mingo N. and Knor Z., Chemical Physics Letters 263 (1996) 8.
 
Trigonal images of transition metal atoms adsorbed on transition metal FCC (111) surfaces and their availability for Scanning Tunneling Microscope

Sirvent C., Vieira S., Jurczyszyn L., Mingo N., and Flores F. Phys. Rev. B, 53 (1996) 16086.
 
Conductance step for a single atom contact at the STM: noble and transition metals

Jurczyszyn L., Mingo N., and Flores F., Mat. Sci. and Engeneering B 37 (1996) 93.
 
Conductance Simulation through Single Atom Junctions at the Scanning Tunnelling Microscope

Mingo N. et al., Phys. Rev. B, 54 (1996) 2225.
 
Theory of the STM: Xe on Ni and Al

Flores F., de Andres P. L., Garcia-Vidal F. J., Jurczyszyn L., Mingo N., and Perez R. Progress in Surface Science, Vol.48, Nos.1-4, pp27-38, 1995.
Adsorption of noble gases on metal surfaces and the scanning tunneling microscope


Electron transport in heterostructures


Mingo N., Porto J. A., and Sanchez-Dehesa J., Phys. Rev.B, 50, 11884-11894 (1994).
        Doping-profile effects on the tunneling times of electrons confined in double-barrier heterostructures