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ABSTRACT. The magnetic susceptibility and thermoelectric power of Zr0.9Ti0.1CrxFe2–x intermetallic 
compounds were investigated as functions of hydrogen content. The alloys are paramagnetic, with 
magnetic susceptibility and Seebeck coefficient increasing with the amount of stored hydrogen. The 
susceptibility is proportional to the Seebeck coefficient and to the d-electron concentration, consistent 
with a free-electron model. The susceptibility of alloys with lower iron concentration suggests 
exchange-enhanced Pauli paramagnetism. However, Curie-Weiss paramagnetism likely coexists in 
alloys with higher iron content. Magnetic and electronic measurements may be used to assess the 
ability of an alloy to store hydrogen.  
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INTRODUCTION 
 

The AB2 class of intermetallic compounds, of which (Zr-Ti)(Cr-Fe)2 is an example, 
are contemplated as possible materials for metal-hydride batteries and hydrogen storage 
devices [1]. Zr and Ti are hydride-forming elements, whereas Cr and Fe are non-hydride-
forming. Magnetic and electronic measurements may be used to determine the amount and 
state of hydrogen in candidate metal-hydride alloys [2]. Here, a correlation is found among 
magnetic susceptibility, thermopower, d-electron concentration, and the amount of stored 
hydrogen in (Zr-Ti)(Cr-Fe)2. 
 A phase diagram of hydrogenation is represented by the pressure-composition 
isotherm (PCT) diagram [3] as shown in Figure 1(a). It shows the relationship between the 
hydrogen equilibrium partial pressure and the hydrogen content in a material at different 
temperatures. The solid line shows the variation of the equilibrium hydrogen partial 
pressure of absorption with the amount of absorbed hydrogen. Hydrogen initially dissolves 
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in a metal, forming a solid solution phase (α phase). The hydrogen concentration increases 
with increasing hydrogen partial pressure until a higher concentration hydride (β phase) 
precipitates. As the phase conversion is completed, the α phase totally disappears. The 
system regains a degree of freedom and the pressure again rises as a function of hydrogen 
content. A steep increase in pressure is necessary to alter the composition of the hydride 
phase. The dashed curve in the figure indicates the two-phase region where the isotherms 
show a constant pressure.  

As described by Termsuksawad et al. [2], the first hydrogen to enter a transition-
metal-rich solid solution (α phase) has a positive heat of mixing (endothermic reaction). 
These hydrogen atoms contribute their electrons to the metal d-band according to the 
“proton” and the “screened proton” models [4,5]. As the hydrogen activity (and content) 
increases in the solid solution, the heat of mixing becomes negative for these transition-
metal-rich alloys. This thermodynamically describes a lowering of energy by the shared 
(covalent) or transferred (ionic) electron to the hydrogen ion, resulting, to some degree, in a 
bound hydrogen atom. The more negative the heat of mixing, the more irreversible is the 
hydrogen binding. This β phase is characterized by hydrogen as an electron acceptor; it 
promotes negative hydrogen ion localization to the positive metal matrix ion, resulting in 
hydride formation. 
 Hydrogen absorption causes a change in the Fermi energy level, which affects the 
chemical potential of the soluble (protonic) hydrogen in metals. The effect of hydrogen 
absorption on the electronic structure was reviewed by Gelatt [4]: in the pure metal, 
electron energy states are confined to a partially filled, narrow d-band and a broad 
conduction band. As hydrogen enters the lattice, new metal-hydrogen bonding states are 
formed below the d-band, depleting states near the bottom of both the d-band and the 
conduction band, and raising the Fermi level. This behavior is the desired characteristic of 
a hydrogen storage electrode for a reversible battery. 
 Another model for the electronic effect on hydrogen absorption in metals was 
proposed by Bernauer et al. [6]. This model pointed out that hydrogen absorption for the 
cubic and hexagonal transition-metal alloys depends only on the average number of d-
electrons, which is described by H/M = 5 − DEC. Here, H is the number of stored hydrogen 
atoms, M is the number of metal atoms, and DEC is the average number of d-electrons 
(before hydrogen is introduced), calculated from DEC = (sum of d-electrons) / (number of 
metal atoms). According to this model, soluble hydrogen will be stored until the d-band is 
half full; after that, absorbed hydrogen will cause hydride formation.  

Pauli paramagnetism of the conduction electrons in transition metals may be 
described by electron band theory [7]. The energy band structure is simply a parabolic 
distribution, with half-bands of electrons of opposite spin occupied up to the Fermi level. 
An applied magnetic field reverses electron spins at and near the Fermi level, so only a 
small fraction of the total number of electrons contributes to a net spin magnetic moment. 
Accordingly, the resulting magnetization of a Pauli paramagnetic metal is small. In the 
α phase, additional electrons donated from the soluble hydrogen to the d-band raise the 
Fermi level.  

The magnetic susceptibility is a function of the number of electrons at and in the 
vicinity of the Fermi level EF. The volume susceptibility χ is expressed in SI units 
(dimensionless) as [8]  
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where n is the electron concentration, μ0 is the permeability of vacuum, and μB is the Bohr 
magneton. For Pauli paramagnets, n is on the order of 1028 m–3 and χ is on the order of 10–5 
(SI, dimensionless). To convert χ from SI (or rationalized MKS) units to CGS units (or 
EMU), divide by 4π.  

In the thermoelectric (Seebeck) effect, a temperature gradient causes a potential 
difference across a material. The Seebeck coefficient S involves the generation of the 
Seebeck electromotive force ΔV under an applied temperature difference, ΔT [9]: 
ΔV = S ΔT.  

The temperature gradient affects the electron system and the crystal lattice of the 
material. The electron and phonon contributions to the Seebeck effect are assumed to be 
independent of each other. The total Seebeck coefficient is then the combination of the 
diffusion thermopower (electronic contribution) and the phonon-drag thermopower 
(phonon contribution) [10].  

In metals, the lattice effect is significant only at temperatures below the Debye 
temperature [11]. At normal temperature, the thermal conduction by the lattice is 
dominated by the electronic contribution. The diffusional Seebeck coefficient Sd is 
predicted with its magnitude and sign depending on how the conductivity σ changes with 
electron energy E at the Fermi surface EF [12]: 
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where kB is Boltzmann’s constant, e is the electron charge, and T is temperature. 

The dependence on the electrical conductivity indicates that the Seebeck coefficient 
depends on the electron concentration, the scattering mechanism, and the features of the 
band structure at the Fermi energy level, which is characterized by the effective mass m*.  
Both the Seebeck coefficient and the magnetic susceptibility are properties of materials 
related to d-electron concentration and band structure, and can be used to assess the change 
in electronic level of the alloy during hydrogenation. The thermoelectric power of a 
material is relatively easy to measure, but is rather difficult to interpret because it is 
strongly influenced by subtle details of the electronic structure. Complemented by 
magnetic measurements, a rough understanding of the electronic states in hydrogenated 
compounds is possible.  
 

                                     (a)                                                                                     (b) 
 
FIGURE 1.  (a) Pressure-composition isotherm (PCT) diagram of a metal under hydrogenation [3]. 
(b) Schematic of Seebeck coefficient measurement system. 
 



 
 

EXPERIMENT 
 

An experimental investigation was undertaken to compare the magnetic 
susceptibility and Seebeck coefficient of Zr0.9Ti0.1CrxFe2–x intermetallic compounds as 
functions of hydrogenation in the context of a free-electron model. The effect of hydrogen 
on the electronic state of an alloy is based on the assumption that hydrogen will serve either 
as an electron donor or an acceptor, depending on the alloy composition and the hydrogen 
content.  

Zr0.9Ti0.1CrxFe2–x samples with x = 0.6, 0.8 and 1.0 were prepared [13] by melting 
the elements in an arc furnace under a helium atmosphere. They were annealed in helium 
gas at 900 oC for three days. For these compounds, the DEC numbers are: DEC = [0.9(2) + 
0.1(2) + x(4) + (2–x)(6)] / 3. Zr0.9Ti0.1CrxFe2–x has the hexagonal C14 Laves phase structure 
(MgZn2 type) [14]. The Zr0.9Ti0.1Cr0.6Fe1.4 alloy is the same as “Alloy 4” in Termsuksawad 
et al. [2].  

Hydrogen charging was carried out in a Sieverts-type facility on crushed, powdered 
samples at a pressure of 1 MPa (7800 torr, 150 psi) of high purity hydrogen gas. The 
system was evacuated to 7 mPa (5 × 10–5 torr, 10–6 psi) before hydrogen gas was 
introduced. The amount of hydrogen in the metal was measured with a “hydrogen 
determinator,” which combusts the samples at 2500 °C. The released hydrogen is carried 
by argon gas through a molecular sieve for separation, and then quantified in a calibrated 
thermal conductivity detector. The amount of hydrogen was recorded in parts per million 
and later converted to hydrogen per formula unit.  

Magnetization hysteresis loops were measured with a transverse-field vibrating-
sample magnetometer at room temperature in maximum applied fields of 0.6 T. 
Magnetization was computed as magnetic moment per unit mass of metal, not including 
hydrogen. The exclusion of hydrogen causes an uncertainty of 0.1 to 2 percent in the mass 
determination. Magnetic susceptibility was calculated as specific magnetization divided by 
applied field. Uncertainty arising from random effects is estimated to be on the order of the 
size of the data points in the graphs below. Uncertainty arising from systematic effects is 
estimated to be less than 5 percent of the reported values.  

The thermopower measurement setup is shown in Figure 1(b). Powdered samples 
were used. One of the blocks was maintained at room temperature and the other at around 
10 °C higher. The absolute thermopower of the alloy material (Seebeck coefficient, Sa) can 
be determined as: Sa = ΔV/ΔT + SCu, where ΔV is the voltage difference measured between 
probes, ΔT is the temperature difference of 10 °C, and SCu is the known Seebeck coefficient 
for copper, 1.83 μV/K at 300 K [15].  
 
RESULTS 
 

The magnetic susceptibility at 0.6 T and the Seebeck coefficient as a function of 
hydrogen content of the Zr0.9Ti0.1CrxFe2–x compounds are plotted for x = 0.6, 0.8 and 1.0 in 
Figures 2(a), (b) and (c), respectively. The curves are simply a guide for the eye, but 
perhaps they suggest a fall-off in susceptibility at the highest hydrogen concentrations. In 
each compound the variation of the magnetic susceptibility and the Seebeck coefficient as 
functions of hydrogen content exhibit the same graphical features. Both quantities 
gradually change with dissolved hydrogen content. Plots of magnetic susceptibilities at 
0.05 T vs. Seebeck coefficients for Zr0.9Ti0.1CrxFe2–x are illustrated in Figure 2(d). A 
generally linear relationship between the magnetic susceptibility and the Seebeck 
coefficient is apparent. To convert mass susceptibility from SI (or rationalized MKS) units 
of m3/kg to CGS units (or EMU) of cm3/g (or emu/g), multiply by 1000/4π. 



 
 

 
 

 
  
FIGURE 2.  (a) Magnetic susceptibility and Seebeck coefficient of Zr0.9Ti0.1CrxFe2–x for x = 0.6 as a function 
of hydrogen content. (b) For x = 0.8. (c) For x = 1.0. (d) Magnetic susceptibility at 0.05 T and Seebeck 
coefficient of Zr0.9Ti0.1CrxFe2–x with x = 0.6, 0.8, and 1.0 for different hydrogen content. 
 

The slopes of the linear fits are tabulated in Table 1 (with mass susceptibility 
converted to volume susceptibility), along with the slopes for susceptibilities at 0.6 T. 
These slopes also depend on the d-electron concentration (DEC number) of the host alloys. 
The compounds with larger DEC numbers have larger slopes. The slopes at the two applied 
magnetic fields are similar for all three compounds. 
 
FREE ELECTRON MODEL  
 

A relationship between the magnetic susceptibility and the Seebeck coefficient may 
be demonstrated by use of a free electron model (FEM). In the model, the valence electrons 
of many atoms in a unit volume become conduction electrons and freely move through the 
metal with no ion-electron interactions. A conduction electron is scattered only 
infrequently by other conduction electrons. The relaxation time τ is independent of an 
electron’s position and velocity. Therefore, the concentration of free electrons n is a   
 
TABLE 1.  For different Zr-Ti-Cr-Fe alloys, slope dχ/dSd from Figure 2(d), with mass susceptibility 
converted to volume susceptibility using an approximate density of 7000 kg/m3. 

 
dχ/dSd (K/V) Zr0.9Ti0.1CrxFe2–x DEC 

at 0.05 T at 0.6 T 
x = 0.6 4.27 6900 6400 
x = 0.8 4.13 2900 2800 
x = 1.0 4.00 700 1000 

(b)

(c) (d)

(a) 



 
 

function only of energy E [16]: 
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where me is the electron mass (not effective mass m*, because the electrons experience 
only a constant potential). The electrical conductivity σ of a metal is as expressed as 
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Combine (3) and (4):  
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Take the natural logarithm of each side and partially differentiate with respect to E: 
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Combine (2) and (6):  
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Equation (7) includes only the diffusion term, not the phonon drag term. The 

equations for the Seebeck coefficient (7) and the susceptibility (1) have the reciprocal of EF 
in common. Thus,  
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In the FEM, the paramagnetic volume susceptibility is proportional to the free electron 
concentration and the Seebeck coefficient. For Pauli paramagnets with n on the order of 
1028 m–3, χ on the order of 10–5, and measurements at ambient temperature, values of Sd on 
the order of 10–5 V/K are expected. 
 
DISCUSSION 
 
 The fact of the matter is, (8) fails to adequately describe Figure 2(d): (a) the sign of 
Sd would be expected to be positive, the same as that of χ; (b) the linear fits to the data 
should go through the origin; and (c) the measured values of χ are up to four orders of 
magnitude larger than predicted. We address each of these points. 

In the single hydride (β) phase, the filling of electrons at the Fermi energy level 
competes with the consumption of electrons from the conduction band to form the hydride-



 
 

bonding band [4]. The magnetic susceptibility increases to a maximum and then decreases, 
possibly due to the d-band becoming half-filled; further addition of hydrogen would reduce 
the number of unpaired electrons, reducing the magnetic moment. This behavior is present 
in all the Zr0.9Ti0.1CrxFe2–x compounds. In contrast, the Seebeck coefficient keeps rising 
with the amount of stored hydrogen, indicating further filling of electron bands when the 
compounds enter the hydride (β) phase region. At high hydrogen concentrations, electrons 
donated by the hydrogen can shift the Fermi level to the upper portion of the energy band. 
This can make the sign of the Seebeck coefficient positive, in analogy to the effect in 
semiconductors.  

In terms of the Brillouin zone (BZ), the fraction of the BZ occupied by electrons 
increases with the addition of electrons donated by hydrogen (H). If the concentration of H 
is high compared to the concentration of host atoms, the filling of the BZ could be 
considerable. As the occupied volume increases, the Fermi surface moves toward the BZ 
boundaries, touching the boundaries when the BZ is half or two-thirds filled. Here one can 
expect a reversal of the sign of the Seebeck coefficient from negative to positive. The metal 
behavior resembles that of a semiconductor heavily doped with acceptor impurities (high 
hole concentration). The amount of H required to change the sign of the Seebeck 
coefficient depends on the electron band occupation before doping. If it is already above 
half, then the addition of a small amount of H can cause a sign change. For examples, Cu, 
Ag and Au have positive Seebeck coefficients. To avoid problems with the sign of Sd and 
the nonzero intercept in the linear fits in Figure 2(d), we concentrate just on the expected 
proportionality between χ and Sd. From (8),  
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For n on the order of 1028 m–3 and measurements at room temperature, (9) predicts 

dχ/dSd on the order of unity, with χ equal to the volume susceptibility calculated from the 
mass susceptibility plotted in the figures. As seen in Table 1, the values of χ are much 
larger than expected from simple Pauli paramagnetism. Pauli paramagnetism refers to the 
susceptibility of conduction-electron spins in metals. Its signature is a temperature-
independent volume susceptibility in the range of 10–5 SI or mass susceptibilities on the 
order of 10–9 m3/kg. Pauli paramagnetism is well established in some cubic C15 Laves 
phase compounds such as ZrCo2 [17], NbFe2, MoFe2 [18], YNi2, LuNi2, and CeNi2 [19].  

Several Laves phase compounds are known to have strong exchange-enhanced 
Pauli paramagnetism [20,21,22]: YCo2 has a mass susceptibility on the order of 1.9 × 10–7 
m3/kg [23]; ScCo2, 1.6 × 10–7 m3/kg [24]; and LuCo2, 4.5 × 10–7 m3/kg [25].  

Our C14 Laves phase Zr0.9Ti0.1CrxFe2–x alloys with low Fe content (x = 0.8, 1.0) and 
low hydrogen concentrations (α phase and α + β phase) have mass susceptibilities similar 
to those of the exchange-enhanced Pauli paramagnets. This could explain the much larger 
measured susceptibilities compared to simple Pauli paramagnets. A further consideration is 
that, in transition metals, the density of states in the 3d-band at the Fermi level can be 
orders of magnitude larger than in the FEM, giving rise to magnetic susceptibilities larger 
than expected for ideal metals. 

The Zr0.9Ti0.1Cr1.0Fe1.0 alloy with no hydrogen has a high-field susceptibility of 1.6 
× 10–7 m3/kg at 300 K, consistent with exchange-enhanced Pauli paramagnetism. However, 
there are also indications of weak Curie-Weiss paramagnetism, probably due to a magnetic 
moment on the Fe ions: (a) at fields below 0.02 T, slight curvature (but no hysteresis) is 
present in a plot of magnetization vs. field (not shown), and (b) the low-field susceptibility 



 
 

at 300 K (2.1 × 10–6 m3/kg) increases by a factor of 2 as temperature decreases to 30 K. 
Thus, for the alloys with low Fe content and low hydrogen concentration, the magnitudes 
of the exchange-enhanced Pauli paramagnetism and the Curie-Weiss paramagnetism are 
comparable. The alloys with higher Fe content (x = 0.6) and higher hydrogen 
concentrations (β phase) may be best characterized as just Curie-Weiss paramagnets.   
 It is likely that, although it is appealingly simple, the FEM is not adequate for these 
alloys: The periodic potential in the lattice would cause the energy bands to deviate from 
simple parabolas, requiring the use of an effective electron mass (the usual modification of 
the FEM). The Seebeck coefficient derived in (7) is the electronic contribution of the 
thermopower; the phonon-drag thermopower is not included in the calculation. Finally, the 
apparent coexistence of Curie-Weiss paramagnetism confounds the interpretation in terms 
of simple (or even exchange-enhanced) Pauli paramagnetism. Despite these limitations, the 
linear relation between measured susceptibilities and Seebeck coefficients gives some 
credence to a FEM approach.  
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