Poster Presentation C.R. Krishna Brookhaven National Laboratory Energy Sciences and Technology Energy Resources Division

What is Biodiesel?

- Mono-alkyl esters of fatty acids (i.e. methyl or ethyl esters),
 - Sometimes called soy methyl esters (SME)

100 lb triglyceride
soy oil+10 lb alcohol = 10 lb glycerine (byproduct) + 100 lb Mono-alkyl ester
BiodieselnethanolBiodiesel

- In USA, must meet the requirements of ASTM D6751
- Typically used as blend with diesel/heating Oil

Biodiesel production in the USA

Biodiesel Blends in Microturbines Goals/Objectives (1)

- ••Assess the performance of biodiesel blends in a Capstone 30 kW microturbine
 - Measure blend properties
 - Characterize injector spray with the blends
 - Drop size distribution measured with Malvern spray analyzer

Biodiesel Blends in Microturbines Goals/Objectives (2)

- Measure Combustion performance
 - Efficiency, emissions
- Measure performance in 'long-term' test
 - Changes in efficiency, emissions
 - Changes in internals parts
 - Deposits, corrosion, wear

Biodiesel Blends in Microturbines Biodiesel Blend Properties (1)

• Some Fuel Properties of Biodiesel blends in ASTM #2 heating oil

	ASTM	No. 2	B 10	B20	B30	B 100
Flash Point ⁰ C	38 min	63	64	66	68	123
Pour Point ⁰ C, max	-6	-24	-21	-18	-15	0
Viscosity at 40°C,	1.9/3.4	2.67	2.90	2.95	3.1	4.4
Mm ² /s						
Heating Value, Btu/gal	140,000					126,000-130,000
kJ/l	(~39,000)					(35,100-36,200)
Specific gravity	0.85					0.885

Biodiesel Blends in Microturbines Blend properties (2)

Viscosity of Biodiesel Blends

Biodiesel in Blend, Percent

Biodiesel Blends in Microturbines Blend Properties (3)

Flash Points For Biodiesel

Malvern Spray Analyzer set up (1)

Malvern Spray Analyzer set up (2)

Biodiesel Blends in Microturbines Major Milestones

- Characterize Injector--- End of second quarter
- Complete assessment of performance tests--- End of sixth quarter
- Deliver final report--- End of eighth quarter

Team Members and Partners

Brookhaven National Laboratory

- C.R. Krishna, Yusuf Celebi, Roger McDonald,
 - **Toshi Sugama (Corrosion studies), Thomas Butcher**
- Capstone Corporation
 - Steve Gillette, Craig Smugeresky
 - Upgraded fuel system and control software
 - Will provide injector for spray measurement
- Contacts
 - Oak Ridge National Laboratory (ORNL)
 - John Storey
 - Coordinate with ORNL work on opportunity fuels

fuels

Biodiesel Blends in Microturbines Benefits to DE program goals

- Promote the use of biofuels in microturbines
 - Obvious green gas reduction benefit
 - Potential other emission reductions if demonstrated
 - NOx, PM
 - Could benefit long-term operations due to
 - Lower sulfur levels
 - Lower flame particulate levels

Technology Transfer and/or outreach activities

None so far

Biodiesel Blends in Microturbines Preliminary results

- Only preliminary test results available at this time
 - Base line and blends of B 5 and B 20 tested
 - Limited measurements of combustion performance
 - Following slide gives a sample of the results

Biodiesel Blends in Microturbines Capstone Turbine

Cutaway of the Capstone 330 Turbine

From http://www.microturbine.com/

Biodiesel Blends in Microturbines Preliminary NOx emission data

Possible Barriers to successful performance

- 'Lubricity' effects if found
- Viscosity limits at high biodiesel blends
- Flash point limits at high blends
- Effects on non-metallic materials in contact with blends
- 'Unexpected' corrosion

Biodiesel Blends in Microturbines FY 2006 and 2007 plans

- Measure injector spray characteristics
- Complete combustion tests
- Complete long-term tests

