Proton and dark matter without R-parity

Hye-Sung Lee University of Florida

Seminar at Fermilab (May 29, 2008)

Proton and dark matter without R-parity

: U(1)' as an alternative to R-parity

Hye-Sung Lee University of Florida

Seminar at Fermilab (May 29, 2008)

I thank my collaborators for the enjoyable collaborations!

- Vernon Barger (Wisconsin)
- Taeil Hur (KAIST)
- KC Kong (Fermilab)
- Paul Langacker (UPenn, IAS)
- Christoph Luhn (Florida)
- Konstantin Matchev (Florida)
- Salah Nasri (UAE)
- • •

Outline

- Companion symmetry of SUSY
 - R-parity
 - TeV scale U(1)' gauge symmetry
- $R\mbox{-}{\rm parity}$ violating, $U(1)'\mbox{-}{\rm extended}$ SUSY model
 - Proton stability
 - Dark matter candidate

Proton and dark matter without $R\mbox{-}{\rm parity}$

Supersymmetry

Fermilab 2008

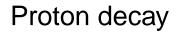
Hye-Sung Lee

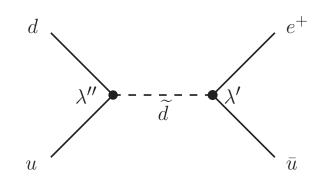
General SUSY

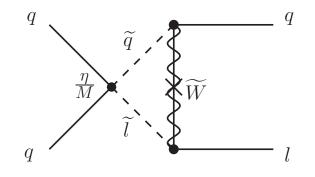
 $W = \mu H_u H_d$

- $+ y_E H_d L E^c + y_D H_d Q D^c + y_U H_u Q U^c$
- + $\lambda LLE^c + \lambda' LQD^c + \mu' LH_u + \lambda'' U^c D^c D^c$ + $\frac{\eta_1}{M} QQQL + \frac{\eta_2}{M} U^c U^c D^c E^c + \cdots$
- 1. μ -problem: $\mu \sim \mathcal{O}(\text{EW})$ to avoid fine-tuning in the EWSB. (Kim, Nilles [1984])

2. lepton number (\mathcal{L}) and/or baryon number (\mathcal{B}) violating terms at renormalizable and non-renormalizable levels: one of the most general predictions of SUSY.







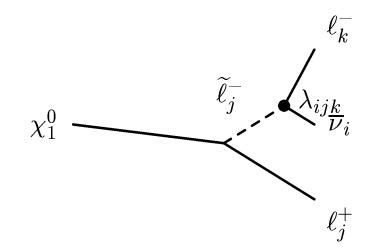
[Dim 4 \mathcal{L} violation & Dim 4 \mathcal{B} violation] $\lambda LLE^{c} + \lambda' LQD^{c} \& \lambda'' U^{c}D^{c}D^{c}$ [Dim 5 $\mathcal{B}\&\mathcal{L}$ violation] $\frac{\eta_1}{M}QQQL + \frac{\eta_2}{M}U^cU^cD^cE^c$

To satisfy $au_p \gtrsim 10^{29}$ years,

• Dim 4: $|\lambda_{LV} \cdot \lambda_{BV}| \lesssim 10^{-27}$ (if one is 0, the other can be sizable)

• Dim 5:
$$|\eta| \lesssim 10^{-7}$$
 (for $M = M_{Pl}$)

Lightest superparticle (LSP) decay



$$\Gamma = \lambda_{ijk}^2 \frac{\alpha}{128\pi^2} \frac{m_{\chi_1^0}^5}{m_{\widetilde{f}}^4} \qquad \text{(for } \chi_1^0 \sim \text{photino)}$$

To be a viable dark matter, $\tau_{LSP} \gtrsim 14 \times 10^9$ years (Universe age).

$$|\lambda|, |\lambda'|, |\lambda''| \leq 10^{-20}$$

SUSY needs a companion mechanism or symmetry.

Proton and dark matter without $R\mbox{-}{\rm parity}$

Supersymmetry + *R***-parity**

R-parity (or matter parity)

 $R_p[SM] = even, \quad R_p[superpartner] = odd$

R-parity is defined on component fields, and matter parity is defined on superfields. They are equivalent.

$$R$$
-parity : $R_p = (-1)^{3(\mathcal{B}-\mathcal{L})+2s}$
Matter parity : $M_p = (-1)^{3(\mathcal{B}-\mathcal{L})}$

	Q	U^{c}	D^{c}	L	E^{c}	H_u	H_d
Matter parity	1	1	1	1	1	0	0

• LSP is absolutely stable (dark matter candidate).

SUSY with R-parity

$$W_{R_p} = \mu H_u H_d$$

+ $y_E H_d L E^c + y_D H_d Q D^c + y_U H_u Q U^c$
+ \cdots
+ $\frac{\eta_1}{M} Q Q Q L + \frac{\eta_2}{M} U^c U^c D^c E^c + \cdots$

1. μ -problem: Not addressed.

2. over-constraining of the R-parity: All renormalizable \mathcal{L} violating and \mathcal{B} violating terms are (unnecessarily) forbidden.

3. under-constraining of the R-parity: Dimension 5 $\mathcal{L\&B}$ violating terms still mediate too fast proton decay.

 \rightarrow Look for an additional or alternative explanation (symmetry).

Proton and dark matter without R-parity

Supersymmetry + R-parity + U(1)' gauge symmetry

TeV scale U(1)' gauge symmetry Natural scale of U(1)' in SUSY models is TeV (linked to sfermions scale). \rightarrow provides a natural solution to the μ -problem.

Two conditions to "solve the μ -problem". (z[F]: U(1)' charge of F)

- $\mu H_u H_d$: forbidden $z[H_u] + z[H_d] \neq 0$
- hSH_uH_d : allowed $z[S] + z[H_u] + z[H_d] = 0$

S is a Higgs singlet that breaks the $U(1)^\prime$ spontaneously.

$$\mu_{\rm eff} = h \langle S \rangle \sim \mathcal{O}(\mathrm{EW}/\mathrm{TeV})$$

SUSY with $R\mbox{-}{\rm parity}$ and U(1)'

$$\begin{aligned} W_{R_p+U(1)'} &= hSH_uH_d \\ &+ y_EH_dLE^c + y_DH_dQD^c + y_UH_uQU^c \\ &+ \cdots \\ &+ \left(\frac{\eta_1}{M}QQQL + \frac{\eta_2}{M}U^cU^cD^cE^c + \cdots\right) \end{aligned}$$

- 1. μ -problem: Resolved by replacing μ with $\mu_{\rm eff}$.
- 2. over-constraining of the R-parity: It forbids all renormalizable terms.
- 3. non-renormalizable terms: Maybe forbidden depending on charges.
- \rightarrow Usual set up of the U(1)'-extended MSSM (UMSSM).

In principle, the U(1)' can embed the R-parity (matter parity), which is more economic than having 2 companion symmetries.

LSP dark matter candidates in the UMSSM (brief review)

A viable dark matter candidate should

- 1. be neutral, stable, cold
- 2. give right relic density

($\Omega_{\rm DM}h^2=0.1099\pm0.0124$ from 2σ WMAP)

3. avoid direct detection constraint ($\sigma_n^{\rm SI} \lesssim 10^{-7} {\rm pb}$ from CDMS/XENON)

Cold dark matter candidates stable under R-parity:

- neutralino (χ^0) LSP
- sneutrino ($\widetilde{\nu}$) LSP

Fermilab 2008

Neutralino LSP dark matter candidate

• UMSSM : 6×6 matrix, in the basis of $\{\widetilde{B}, \widetilde{W}_3, \widetilde{H}_d^0, \widetilde{H}_u^0, \widetilde{S}, \widetilde{Z'}\}$

$$\begin{pmatrix} M_1 & 0 & -g_1 v_d/2 & g_1 v_u/2 & 0 & 0 \\ 0 & M_2 & g_2 v_d/2 & -g_2 v_u/2 & 0 & 0 \\ -g_1 v_d/2 & g_2 v_d/2 & 0 & -\mu_{\text{eff}} & -\mu_{\text{eff}} v_u/s & g_{Z'} z[H_d] v_d \\ g_1 v_u/2 & -g_2 v_u/2 & -\mu_{\text{eff}} & 0 & -\mu_{\text{eff}} v_d/s & g_{Z'} z[H_u] v_u \\ 0 & 0 & -\mu_{\text{eff}} v_u/s & -\mu_{\text{eff}} v_d/s & 0 & g_{Z'} z[S] s \\ 0 & 0 & g_{Z'} z[H_d] v_d & g_{Z'} z[H_u] n_u & g_{Z'} z[S] s & M_{1'} \end{pmatrix}$$

 $\bullet \ {\rm MSSM}: {\rm First} \ 4\times 4 \ {\rm submatrix}$

 \rightarrow Easy to satisfy the relic density and direct detection constraints, since it has MSSM components which already do.

(Barger, Kao, Langacker, HL [hep-ph/0408120]) (Barger et al. [2007])

Sneutrino LSP dark matter candidate

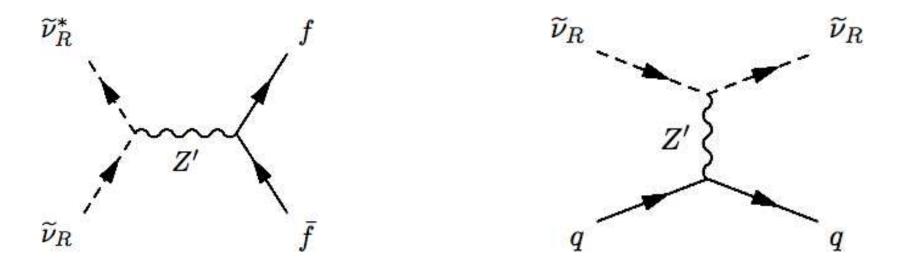
• Pure left-handed sneutrino ($\widetilde{\nu}_L$):

Z mediated channels for sneutrino LSP has too large direct detection cross-section when it makes the right relic density.

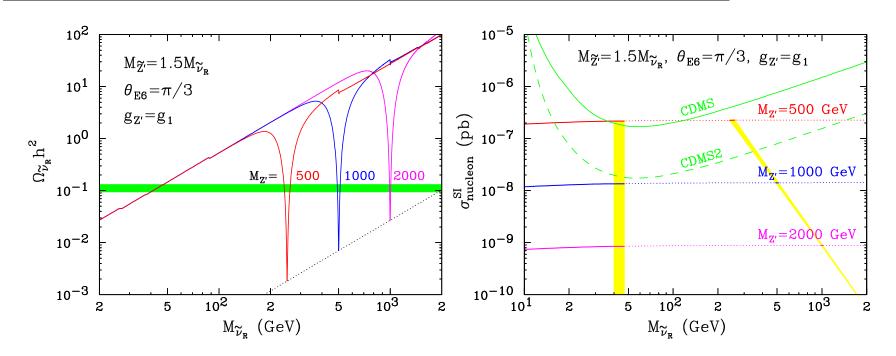
(Falk, Olive, Srednicki [1994])

$$\sigma_n^{\rm SI} \sim G_F^2 \mu_{n-{\rm DM}}^2 \sim 0.1 {\rm pb} \gg 10^{-7} {\rm pb} ~({\rm CDMS/XENON})$$

• Predominantly right-handed sneutrino ($\tilde{\nu}_R$): N^c : necessary for the neutrino mass (LH_uN^c).



Z' mediated interaction can be suppressed by its mass and coupling. (HL, Matchev, Nasri [hep-ph/0702223])



Predictions of relic density and direct detection cross-section

Yellow bands: right relic density ($\Omega_{\tilde{\nu}_R}h^2 \sim 0.1$) in the \widetilde{Z}' mediation region ($M_{\tilde{\nu}_R} \sim 45 \text{ GeV}$) and Z' mediation region ($M_{\tilde{\nu}_R} \sim M_{Z'}/2$).

 \rightarrow Sneutrino LSP is a viable thermal dark matter candidate in the $U(1)'\mbox{-extended}$ MSSM.

Supersymmetry + U(1)' gauge symmetry without R-parity

Now, we consider the R-parity violating scenario.

Goal

Construct a stand-alone R_p violating TeV scale SUSY model without

- 1. μ -problem: U(1)'
- 2. proton decay problem
- 3. dark matter problem (non-LSP dark matter)

"R-parity violating U(1)' model" as an alternative to the usual "R-parity conserving model".

Proton and dark matter without R-parity

Proton stability among the MSSM fields

HL, Matchev, Wang [arXiv:0709.0763]

Free parameters of the MSSM fields charges

Consider the MSSM Yukawa, effective μ -term, $[SU(2)_L]^2 - U(1)'$ anomaly condition.

 $\begin{aligned} H_u Q U^c &: z[H_u] + z[Q] + z[U^c] &= 0 \\ H_d Q D^c &: z[H_d] + z[Q] + z[D^c] &= 0 \\ H_d L E^c &: z[H_d] + z[L] + z[E^c] &= 0 \\ S H_u H_d &: z[S] + z[H_u] + z[H_d] &= 0 \\ A_{221'} &: 3(3z[Q] + z[L]) + (z[H_u] + z[H_d]) + \delta &= 0 \end{aligned}$

with $\delta \equiv A_{221'}[SU(2)_L \text{ exotics}] = 0$ (assume no $SU(2)_L$ exotics).

8 unknown U(1)' charges ($Q, U^c, D^c, L, E^c, H_u, H_d, S$) - 5 conditions = 3 free parameters.

Fermilab 2008

General solution of the MSSM fields

$\left(\begin{array}{c} z[Q] \end{array} \right)$		$\begin{pmatrix} 1 \end{pmatrix}$		$\begin{pmatrix} 1 \end{pmatrix}$		$\begin{pmatrix} 1 \end{pmatrix}$		
$z[U^c]$	= α	-4		-1		8		
$z[D^c]$		$= \alpha$	2		-1		-1	
z[L]			-3	$+ \beta$	-3		0	
$z[E^c]$			- α	6	$+\beta$	3	$+ \gamma$	0
$z[H_d]$			-3		0		0	
$z[H_u]$			3		0		-9	
$\langle z[S] \rangle$		0		\ o /				

1st vector \propto hypercharge (y), 2nd vector $\propto \mathcal{B} - \mathcal{L}$.

$$\alpha = -\frac{z[H_d]}{3} \quad \beta = \frac{z[H_d] - z[L]}{3} \quad \gamma = \frac{z[S]}{9}$$

Lepton number violating terms

Since we already have

 $y_E H_d L E^c, y_D H_d Q D^c, h S H_u H_d$

allowing the $\mathcal L$ violating terms means

$$\lambda LLE^c, \ \lambda' LQD^c, \ h'SH_uL \iff z[H_d] = z[L].$$

Renormalizable ${\mathcal L}$ violating couplings (λ,λ',μ') are either all allowed or all forbidden by the U(1)'.

LV-BV separation

From MSSM Yukawa and $[SU(2)_L]^2 - U(1)'$ anomaly,

$$z[U^{c}D^{c}D^{c}] - z[LLE^{c}] + \frac{2}{3}(z[H_{u}H_{d}]) = 0$$

BV term LV term original μ -term

• $z[H_uH_d] \neq 0$ (μ -problem solution).

• Either $z[U^cD^cD^c]$ or $z[LLE^c]$ should be non-zero (forbidden).

LV-BV separation: The LV terms (λLLE^c , $\lambda'LQD^c$) and the BV term ($\lambda''U^cD^cD^c$) cannot coexist.

$$\lambda_{LV} \cdot \lambda_{BV} = 0$$

 \rightarrow Proton does not decay through the MSSM dimension 4 operators.

Fermilab 2008

Hye-Sung Lee

Also the dimension 5 LV and BV operators (QQQL, $U^cU^cD^cE^c$) are automatically forbidden.

$$z[QQQL] = -\frac{1}{3}z[H_uH_d] \neq 0$$
$$z[U^cU^cD^cE^c] = -\frac{5}{3}z[H_uH_d] \neq 0$$

Proton is sufficiently (up to dimension 5 level) stable among the MSSM fields in the R-parity violating U(1)'-extended MSSM.

Fermilab 2008

Hye-Sung Lee

Exotic colors $[SU(3)_C]^2 - U(1)' \text{ anomaly free condition:}$ $\underbrace{3(2z[Q] + z[U^c] + z[D^c])}_{= -3(z[H_u] + z[H_d]) \neq 0 \quad (\mu\text{-problem solution})}$

due to the MSSM Yukawas.

$$\rightarrow A_{331'}[\text{exotic colors}] \neq 0$$

Solving the μ -problem requires colored exotics. (Well-known)

For definiteness, we assume three $SU(3)_C$ triplet (K_i) and antitriplet (K_i^c), which are $SU(2)_L$ singlets.

$$W_{\text{exotic colors}} = \eta_{ij} S K_i K_j^c$$

Right-handed neutrinos (N^c)

Observed neutrino mass ($m_{\nu} \leq 0.1 \text{ eV}$) needs an explanation.

1. Majorana neutrino: with see-saw mechanism

(Minkowski [1977]) (Yanagida [1979]) (Mohapatra, Senjanovic [1980]) (Gell-Mann, Ramond, Slansky [1980])

$$W = y_N H_u L N^c + m N^c N^c$$

2. Dirac neutrino: natural suppression possible in U(1)' model (Langacker [1998])

$$W = y_N \left(\frac{S}{M}\right)^a H_u L N^c$$

3. Lepton number violation: in the LV case

(Hall, Suzuki [1984]) (Grossman, Haber [1998])

$$W = \mu' H_u L + \lambda L L E^c + \lambda' L Q D^c$$

The BV ($\lambda'' U^c D^c D^c$) case can have neutrino mass only through Dirac neutrino. (It does not allow $N^c N^c$, LLE^c , LQD^c , H_uL .)

General solution of the MSSM fields including N^{c}

We allow the (possibly high-dimensional) Dirac neutrino mass term in both LV and BV cases.

$$W = y_N \left(\frac{S}{M}\right)^a H_u L N^c$$

It gives $z[H_u] + z[L] + z[N^c] + az[S] = 0$ and

$\left(\begin{array}{c} z[Q] \end{array} \right)$		$\begin{pmatrix} 1 \end{pmatrix}$		$\begin{pmatrix} 1 \end{pmatrix}$)
$z[U^c]$		-4		-1		8	
$z[D^c]$		2		-1		-1	
z[L]		-3		-3		0	
$z[N^c]$	$= \alpha$	0	$+ \beta$	3	$+ \gamma$	9(1-a)	
$z[E^c]$		6		3		0	
$z[H_d]$		-3		0		0	
$z[H_u]$		3		0		-9	
$\left\langle z[S] \right\rangle$		\ o /		\ o /		9)

Protecting proton from exotic particles

Proton is stable when MSSM fields are considered.

Is it still stable with exotic particles?

We will address this with the remnant discrete symmetry of the U(1)'.

Proton and dark matter without R-parity

Brief review of residual discrete symmetry of $U(1)^{\prime}$

Conditions to have $U(1)' \to Z_N$

A Z_N emerges from U(1)' if their charges satisfy (after normalization to integers):

- $z[F_i] = q[F_i] + n_i N$
- z[S] = N

 $(z[F_i]: U(1)' \text{ charge}, q[F_i]: Z_N \text{ charge})$ for each field F_i .

q[S] = 0: to keep the discrete symmetry unbroken after the U(1)' symmetry is spontaneously broken by a Higgs singlet S.

(ex) In terms of discrete symmetry, H_uH_d and SH_uH_d are not distinguishable (their total discrete charge is same) by the Z_N .

Discrete symmetry compatible with MSSM sector

Most general Z_N of the MSSM sector (lbanez, Ross [1992]) is

$$Z_N: g_N = B_N^b L_N^\ell$$

with family-universal cyclic symmetries ($\Phi_i \rightarrow e^{2\pi i \frac{q_i}{N}} \Phi_i$)

$$B_N = e^{2\pi i \frac{q_B}{N}}, \quad L_N = e^{2\pi i \frac{q_L}{N}}$$

and total discrete charge of Z_N is $q = bq_B + \ell q_L \mod N$.

	Q	U^c	D^{c}	L	E^{c}	N^c	H_u	H_d	meaning of q
B_N	0	-1	1	-1	2	0	1	-1	$-\mathcal{B}+y/3$
L_N	0	0	0	-1	1	1	0	0	$-\mathcal{L}$

A discrete charge can be rewritten in terms of \mathcal{B} and \mathcal{L} .

$$q = -(b\mathcal{B} + \ell\mathcal{L}) + b(y/3) \mod N$$

with a conserved quantity of $-(b\mathcal{B} + \ell\mathcal{L}) \mod N$.

(ex) Matter parity ($R_2 = B_2 L_2^{-1}$): $q = -(\mathcal{B} - \mathcal{L}) + (y/3) \mod 2$ Why 2 free parameters?

8 unknown discrete charges (Q, U^c , D^c , L, E^c , N^c , H_u , H_d)

- 5 superpotential terms ($H_u Q U^c$, $H_d Q D^c$, $H_d L E^c$, $H_u L N^c$, $H_u H_d$)
- 1 hypercharge shift invariance ($q[F_i] \rightarrow q[F_i] + \alpha y[F_i] \mod N$)
- = 2 free parameters

Family non-universal charges?

• Family non-universal discrete charges $(q[F_i])$?

: No, at least in quark sector.

Mixing of quarks not allowed in contradiction to the CKM matrix.

- Family non-universal U(1)' charges ($z[F_i]$)?
 - : Possible.

It can still have family universal Z_N , if the condition $z[F_i] = q[F_i] + n_i N$ is kept ($z[F_i]$ is family-dependent if n_i is). FCNC from family non-universal U(1)' charges

Family non-universal charges may cause FCNC by Z' at tree level. U(1)' coupling matrix in mass eigenstate $(d_L = V_{d_L} d_L^{int})$:

$$Q_{d_L} \equiv V_{d_L} Q_{d_L}^{\text{int}} V_{d_L}^{\dagger} = V_{d_L} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 + \delta \end{pmatrix} V_{d_L}^{\dagger}$$

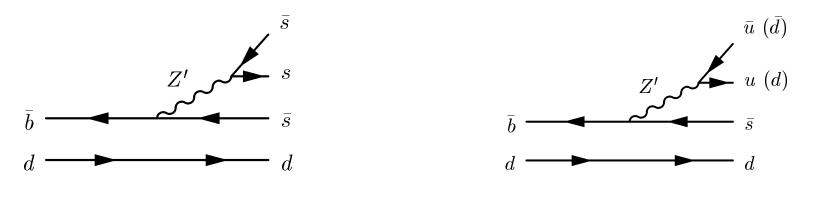
 Q_{d_L} has off-diagonal terms with phases originated from V_{d_L} . (And similarly for *u*-type quark and/or right-handed coupling.) The usual CKM matrix is given by $V_{CKM} = V_{u_L} V_{d_L}^{\dagger}$.

Fermilab 2008

Hye-Sung Lee

Flavor changing Z^\prime solution to B anomalies

(Barger, Chiang, Langacker, HL [hep-ph/0310073], [hep-ph/0406126])



 $B \to \phi K_S \qquad \qquad B \to \pi K$

FCNC Z' can explain the anomalies in both $B \to \phi K_S$ and $B \to \pi K$. ($B \to \phi K_S$ discrepancy disappeared by now, but the $B \to \pi K$ anomaly still remains a puzzle.) Proton and dark matter without R-parity

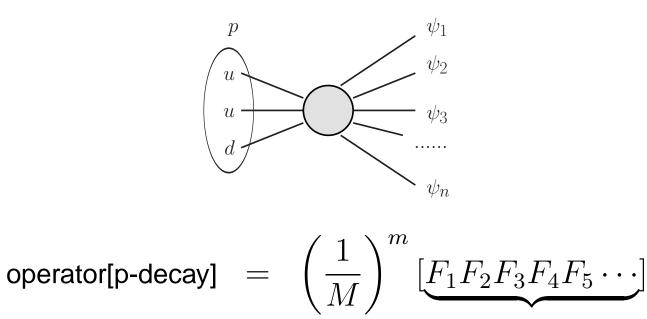
Residual discrete symmetry of the RPV U(1)' model : Proton stability including TeV scale exotics

HL, Luhn, Matchev [arXiv:0712.3505]

Discrete symmetries in presence of exotics

- The discrete symmetries may be changed with additional particles.
- The MSSM discrete symmetries still hold among the MSSM fields.

For a physics process which has only MSSM fields in its effective operators (such as proton decay), we can still discuss with Z_N^{MSSM} .



MSSM fields only

Naturally suppressed LV and BV couplings

Experimental upper bounds:

$$\begin{array}{rcl} \lambda, \lambda' & \lesssim & 10^{-5} \\ \lambda'' & \lesssim & 10^{-7} \end{array}$$

In the U(1)' model, you can have the naturally suppressed ${\cal L}$ and ${\cal B}$ violating couplings from high-dimensional operators.

$$\lambda = \widehat{\lambda} \left(\frac{\langle S \rangle}{M}\right)^n$$

It does not affect discrete symmetry argument since q[S] = 0.

$$\begin{split} W_{\rm LV} &= \widehat{\lambda} \left(\frac{S}{M}\right)^n LLE^c + \widehat{\lambda}' \left(\frac{S}{M}\right)^n LQD^c + \widehat{h}' \left(\frac{S}{M}\right)^n SLH_u \\ W_{\rm BV} &= \widehat{\lambda}'' \left(\frac{S}{M}\right)^m U^c D^c D^c \\ \text{with } \lambda_{\rm eff} &= \widehat{\lambda} \left(\frac{\langle S \rangle}{M}\right)^n, \text{ etc.} \end{split}$$

Generalized LV-BV separation:

$$z[S^{m}U^{c}D^{c}D^{c}] - z[S^{n}LLE^{c}] - \left(\frac{2}{3} + (m-n)\right)z[S] = 0$$

(The LV-BV separation still holds independent of n and m.)

General U(1)' charges in the LV case

Use another condition

$$S^{n}LLE^{c}: nz[S] + 2z[L] + z[E^{c}] = 0$$

to reduce a parameter in the general U(1)' charges.

$$\begin{bmatrix} z[Q] \\ z[U^{c}] \\ z[D^{c}] \\ z[L] \\ z[L] \\ z[N^{c}] \\ z[E^{c}] \\ z[H_{d}] \\ z[S] \end{bmatrix} = \alpha' \begin{pmatrix} 1 \\ -4 \\ 2 \\ -3 \\ 0 \\ -3 \\ 3 \\ 0 \end{pmatrix} + \beta' \begin{pmatrix} 0 \\ 3(1+n)+1 \\ -3n-1 \\ 1 \\ 3(1-a+n) \\ -3n-2 \\ 3n+1 \\ -3(1+n)-1 \\ 3 \end{pmatrix}$$

 \rightarrow It is a Z_3 symmetry. (N = z[S] after normalization to integers)

Discrete symmetry of the LV case

• First column ($\propto y$) is irrelevant \rightarrow Take $\alpha' = 0$ and $\beta' = 1$.

•
$$q[F_i] = z[F_i] - n_i N \rightarrow q[F_i] = z[F_i] \mod 3.$$

(q[Q]		(0)		$\begin{pmatrix} 0 \end{pmatrix}$	
	$q[U^c]$		3(1+n) + 1		-1	
	$q[D^c]$		-3n - 1		1	
	q[L]		1		-1	
	$q[N^c]$	=	3(1-a+n)	$\mod 3 = -$	0	$\mod 3$
	$q[E^c]$		-3n - 2		-1	
	$q[H_d]$		3n + 1		-1	
	$q[H_u]$		-3(1+n) - 1		1	
(q[S])	3		\ o /	1

Compare with charge table. \rightarrow LV model has B_3 (baryon triality).

	Q	U^c	D^{c}	L	E^{c}	N^{c}	H_u	H_d	meaning of q
B_3	0	-1	1	-1	-1	0	1	-1	$-\mathcal{B}+y/3$

Selection rule of B_3

The discrete charge of B_3 for arbitrary operator is $(-\mathcal{B} + y/3) \mod 3$.

 $\Delta \mathcal{B} = 3 \times \text{integer}$

for any process. (Castano, Martin [1994])

It dictates that baryon number can be violated by only $3 \times integer$ under the B_3 .

- Proton decay ($\Delta \mathcal{B} = 1$): Forbidden
- Neutron-antineutron oscillation ($\Delta B = 2$): Forbidden

Ensuring proton stability in the LV model (B_3)

- 1. Solve the $\mu\text{-problem}$ with $U(1)^\prime$ gauge symmetry.
- 2. Require \mathcal{L} violating terms such as $\lambda' LQD^c$. [B_3 is invoked]
- 3. Then proton is absolutely stable!

General $U(1)^\prime$ charges for the BV case

Use another condition

$$S^{m}U^{c}D^{c}D^{c}:mz[S] + z[U^{c}] + 2z[D^{c}] = 0$$

to reduce a parameter in the general U(1)' charges.

$$\begin{pmatrix} z[Q] \\ z[U^{c}] \\ z[D^{c}] \\ z[D^{c}] \\ z[L] \\ z[L] \\ z[N^{c}] \\ z[E^{c}] \\ z[H_{d}] \\ z[H_{u}] \\ z[S] \end{pmatrix} = \alpha' \begin{pmatrix} 1 \\ -4 \\ 2 \\ -3 \\ 0 \\ 6 \\ -3 \\ 0 \end{pmatrix} + \beta' \begin{pmatrix} 0 \\ 3(2+m) \\ -3(1+m) \\ 3(2-a+m)-1 \\ -3(1+m)-1 \\ 3(1+m) \\ -3(2+m) \\ 3 \end{pmatrix}$$

 \rightarrow It is a Z_3 symmetry. (N = z[S] after normalization to integers)

Discrete symmetry of the BV case

• First column ($\propto y$) is irrelevant \rightarrow Take $\alpha' = 0$ and $\beta' = 1$.

•
$$q[F_i] = z[F_i] - n_i N \rightarrow q[F_i] = z[F_i] \mod 3.$$

(q[Q])	(0)		$\begin{pmatrix} 0 \end{pmatrix}$	
	$q[U^c]$		3(2+m)		0	
	$q[D^c]$		-3(1+m)		0	
	q[L]		1		-1	
	$q[N^c]$	=	3(2-a+m)-1	$\mod 3 = -$	1	mod 3
	$q[E^c]$		-3(1+m) - 1		1	
	$q[H_d]$		3(1+m)		0	
	$q[H_u]$		-3(2+m)		0	
ĺ	q[S])	(3)		(0)	1

Compare with charge table. \rightarrow **BV model has** L_3 (lepton triality).

	Q	U^{c}	D^{c}	L	E^{c}	N^{c}	H_u	H_d	meaning of q
L_3	0	0	0	-1	1	1	0	0	$-\mathcal{L}$

Selection rule of L_3

The discrete charge of L_3 for arbitrary operator is $-\mathcal{L} \mod 3$.

 $\Delta \mathcal{L} = 3 \times \text{integer}$

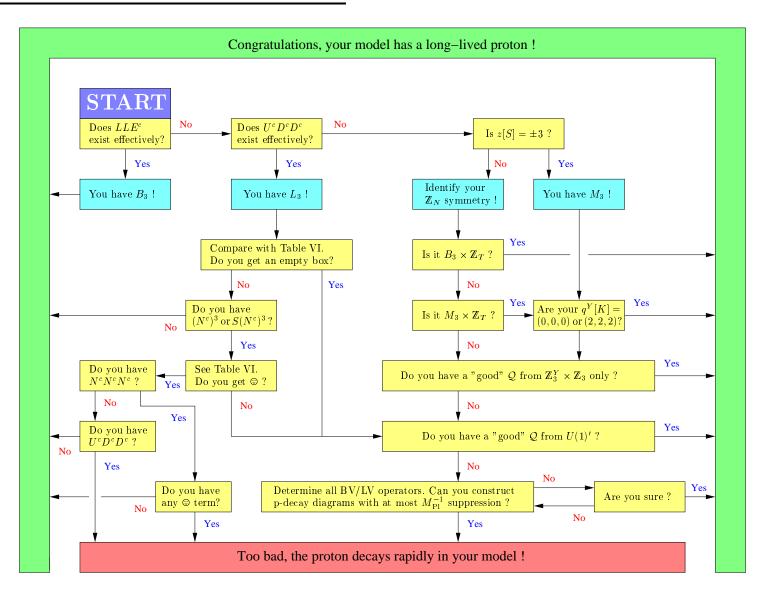
for any process.

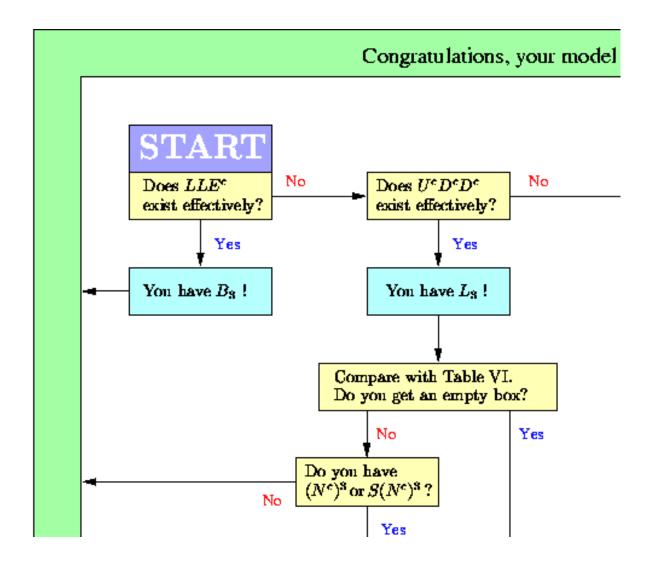
It dictates that \mathcal{L} can be violated by only $3 \times \text{integer}$ under the L_3 .

• $0\nu\beta\beta$ decay ($\Delta\mathcal{L}=2$): Forbidden

Proton still may decay if the decay products has 3, 6, \cdots leptons. Discrete symmetry argument is not enough. \rightarrow Need to consider the U(1)' symmetry and exotic fields (model-dependent) to ensure proton stability.

Flowchart to check proton stability





Ensuring proton stability in the BV model (L_3)

- 1. Solve the μ -problem with U(1)' gauge symmetry.
- 2. Require \mathcal{B} violating term $\lambda'' U^c D^c D^c$. [L_3 is invoked]
- 3. Forbid $N^c N^c N^c$ and $SN^c N^c N^c$ by the U(1)' charges^a.

4. Then proton is sufficiently (up to dimension 5) stable!

^a It holds in our choice of colored exotics (K_i , K_i^c) which have integer hypercharges (under normalization of y[Q] = 1).

Proton and dark matter without R-parity

Examples of anomaly-free U(1)' charge assignments with stable proton Free to be scaled by any normalization and shifted by hypercharge.

			LV (B_3)			BV (L3)					
	I	I	III	IV	V	I	П	III	IV	V	VI
z[Q]	1	3	3	3	4	1	3	15	0	0	0
$z[U^c]$	8	24	24	24	5	2	6	30	3	9	9
$z[D^c]$	-1	-3	-3	-3	-4	-1	-3	-15	0	0	0
z[L]	0	0	0	0	-9	-2	-6	-30	1	3	3
$z[E^c]$	0	0	0	0	9	2	6	30	-1	-3	-3
$z[N^c]$	0	0	0	0	9	2	6	30	-1	-3	-3
$z[H_u]$	-9	-27	-27	-27	-9	-3	-9	-45	-3	-9	-9
$z[H_d]$	0	0	0	0	0	0	0	0	0	0	0
z[S]	9	27	27	27	9	3	9	45	3	9	9
$z[K_1]$	-5	-13	-23	-25	-5	-1	-7	-17	-3	-7	-5
$z[K_2]$	-2	-4	-8	-7	-5	-1	-4	-20	0	-1	1
$z[K_3]$	1	2	1	-1	-5	-1	-4	-11	0	2	1
$z[K_1^c]$	-4	-14	-4	-2	-4	-2	-2	-28	0	-2	-4
$z[K_2^c]$	-7	-23	-19	-20	-4	-2	-5	-25	-3	-8	-10
$z[K_3^c]$	-10	-29	-28	-26	-4	-2	-5	-34	-3	-11	-10

 $y[K_i] = \{ \tfrac{1}{3}, -\tfrac{2}{3}, -\tfrac{2}{3} \}$

Recap of the goal

Construct a stand-alone R_p violating TeV scale SUSY model without

- 1. μ -problem: U(1)'
- 2. proton decay problem: U(1)'
- 3. dark matter problem (non-LSP dark matter)

A dark matter candidate without introducing an independent symmetry?

Proton and dark matter without R-parity

LUP dark matter (in the $R\mbox{-}parity$ conserving UMSSM)

Hur, HL, Nasri [arXiv:0710.2653]

SM-singlet (hidden sector) fields

SM-singlet exotics (hidden sector fields): often required for anomaly cancellations with U(1)'.

- $[\text{gravity}]^2 U(1)'$: $\sum_i z[F_i] = \dots + z[X] = 0$
- $[U(1)']^3$: $\sum_i z[F_i]^3 = \dots + z[X]^3 = 0$

We consider Majorana fields for simplicity.

$$W_{\text{hidden}} = \frac{\xi}{2}SXX$$

These hidden sector fields (X) are neutral and massive particles.

 \rightarrow Potentially dark matter candidate if they are stable.

How to stabilize hidden sector field? Introduce "U-parity"

$$U_p[MSSM] = even, \quad U_p[X] = odd$$

• Lightest U-parity Particle (LUP): Lightest $X \to {\rm stable}$ either fermion (ψ_X) or scalar (ϕ_X) component

It can be invoked as a residual discrete symmetry of the U(1)'.

$$Z_N^{hid}: g_2^{hid} = U_2 \quad (U\text{-parity})$$
$$z[F_i] = q[F_i] + 2n_i$$

		Q	U^{c}	D^{c}	L	E^{c}	N^{c}	\overline{H}_{u}	H_d	X	meaning of q
L	J ₂	0	0	0	0	0	0	0	0	-1	$-\mathcal{U}$ (X number)
	(Other a still second second to be shown in the first test V)										

(Other exotics: assumed to be heavier than the lightest X.)

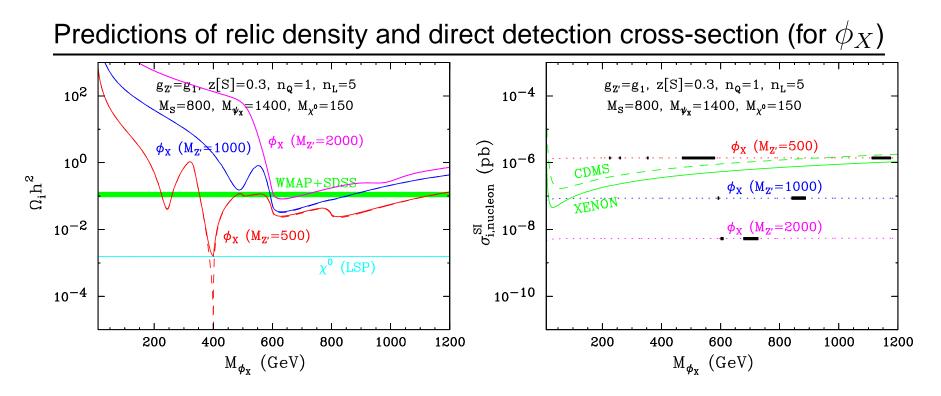
Lightest U-parity Particle (LUP)

- It is a neutral, massive, and stable particle.
- It can be either a fermion or a scalar.
- It is neither the RH neutrino nor RH sneutrino ($H_u LN^c$).
- It naturally arises when an extra U(1) gauge symmetry is present.

Annihilation channels for the LUP dark matter For ψ_X (fermionic) LUP,

- 1. $\psi_X \psi_X \to f \overline{f}$ (Z' mediated s-channel)
- 2. $\psi_X \psi_X \to \widetilde{f} \widetilde{f}^*$ (S mediated s-channel, Z' mediated s-channel)
- 3. $\psi_X \psi_X \to SS$, Z'Z' (S mediated s-channel, ψ_X mediated t-ch)
- 4. $\psi_X \psi_X \to SZ'$ (Z' mediated s-channel, ψ_X mediated t-channel)
- 5. $\psi_X \psi_X \to \widetilde{S}\widetilde{S}$ (Z' mediated s-channel, ϕ_X mediated t-channel)
- 6. $\psi_X \psi_X \to \widetilde{Z}' \widetilde{Z}'$ (ϕ_X mediated *t*-channel)
- 7. $\psi_X \psi_X \to \widetilde{S}\widetilde{Z}'$ (S mediated s-channel, ϕ_X mediated t-channel)

and also similarly for ϕ_X (scalar) LUP.



[Simulated with micrOMEGAs + newly constructed UMSSM model file]

LUP (+ LSP) dark matter can satisfy both the relic density and direct detection constraints.

Multiple dark matters scenario with R-parity and U-parity LUP was first introduced in a R-parity conserving U(1)'-extended MSSM.

- R-parity: for proton stability (at renormalizable level) \rightarrow LSP dark matter (SM charged particle: MSSM sector)
- U-parity: as a remnant of $U(1)^\prime$
 - \rightarrow LUP dark matter (SM uncharged particle: hidden sector)

For each sector, discrete symmetries came from different origins.

Proton and dark matter without R-parity

Residual discrete symmetry extended to hidden sector

: LUP dark matter in the RPV-UMSSM

HL [arXiv:0802.0506]

Fermilab 2008

Hye-Sung Lee

Two discrete symmetries

 Z_N is isomorphic (structure-preserving mapping in both directions) to $Z_{N_1} \times Z_{N_2}$, if N_1 and N_2 are coprime (their GCD = 1) and $N = N_1 N_2$.

$$Z_N = Z_{N_1} \times Z_{N_2}$$

(ex: $Z_6 = Z_2 \times Z_3$).

What does it mean?

• No need of two gauge origins for Z_{N_1} , Z_{N_2} (if N_1 , N_2 coprime).

$$U(1)' \to Z_{N_1}, \quad U(1)'' \to Z_{N_2}$$

• Only one U(1) which has Z_N as a residual discrete symmetry.

$$U(1)' \to Z_N = Z_{N_1} \times Z_{N_2}$$

Discrete symmetries over the MSSM and the hidden sectors Consider $Z_N^{tot} = Z_{N_1}^{obs} \times Z_{N_2}^{hid}$ (where N_1 and N_2 are coprime) as the most general residual discrete symmetry from **a common** U(1)'gauge symmetry.

$$Z_{N}^{tot}: g_{N}^{tot} = B_{N_{1}}^{b} L_{N_{1}}^{\ell} \times U_{N_{2}}^{u}$$
$$= B_{N}^{bN_{2}} L_{N}^{\ell N_{2}} U_{N}^{uN_{1}}$$

Simplest example: $U(1)' \rightarrow Z_6(=B_3 \times U_2)$

The residual discrete symmetry of the $U(1)^\prime$ is therefore

$$Z_6^{tot}: g_6^{tot} = B_6^2 U_6^3$$

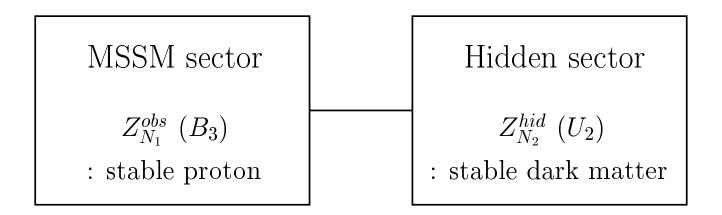
and its total discrete charge is given by $q = 2q_B + 3q_U \mod 6$.

$$q[Q] = 0 \qquad q[U^c] = -2 \qquad q[D^c] = 2$$
$$q[L] = -2 \qquad q[E^c] = -2 \qquad q[N^c] = 0$$
$$q[H_u] = 2 \qquad q[H_d] = -2 \qquad q[X] = -3$$

(Other exotic fields: assumed to be heavier than proton and the LUP \rightarrow not stable due to the discrete symmetry.)

A unified picture of the stabilities in the observable and hidden sectors

$$U(1)' \to Z_{N_1}^{obs} \times Z_{N_2}^{hid}$$



A single U(1)' gauge symmetry provides stabilities for proton (MSSM sector) and dark matter (hidden sector).

Light gravitino problem of the GMSB

In the gauge mediated SUSY breaking (GMSB) scenario, gravitino is the LSP.

$$\left(m_{3/2} \sim \frac{\langle F \rangle}{M_{Pl}}\right) \ll \left(m_{\text{soft}} \sim \frac{\alpha_a}{4\pi} \frac{\langle F \rangle}{M_{\text{mess}}}\right)$$

The gravitino relic density (assuming R-parity) is approximately given by (Pagels, Primack [1982])

$$\Omega_{3/2}h^2 \sim \frac{m_{3/2}}{1 \text{ keV}}.$$

Dark matter relic density constrains $m_{3/2} \sim \mathcal{O}(\text{keV})$

→ warm dark matter, which cannot explain the matter power spectrum.
(Viel et al. [2005])

Cure of light gravitino problem with LUP and R-parity violation

When the LUP is the only (or dominant) dark matter, there is no conflict with matter power spectrum.

- lighter gravitino LSP ($m_{3/2} \ll 1 {\rm ~keV}$): maybe still long-lived (small coupling and mass) as a subdominant dark matter
- heavier gravitino LSP ($m_{3/2} \gg 1 {\rm ~keV}$): decays through the R-parity violating couplings

The next-to-lightest superparticle (NLSP) will decay into the SM particles through the R-parity violating processes before BBN.

 \rightarrow LUP in RPV model can be an appealing solution to the light gravitino problem of the GMSB. (Need numerical study).

Future studies

- 1. Extension of the hidden sector fields to the Dirac particles (Z_N^{hid} with $N \ge 2$ is possible), and explicit model buildings including L_3 etc.
- 2. Collider signals (RPV signals, LUP signals).
- 3. Indirect detection signals of the LUP dark matter.
- 4. Quantitative study of gravitino problem solution with RPV and LUP.

Proton and dark matter without R-parity

Summary

Fermilab 2008

Hye-Sung Lee

$R\mbox{-}parity$ conserving MSSM vs. $R\mbox{-}parity$ violating UMSSM

	R_p	$U(1)' \to B_3 \times U_p$
RPV signals	impossible	possible
μ -problem	not addressed	solvable ($U(1)^{\prime}$)
proton	unstable w/ dim 5 op. (R_p)	stable (B_3)
dark matter	stable LSP (R_p)	stable LUP (U_p)
light \widetilde{G} problem	not addressed	solvable

$R\mbox{-}parity$ conserving MSSM vs. $R\mbox{-}parity$ violating UMSSM

	R_p	$U(1)' \to B_3 \times U_p$
RPV signals	impossible	possible
μ -problem	not addressed	solvable ($U(1)^{\prime}$)
proton	unstable w/ dim 5 op. (R_p)	stable (B_3)
dark matter	stable LSP (R_p)	stable LUP (U_p)
light \widetilde{G} problem	not addressed	solvable

Conclusion: TeV scale U(1)' is an attractive alternative to R-parity.