Paper 07-03 Presented by C.R. Krishna and R.J. McDonald Brookhaven National Laboratory

2003 National Oilheat Research Alliance Technology Symposium

2003 New England Fuel Institute Convention & 30th North American Heating and Energy Exposition Hynes Convention Center, Prudential Center Boston, Massachusetts June 9-10, 2003

• What is Biofuel?

- A liquid fuel derived primarily from plant sources
 - Ex: Biodiesel from vegetable oils, such as soy etc.
 - Biodiesel is now available to ASTM D6751-02
 - Biodiesel specified for diesel engines mainly
 - ASTM considering specification for heating oil
 - Potentially cheaper biofuels for boilers
 - Less stringent requirements than in D6751-02

- Biodiesel is typically made by transesterification
 - Vegetable oil source reacted with alcohol
 - Process is such that 'backyard' production exists!
 - In commercial production, glycerine and fatty acid contents reduced to meet ASTM specifications
 - Biofuel used in tests is higher in fatty acid content
 - It is a byproduct of a vitamin E plant

- What is in this Presentation
 - Results from boiler tests of biodiesel blends in No. 2 fuel oil
 - Results from field tests of biodiesel blends
 - Compare important properties of biodiesel and a biofuel
 - Results from boiler tests of biofuel blends in No. 2 fuel

Viscosity of Biodiesel Blends

Biodiesel in Blend, Percent

Flash Points For Biodiesel

Pour Point of Heating Oil Blends

- The previous slides on property suggest
 - Blends up to 50% of this biodiesel (B50) can be burned in place of ASTM # 2 fuel
 - Properties relevant to storage, additives and materials have to be tested
 - Economics have to be established
 - Field tests have been successful with B20

•Properties of biofuel, soy methyl ester (SME), will be compared with those of biodiesel

Viscosity of biodiesel and biofuel compared

Flash Points of biodiesel and biofuel compared

Pour Points of biodiesel and biofuel compared

- Conclusions from comparing biofuel and biodiesel properties
 - Viscosity of the biofuel blends are higher and higher than ASTM # 2 fuel as this sample of fuel oil itself has a high value
 - Flash points are comparable
 - Pour points for the biofuel are higher and again because of the higher value for the base # 2 fuel
- Blends of up to 50% of this biofuel could be burned as a replacement for # 2 fuel with the same caveats as with biodiesel regarding storage etc.

Combustion properties

Biodiesel flame

Fuel oil flame

Residential Boiler Test Setup

Residential Boiler Results

CO vs O2 compared

Residential Boiler Results

NOx from biofuels compared

- Conclusions from residential boiler tests
 - Carbon monoxide emissions are similar for both blends and the ASTM # 2 fuel at similar excess air (stack O2)
 - Nitrogen oxide (NOx) emissions are lower for the blends compared to # 2 fuel at similar stack O2 levels

NOx in Commercial Boiler compared

- Conclusion from commercial boiler tests
 - NOx emissions are reduced with the blending of both biodiesel and SME
 - 100% biodiesel results in lower values of NOx than 100% SME

- Field Tests of Biodiesel blends
 - Conducted by Abbott and Mills in Newburgh, NY
 - Second season of supplying B20 to about 100 homes
 - Over 60,000 gallons delivered
 - Report no fuel related problems thus far in storing, blending, delivery and use

- Distributors of Bio-Diesel for the Transportation Sector are Already Established and Growing
- Opportunities Exist for the Oilheat Industry To Take Advantage of this Green Fuel
- Organizations and Contacts Pioneering the Use of Bio-heating Fuels
 - Brookhaven National Laboratory C.R. Krishna
 - Abbott & Mills Ralph R. Mills
 - Warwick School District Paul Nazzaro
 - Chewonki Foundation Peter Arnold
 - Frontier Oil Company Brad Taylor
 - Purdue University Nick Vanlaningham

Conclusions

- **Biodiesel and the biofuel tested here can be burned** in blends up to 50% with little change in performance
- Field tests with 20% biodiesel blend has been successful
- Long term use in higher than 20% blend needs study
- Ultra low sulfur, NOx reductions, CO2 recycle and biodegradability are environmental benefits
- Cost of biodiesel is higher; biofuels may be cheaper
- Marketability of environmental benefits needs study

Acknowledgements

- Thanks to NYSERDA for support of our work
 - Thanks to Ray Albrecht for encouragement and support
 - Thanks to NOCO for support of the SME work
 - Thanks to ADM and Gerry Downing for the fuel and for cooperative support
- Thanks to Yusuf Celebi and George Wei for excellent work in the laboratory
 - Thanks to Tom Butcher for support

