

Hydrogen Generation from Biomass-Derived Carbohydrates via Aqueous-Phase Reforming October 23, 2006

Aqueous Phase Reforming (APR) A Revolutionary Process Platform

Reforming Thermodynamics

⇒ Equilibrium is favorable for reforming of oxygenated compounds at low temperatures.

Reaction Pathways

Intellectual Property

- Virent is the only company in the world that can commercialize the APR technology
- Four patents issued and licensed from the WARF:
 - One continuation pending
 - Covers all probable compositions and conditions needed for liquid phase reforming
- Virent: Sole Technology Licensee
 - Exclusive worldwide license
 - Right to sublicense
- Minimum of eight new patent applications to be filed this quarter by Virent

Effects of Feed Concentration

- System Efficiency
 - Combustion of Hydrogen for Process Energy Required
 - Higher Feedstock
 Concentrations Reduce Heating Requirements

APR Improvements

(Thermal Efficiency) Based on LHV

> **Theoretical** 85 % LHV

Energy Densities of Oxygenated Fuels

Fuel	Energy Density (Wh/liter)
Ethylona Clysol	(vvn/nter)
$(1:1 \text{ H}_2\text{O:C})$	3700
Glycerol	3736
(1:1 H ₂ O:C)	5750
Sorbitol	3809
(1:1 H ₂ O:C)	5007
Glucose	3585
(1:1 H ₂ O:C)	5505
Methanol	3577
(1:1 H ₂ O:C)	5514
Li Ion Dottom	200
LI-ION Battery	(Current)

Energy densities based on hydrogen produced via APR process

Ethylene Glycol, Glycerol, Sorbitol, and Glucose are nonflammable, non-toxic, and have higher energy densities than methanol

Viable fuels for combined APR process and fuel cell technologies for future replacement of batteries

Virent's 1st Generation Prototype

Integrated 300 cc/min system.

99.999% pure H2 with palladium filter.

Hydrogen Generation for Lab Use.

Can be significantly reduced in size.

DOE H₂ from Glucose

Timeline

- Start Sept 2005
- Finish Aug 2008 (Tentative)
- 10 % complete

Budget

- Total project funding
 - DOE share -1,942 K
 - Contractor share 679 K
- Funding received in FY05
 - 100 K
- Funding received for FY06
 - 200 K
- Funding Reduction in FY06 resulted in limiting work to catalyst development

Barriers

- Feedstock Cost Reduction
 - 2005 Feedstock Cost Contribution \$3.80/gge
 - 2010 Feedstock Cost Contribution \$1.80/gge
- By 2010, reduce H₂ costs to \$3.60/gge
 Overall Efficiency 66%
- By 2015, reduce H_2 cost to \$2.50/gge

Partners

- ADM
- University of Wisconsin

Projected Cost of Hydrogen Generation using the APR Process

10% ROI, 7 Year Depreciation, Reformer Replacement after 11 years Costs do reflect \$0.43/kg byproduct credit for 45% Yield case USDOE Model H2A

Capital Cost Includes APR PSA Compression Storage Dispensing

Current Performance Sorbitol 45% Yield

Projected Performance 70% Yield

Cost Model 6/6/2006 RDC/Virent

Glycerol Supply / Demand

Global Hydrogen Market

Reactor Performance

Single Pass Conversion 50 wt% Glycerol Reactor Thermal Efficiency

 $100 \times \left(1.0 - \frac{\text{Process Energy}}{\text{LHV of Product Gas}}\right)$

Process Thermal Efficiency 78.5 % of LHV of Feed

Basic System Flow Schematic

APR: ICE Integration Madison Gas & Electric Project

- Can operate in "unteathered" mode
- Can be run in Combined Heat and Power mode
- Can meet cost & reliability targets with near zero emissions

Green Energy Machine (GEM) Alpha Unit

Lurgi's Biodiesel Production from Seed Oils

Conversion of Crude Glycerol

Biodiesel Glycerol Composition

Observed Contamination Effects

- Methanol Increases Hydrogen Yield
- Can Process Stream with Free Fatty Acid/Soap Content up to 3 %
- Can Process Streams with Trace Amounts of Biodiesel
- High Concentrations of Salts (greater than 1 %) cause plugging problems in APR reactor
- Chloride Salts cause corrosion problems
- Evaporation Treatment
 - Reduces salt content
 - Low levels of sulfates (50 100 ppm)

Utilization of Glycerol

