Global Energy Demand, Supply, Consequences, Opportunities

Arun Majumdar

Department of Mechanical Engineering Department of Materials Science & Engineering University of California, Berkeley

Environmental Energy Technologies Division Materials Sciences Division Lawrence Berkeley National Laboratory

Issues

- Availability of Fossil Fuel
- Energy Security
- Economics
- CO₂ emissions and Global Warming

Oil Supply Cost Curve

Availability of oil resources as a function of economic price

Source: IEA (2005)

Global Fuel Reserves Coal Reserves Oil Reserves

Per Capita CO₂ and Energy

Population-Energy Equation

C Emission Rate = Power x (Carbon/J)

Hoffert et al., Nature (1998)

Global Energy & Carbon Balance

Emissions Trajectories for atmospheric CO₂ concentration ceilings

Source: Fourth Assessment of the Intergovernmental Panel on Climate Change; Summary for Policy Makers, February 2007. Steve Chu, LBL

Annual Primary Energy Demand 1971-2003

Source IEA, 2004 (Excludes biomass)

Annual Population Growth (Percent)

Demographics 2000-2050

- 47% population growth from now till 2050
- Increase in the next 50 years will be more than twice the population of China
- Less developed countries will grow 58%. Developed countries will grow 2%.
- Less developed countries will account for 99% of increment in world population

Economic Development & Energy Use

energy demand and GDP per capita (1980-2004)

Source: UN and DOE EIA Russia data 1992-2004 only

CO₂ emissions of selected countries

Global Energy Supply & Demand

US Supply Side

US Energy Supply Since 1850

Source: EIA

U.S. Refrigerator Energy Use vs. Time

United States Refrigerator Use v. Time

US Electricity Use of Refrigerators and Freezers compared to sources of electricity

Buildings Matter

Buildings construction/renovation contributed **9.5% to US GDP** and employs approximately **8 million people**. Buildings' utility bills totaled **\$370 Billion** in 2005.

Buildings use 72% of nation's electricity and 55% of its natural gas.

Source: Buildings Energy Data Book 2007

 I GtCO₂e = gigaton of carbon dioxide equivalent; "business as usual" based on emissions growth driven mainly by increasing demand for energy and transport around the world and by tropical deforestation.

²tCO₂e = ton of carbon dioxide equivalent.

³Measures costing more than €40 a ton were not the focus of this study.

⁴Atmospheric concentration of all greenhouse gases recalculated into CO₂ equivalents; ppm = parts per million.

⁵Marginal cost of avoiding emissions of 1 ton of CO_2 equivalents in each abatement demand scenario.

Energy Efficiency has Great Potential

High Performance Buildings Research & Implementation Center (HiPerBRIC)

National Labs-Industrial Consortium-University Partnership

Gaps & Opportunities

- Incremental and component level research programs are unlikely to "solve" the problem, i.e. produce the changes in energy use needed.
- Problem too large to be attacked by a single entity

System of Systems Integrated Whole Building Approach

Commercial Buildings Market Fragmentation

Technical Input on Energy

Architects & Engineers

 Aesthetic & Technical Design

Materials & Systems Supplier

- HVAC
- Lighting
- Building Materials

Construction Firms

 Construct the building

Developer

- Providing Specs
- Financing
- Operating

Market Demand on Energy Efficiency?

Property Management Firms

 Buy Portfolio of Companies

Tenants

- Lease space from
 Developer or Property
 Manager
- Professional firms, retailers, multinational corps...

Market Demand on Energy Efficiency?

Possible Solutions

- Make energy consumption visible to everyone
 - Find out where the leaks are reduce liability risks
 - Sufficient granularity so that tenants and property manager can see the impact of their actions. Property managers can use tenant-level energy billing
- Energy Performance Standards
 - Based on measured performance, not designed performance
 - Key to corrective action, reduced liability risk,
 - Account for climate and type of building
 - Move standards to lower energy consumption in future
- Price Signal
 - Performance below standard → cost of carbon, etc...
 - Performance above standard \rightarrow financial incentives
- Who wins and who loses
 - Shared benefits and costs between tenants and building owners
 - Allow owner to market space at higher rates for reduced operating costs
 - Mechanisms to ensure that efficiency investments are fully recouped at time of sale of used buildings
- Lifecycle accounting codes
 - Combine capital cost with operating costs
- Ratings, Public Campaign

Batteries

Discharge Time vs Power Capacity

Energy Conversion

Building Energy Demand Challenge: End Use Energy Consumption

Buildings consume 39% of total U.S. energy

• 71% of electricity and 54% of natural gas

Thermoelectricity & Energy Conversion

(low efficiency, expensive)

History

Beating the Alloy Limit Alloy+Nanoparticles Alloy 0 0 ·// Hot Hot Cold Cold k [W/m-K] Mo Alloy Limit 8-m ~~ 0 0 A My S My g 2 0 0 Blackbody Phonon Radiation Atomic o Substitution $I(\omega)$ Nanoparticle Increasing T $C_{sc} \propto \frac{d^6}{d}$ ω ω_{max}

Thermal Conductivity of ErAs: InGaAs Nanocomposites

Electroless Etched Si Nanowires

Wafer-Scale Wet Etching Process

Reduction: $Ag^+ + e^- ----> Ag = E^0_{red} = 0.7996 V$ Oxidation: $Si + 6 F^- ----> SiF_6^{2-} + 4 e^- E^0_{ox} = 1.24 V$ Etching of Si at 50 °C in 5M HF, 0.02M AgNO₃ for 1h

Renkun Chen, Kedar Hipalgaonkar (Majumdar Lab) Allon Hochbaum, Sean Andrews (Yang Lab)

Energy Conversion

Solar Thermal

Traditional Approach

Concentration: Focusing mirrors over large area Storage: Thermal Conversion: Rankine cycle Transmission: Electrical

Solar Thermal Fuel

Margolis & Kammen, Science, 1999