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This article describes an accurate and fast method for fiber orientation

mapping using multidirectional diffusion-weighted magnetic resonance

(MR) data. This novel approach utilizes the Fourier transform

relationship between the water displacement probabilities and diffu-

sion-attenuated MR signal expressed in spherical coordinates. The

radial part of the Fourier integral is evaluated analytically under the

assumption that MR signal attenuates exponentially. The values of the

resulting functions are evaluated at a fixed distance away from the

origin. The spherical harmonic transform of these functions yields the

Laplace series coefficients of the probabilities on a sphere of fixed radius.

Alternatively, probability values can be computed nonparametrically

using Legendre polynomials. Orientation maps calculated from excised

rat nervous tissue data demonstrate this technique’s ability to accurately

resolve crossing fibers in anatomical regions such as the optic chiasm.

This proposed methodology has a trivial extension to multiexponential

diffusion-weighted signal decay. The developed methods will improve

the reliability of tractography schemes and may make it possible to

correctly identify the neural connections between functionally connected

regions of the nervous system.

D 2006 Elsevier Inc. All rights reserved.
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Introduction

The diffusional attenuation of MR signal in pulsed field gradient

experiments (Stejskal and Tanner, 1965) has been exploited to
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characterize diffusional anisotropy in fibrous tissues like muscle

(e.g. Cleveland et al., 1976) and white matter in animal (e.g.

Moseley et al., 1990) and human (e.g. Chenevert et al., 1990)

nervous tissue. When the narrow pulse condition is met, i.e. the

duration of the applied diffusion sensitizing gradients (d) is much

smaller than the time between the two pulses (D), the fundamental

relationship between the MR signal attenuation and average

displacement probabilities P(R) is given by a Fourier integral

(Callaghan, 1991):

P Rð Þ ¼
Z

E qð Þ exp �2piq IRð Þdq; ð1Þ

where R is the displacement vector and q is the reciprocal space

vector defined by q = gdG/2p, where g is the gyromagnetic ratio

and G is the gradient vector. In the above expression E(q) = S(q)/

S0, where S(q) is the signal value associated with the reciprocal

space vector q and S0 is the signal when no diffusion gradient is

applied, i.e. when q = 0.

Diffusional anisotropy is well-reflected in the water displace-

ment probabilities, and it is expected that, in fibrous tissues, the

orientations specified by large displacement probabilities will

coincide with the fiber orientations. One could in principle

estimate these displacement probability functions by using Eq.

(1) and the fast Fourier transform (FFT), however, this would

require data points all across the space spanned by the diffusion

gradients (or q vectors). This q-space approach would require very

high gradient strengths and long acquisition times that are difficult

to achieve in clinical settings (Basser, 2002). Although attempts

have been made to acquire such data sets in vivo (Wedeen et al.,

2000), the results typically suffer from undersampled q-space and

sacrificed spatial resolution.

More than a decade ago, Basser et al. (1994a,b) introduced an

imaging method called diffusion tensor imaging (DTI) that replaced

the apparent diffusion coefficients that had been calculated in

diffusion-weighted imaging studies with a symmetric, positive-
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Fig. 1. Apparent diffusivity (left column) and displacement probability

(right column) profiles calculated from simulations of 1-, 2- and 3-fiber

systems (top to bottom). Black lines depict the exact orientations of the

simulated fibers specified by the azimuthal angles /1 = 30, /2 = {20-, 100-}
and /3 = {20-, 75-, 135-} for the 1-, 2- and 3-fiber systems respectively.

Polar angles for all fibers were taken to be 90- so that all fibers lie on the

image plane. The peaks of the diffusivity profile do not necessarily yield the

orientations of the distinct fiber populations. This can sometimes lead to

erroneous fiber structure interpretation from HARDI data.
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definite, second-order tensor. This model required only 7 diffusion-

weighted images with clinically feasible diffusion gradient

strengths. This approach enabled simple estimation of diffusional

anisotropy and predicted a fiber orientation specified by the

principal eigenvector of the diffusion tensor. Despite its modest

requirements, the results achieved using DTI have been very

successful in regions of the brain and spinal cord with substantial

white matter coherence and have enabled the mapping of some

anatomical connections in the central nervous system (e.g. Conturo

et al., 1999; Mori et al., 1999; Basser et al., 2000).

DTI assumes a displacement probability characterized by an

oriented Gaussian probability distribution function (PDF) whose

covariance matrix is proportional to the diffusion tensor. Such a PDF

has only one orientational mode and, as such, cannot resolve more

than one fiber orientation inside a voxel. This shortcoming of DTI

has prompted interest in the development of more sophisticated

models. Tuch et al. (1999) introduced a high angular resolution

diffusion imaging (HARDI) method that suggested that the apparent

diffusion coefficients could be evaluated along many orientations

independently without fitting a ‘‘global’’ function to the data, i.e.

using the Stejskal–Tanner expression (Stejskal, 1965):

E uð Þ ¼ e�bD uð Þ; ð2Þ

where u is a unit vector specifying the direction of the diffusion

sensitizing gradient and E(u) is the signal attenuation value on a

sphere in q-space whose radius is related to the diffusion weighting

factor b (where b = 4pq2t and t = D � d/3 is the effective diffusion
time). The result is an angular distribution of apparent diffusivities,

D(u), herein referred to as the diffusivity profile. It has been shown

that the diffusivity profile has a complicated structure in voxels with

orientational heterogeneity (von dem Hagen and Henkelman, 2002;

Tuch et al., 2002). Several studies proposed to represent the

diffusivity profile using a spherical harmonic expansion (Frank,

2002; Alexander et al., 2002). A schematic description of this

approach is given below:

D uð ÞV
SHT

LS
alm; ð3Þ

where SHT and LS stand for spherical harmonic transform and

Laplace series respectively.

However, one major difficulty with employing HARDI in

studies involving orientation mapping has been that the peaks of the

diffusivity profile do not necessarily yield the orientations of the

distinct fiber populations (Fig. 1). Özarslan and Mareci (2003) have

shown that the (SHT) approach could be seen as a generalization of

DTI since the coefficients of the Laplace series (obtained from the

SHT of the diffusivity profile) are related to the components of

higher-order Cartesian tensors. Later, Özarslan et al. (2004a,b)

proposed to use the higher-order Cartesian tensors to generate

signal values (assuming exponential attenuation) on the three-

dimensional q-space and evaluated an FFT to approximate the

displacement probabilities. Jansons and Alexander (2003) proposed

a method to calculate a displacement probability map from HARDI

data sets by enforcing the unusual condition that the probabilities

are nonzero only on a spherical shell. Although the results are

encouraging, both of these schemes are computationally expensive.

Another generalization of DTI that employs higher-order

Cartesian tensors was proposed by Liu et al. (2003). This

approach necessitates sampling of q-space in several spherical

shells, undesirably increasing the required number of acquisitions.
Furthermore, it is difficult to reliably extract the phase of the MR

signal required by this scheme. Tuch et al. (2003) proposed a

method in which the radial integral of the displacement PDF is

obtained by the spherical Radon transform. This scheme provides

an approximation to the true radial integral because the result is a

convolution of the probability values with a 0-th order Bessel

function (Tuch, 2004) that may give rise to an undesirable

‘‘contamination’’ of the probability along one direction with

probabilities from other directions. Finally, there have been

several studies that have modeled diffusion using multicompart-

mental models. These studies assume distinct fiber populations

with no exchange. Moreover, the number of such compartments

has to be prespecified (Inglis et al., 2001; Parker and Alexander,

2003; Maier et al., 2004; Assaf et al., 2004) or the signal from

each fiber population is undesirably forced to have prespecified

attributes (such as anisotropy) (Tournier et al., 2004).

In this work, we introduce a new method, called the diffusion

orientation transform (DOT), that describes how the diffusivity

profiles can be transformed into probability profiles. Our method is

based on the HARDI acquisition scheme and can be extended to

more general acquisition strategies. We express Eq. (1) in spherical

coordinates then, under the monoexponential attenuation assump-

tion, evaluate the radial part of the integral analytically. The

probability values on a fixed radius can be reconstructed either
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directly or parametrically in terms of a Laplace series. We prove

that this expansion converges to the true probability profile. Our

technique can be regarded as a transformation of diffusivity to

probability profiles whose peaks correspond to distinct fiber

orientations (Fig. 1). Our method is robust and fast. Although we

present results on excised, chemically fixed rat nervous tissue, the

requirements of our method make it suitable for the clinical

environment. We discuss our assumption that the MR signal

decays monoexponentially and further demonstrate that a trivial

extension to multiexponential attenuation results in improved

reconstruction of the probabilities.
Theory

In this section, we show that, starting from the signal attenuations

of a HARDI acquisition, it is possible to calculate the orientation

maps without the need to fit a particular model to the data. We

achieve this by two different approaches.

Parametric reconstruction

The Fourier transform that relates the signal attenuation to the

water displacement probability Eq. (1) can be written in spherical

coordinates. This is a consequence of the pointwise convergent

expansion of the plane wave in spherical coordinates (Schwabl,

1989) given by

eF2piq IR ¼ 4p
XV
l ¼ 0

Xl
m¼�1

Fið Þl jl 2pqrð ÞYlm uð Þ4Ylm rð Þ; ð4Þ

where q = qu and R = rr, with q = |q| and r = |R|. Note that

jl(2pqR) is the l-th order spherical Bessel function whereas Ylm(u)

is the spherical harmonic function. Inserting this expression into

Eq. (1), we get

P R0rð Þ ¼
XV
l ¼ 0

Xl
m ¼ �l

�ið ÞlYlm rð Þ
Z

duYlm uð Þ4Il uð Þ; ð5Þ

where

Il uð Þ ¼ 4p
Z V

0

dqq2jl 2pqR0ð Þ exp �4p2q2tD uð Þ
� �

: ð6Þ

Here, r was set to a particular radius R0, and it is assumed

that signal attenuates along each radial line in q-space as

described by the Stejskal–Tanner relationship given in Eq. (2).

Note that the function P(R0r) is not the isosurface of the three-

dimensional displacement probability function, but it is the

probability of finding the particle, initially at the origin, at the

point R0r, that is, we will be interested in the probability values

on a sphere of radius R0.

The integral in Eq. (6) can be evaluated analytically which

makes it possible to efficiently compute the values of the Il(u)

function. See Appendix A for a detailed description. Since Il(u) is a

function of orientation, we can expand it in a Laplace series, i.e.

Il uð Þ ¼
XV
lV¼ 0

XlV
mV¼�lV

allVmVYlVmV uð Þ; ð7Þ

where the coefficients allVmVare given by an SHT,

allVmV ¼
Z

YlVmV uð Þ4Il uð Þdu: ð8Þ
Comparing the integration over u in Eq. (5) with the expression

in Eq. (8), it can be seen thatP(R0r) has the Laplace series expansion

P R0rð Þ ¼
XV
l ¼ 0

Xl
m ¼ �l

plmYlm rð Þ ð9Þ

with

plm ¼ �ið Þlallm ¼ �1ð Þ1=2allm; ð10Þ

where in the last step we have used the fact that l is even. The

convergence of the resulting series in Eq. (5) to the desired

probability value is proved in Appendix D. Note that the coefficients

of this Laplace series for a particular value of l come from the l-th

order Laplace series coefficients of Il(u).

Implementation aspects

In summary, given the HARDI data, the estimation of the

probability of finding the particle at the point R0r away from the

origin involves the following steps:

(1) Compute the diffusivity D(u) along each direction using Eq.

(2).

(2) Then, compute Il(u) using Eq. (27) or Eq. (28) with Table 2.

(3) For each l, compute allm, the l-th order spherical harmonic

transform of Il(u).

(4) Then, evaluate Eq. (9).

Implementation of the items 1, 2 and 4 above are trivial. Our

data acquisition scheme involves sampling the sphere on the

vertices of a tessellated icosahedron. With this method, 46 or 81

points are sampled on the unit hemisphere from second- or third-

order tessellations respectively. Following Ritchie and Kemp

(1999), we compute the spherical harmonic transform given in

Eq. (8) by discretizing the integrals on the sphere with integration

weights calculated from the areas of the polygons specified by

the dual tessellation. We also exploit the fact that the probabilities

are real. This condition ensures that the expression

pl �mð Þ ¼ �1ð Þmplm4 ð11Þ

holds. Thus, it is unnecessary to evaluate the integrals that generate

plm coefficients with negative m values. The calculation of the allm
coefficients takes only 25 to 60 s for the entire data set, depending on

the matrix size and number of angular samples, when using a modest

Athlon XP 1800 processor (AMD, Sunnyvale, CA).

Schematic description of themethod is described below.Note that

this is our revision of Eq. (3) provided in the Introduction section.

D uð Þ!Eq: 28ð Þ
Il uð Þ!SHT

allm!
� �1ð Þl=2

plm!
LS

P R0rð Þ ð12Þ

Nonparametric reconstruction

An alternative form to the Rayleigh expansion in Eq. (4) is

given by

eF2piq IR ¼
XV
l ¼ 0

Fið Þl 2l þ 1ð Þjl 2pqrð ÞPl u I rð Þ; ð13Þ

which is just a consequence of the addition theorem for spherical

harmonics provided in Eq. (42). In Eq. (13), Pl is the l-th order

Legendre polynomial. Employing this form of the Rayleigh

expansion in our formalism does not change the radial integral,
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expression in Özarslan et al. (2005), where the 3 in the argument of the

natural logarithm is replaced by 4p. The reason for this modification stems

from the difference between the normalization conditions imposed on the

functions D (u) in Özarslan et al. (2005) and P(R r) in this work.
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and the probability values are given by

P R0rð Þ ¼ 1
4p

XV
l ¼ 0

�ið Þl 2l þ 1ð Þ
Z

duIl uð ÞPl u I rð Þ

¼
XV
l ¼ 0

Z
du �1ð Þ1=2 2l þ 1

4p
Pl u I rð ÞIl uð Þ;

ð14Þ

with the definition of Il as in Eqs. 6, 27, 28.

The above expression provides an alternate estimation of the

results that could be obtained from the parametric reconstruction.

The schematic description of the nonparametric reconstruction is

given by

D uð Þ!Eq: 28ð Þ
Il uð Þ!Eq: 14ð Þ

P R0rð Þ ð15Þ
The above formulation can be easily expressed in matrix form.

Suppose that the HARDI experiment is performed with diffusion

sensitizing gradients applied along NG directions. The direction

describing the j-th gradient will be represented with the unit vector

uj. Similarly, let ri denote the unit vector describing the i-th

direction along which the probability will be estimated where the

total number of such directions is NR. Then, Eq. (14) can be

expressed simply by

T ¼
XV
l ¼ 0

MlZ l; ð16Þ

where T is the NR dimensional vector of probabilities. In Eq. (16),

the components of the NG dimensional vector Zl are given by

Z lð Þj ¼ Il uj
� �

; ð17Þ

and the components of the NR � NG dimensional matrix Ml are

given by

Mlð Þij ¼
wj

4p
�1ð Þl=2 2l þ 1ð ÞPl uj I ri

� �
; ð18Þ

where wj are the integration weights associated with each of the

gradient directions. Note that the matrices Ml can be computed

once for each gradient sampling scheme. Therefore, the only

computational burden comes from the pixel-by-pixel estimation of

Il(uj) (which is a straight forward operation) and the matrix

multiplication in Eq. (16).

Parametric vs. nonparametric reconstruction

We have provided two methods for the reconstruction of

probability profiles. The first approach yielded the components of

a spherical tensor, where each component, plm, is a characteristic of

the distribution P(R0r) since it is equal to the spherical correlation of

the distribution with the complex conjugate of the corresponding

spherical harmonic Ylm(r). Therefore, this approach was named the

‘‘parametric’’ reconstruction. The parametric reconstruction enables

one to express the probabilities in terms of a Laplace series, whereas

the nonparametric reconstruction provided the probability values

directly. It is simpler to implement the latter scheme as no SHT

transform is necessary. However, when the Laplace series is

terminated at l = lmax, the parametric reconstruction expresses the

probability values in terms of (lmax + 1)(lmax + 2) / 2 numbers, which

are typically much smaller than the number of directions along

which the probabilities are estimated (NR) when one visualizes the

probability surfaces. This enables more feasible storage of the

probability profiles in computer memory.
Using either one of the schemes, once the probability values are

evaluated along many points, the following parametrized surface

can be visualized (see Fig. 1):

X h;/ð Þ ¼ P R0rð Þr ¼ P h;/ð Þ
sin h cos /
sin h sin /
cos h

1
A

0
@ ; ð19Þ

where h is the polar and / is the azimuthal angle associated with

the unit vector r.

Scalar indices

Many clinical studies employ scalar rotationally invariant

measures derived from diffusion MRI data to quantify the changes

occurring with development and pathologies. Recently, Özarslan et

al. (2005) demonstrated that generalized models more accurately

quantify anisotropy measures compared to DTI. In this section, we

discuss the estimation of the generalized scalar indices from the

probability values evaluated using DOT and demonstrate the

images constructed by computing these measures on a pixel-by-

pixel basis. For completeness, formulation of anisotropy in terms

of both variance and entropy is provided.

Anisotropy from variance

In Özarslan et al. (2005), generalized anisotropy indices based

on the variance of the values of an arbitrary integrable positive-

definite function defined on the unit sphere were presented. When

applied to functions represented in terms of spherical harmonics,

like the parametrically reconstructed P(R0r) in this work, the

variance takes a particularly simple form given by

V ¼ 1

9p200

XV
l ¼ 2

Xl
m ¼ �l

j plmj2: ð20Þ

Then, using the scaling relationship provided in Özarslan et al.

(2005), it is possible to map the values of the variance to the interval

(0, 1) where the resulting index is called generalized anisotropy

(GA). Note that the GA index is based on variance and hence can be

seen as a generalization of the relative anisotropy (RA) and

fractional anisotropy (FA) indices commonly used in DTI analysis

(Basser, 1995).

Anisotropy from entropy

The function defined on the sphere can be taken as a PDF

simply by normalizing the integral of the probability profile over

the sphere via a multiplication of the plm coefficients by 1=
ffiffiffiffiffiffi
4p

p
p00.

Then, it is meaningful to define the entropy associated with this

distribution. By using the expression in Özarslan et al. (2005) for

the entropy of a general function on the unit sphere, it is possible to

show that the entropy in our case is given by1

r ¼ ln 4pbP R0rð Þ�ð Þ � 1

4pbP R0rð Þ�

Z
drP R0rð ÞlnP R0rð Þ

¼ ln
ffiffiffiffiffiffi
4p

p
p00


 �
� 1ffiffiffiffiffiffi

4p
p

p00

XV
l ¼ 0

Xl
m ¼ �l

p4lmklm; ð21Þ
N 0



Fig. 2. Probability maps estimated on a sphere of radius 8 to 16 Am in equal

steps of 2 Am (from left to right). Top row shows these surfaces when there is

only one orientation,where the bottom row shows them froma voxelwith two

distinct orientations. As the radius of the sphere on which the probability

values are estimated is increased, the two fiber orientations are better resolved.

E. Özarslan et al. / NeuroImage 31 (2006) 1086–11031090
where klm are given by the SHT of ln P(R0r). Similar to the

transformation of variance values into the GA index, the entropy

values can be transformed into an anisotropy index that was called

scaled entropy (SE) (Özarslan et al., 2005).
Simulations

We have applied the scheme described above to the simulations

of single fiber and crossing fiber systems. The diffusion-weighted

MR signal attenuation from molecules, with free diffusion coeffi-

cient given by D0, restricted inside a cylinder of radius q and length

L, when the applied diffusion gradient makes an angle # with the

orientation of the cylinder, is given by Söderman and Jönsson

(1995):

E qð Þ ¼
XV
n ¼ 0

XV
k ¼ 1

XV
m ¼ 0

2Knmq2 2pqqð Þ4sin2 2#ð Þc2km
npq=Lð Þ2 � 2pqq cos#ð Þ2

h i2

� 1� �1ð Þncos 2pqLcos#ð Þ½ � JmV 2pqq sin#ð Þ½ �2

L2 c2km � 2pqq sin#ð Þ2
h i2

c2km � m2
� �

� exp � ckm
q

�� 2

þ
�
np
L

�2
#"
D0D

! 
: ð22Þ

In this expression, Jm is the m-th order Bessel function, ckm is

the k-th solution of the equation JmV(c) = 0 with the convention
Fig. 3. (a) Simulated system of two crossing fiber bundles. (b) Probability surfaces

(c– f) Surfaces in the framed area of panel b recomputed under increasing levels of

to-noise ratios (SNRs) between 50:1 and 12.5:1 in the non-diffusion-weighted im
c10 = 0, and Knm = dn0dm0 + 2[(1 � dn0 ) + (1 � dm0)]. In the

presence of more than one cylinder, the signal attenuations

from these cylinders become additive. This way, multiple

fiber orientations can be modeled assuming that diffusing

molecules are constrained within these cylinders with no

possibility for exchange between different cylinders. This

system provides a simplified view of the neural tissue in

the slow exchange assumption which is likely to be the case

in short diffusion times. Although diffusional processes within

real neural tissue will be much more complicated than what

can be achieved through simulations, currently, they still

provide a suitable test bed for the schemes developed to

address the problem.

We have evaluated Eq. (22), with the parameters: L = 5 mm,

q = 5 Am, D0 = 2.02 � 10�3 mm2/s, D = 20.8 ms, d =2.4 ms, b =

1500 s/mm2. These parameters resemble our typical imaging

protocol on excised rat brains. Similar to that in von dem

Hagen and Henkelman (2002), we terminated the infinite series

in Eq. (22) at n = 1000 and k, m = 10. Similar to a HARDI

experiment protocol, the gradient directions were chosen to

point toward the 81 vertices of the third-order tessellations of an

icosahedron on a unit hemisphere.

As already shown in Fig. 1, we have computed the probability

profiles from fiber configurations whose orientations are specified

by the azimuthal angles /1 = 30-, /2 = {20-, 100-} and /3 = {20-,
75-, 135-} for the 1-, 2- and 3-fiber systems respectively. Polar

angles for all fibers were taken to be 90- so that a view from the z

axis will clearly depict the individual fiber orientations. Computa-

tions with other polar angles yielded similar quality results. In all

computations, the Laplace series were terminated after l = 8.

Fig. 2 shows the effect of varying R0 on the constructed

probability surfaces. Increasing R0 gives rise to the sharpening of

the displacement PDFs. This could be predicted from Fig. 17a

that indicates that for small R0 the largest contribution comes

from I0, which upon the spherical harmonic transform forms the

isotropic part of the constructed probabilities. When R0 is greater

than the radius of the cylinder confining the water molecules and

the characteristic length
ffiffiffiffiffiffiffiffi
6Dt

p
associated with the diffusion

process (which is 15 Am for the system in Fig. 17a), the

distribution of probability on the surface becomes sharper and

individual fiber populations are better resolved.
computed using the expansion of the probability on the surface of a sphere.

noise added to the signal values. These panels represent images with signal-

age.



Table 1

The angle between the computed and true fiber orientations (deviation angles) in degrees

w (r = 0) w (r = 0.02) w (r = 0.04) w (r = 0.06) w (r = 0.08)

1 fiber {0.364} 0.77 T 0.42 1.44 T 0.79 2.20 T 1.09 3.08 T 1.66

2 fibers {1.43, 0.80} 2.33 T 1.10 3.66 T 2.01 6.00 T 5.57 8.07 T 7.92

3 fibers {2.87, 0.60, 4.57} 5.81 T 5.84 11.5 T 10.1 14.7 T 10.3 17.6 T 11.9

Second column presents the deviation angle of each fiber when the DOT of noiseless signal profile is taken. Columns 3–6 show the mean and standard

deviation values for the deviation angle when Gaussian noise of standard deviation 0.02 to 0.08 (from left to right) was added to the signal profiles. The

computations for the DOT of noisy signals were repeated 100 times.
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We also computed the probability surfaces for a simulated

image of fiber crossings shown in Fig. 3. The surfaces are

consistent with the underlying known fibrous structure. The

circular and linear fiber bundles were chosen so that a distribution

of crossing angles is achieved across the region with orientational

heterogeneity. The distinct fiber orientations are better resolved

when the different fiber bundles make larger angles with each

other. Fig. 3b shows the probability profiles when there is no noise

added to the signal values. Similar to Jansons and Alexander

(2003), we have added Gaussian noise of increasing standard

deviation to the real and complex parts of the signal. When the

signal intensity in the image with no diffusion weighting is taken

to be centered around 1 and Gaussian noise of standard deviations

0.02 through 0.08 is added (in equal steps), the probability profiles

shown in Figs. 3c–f are obtained. These panels represent images

with signal-to-noise ratios (SNRs) between 50:1 and 12:5:1 in the

non-diffusion-weighted (S0) image. Note that, in our standard

HARDI protocol, we obtain SNR values in excess of 30 in

diffusion-weighted scans and about 100 in non-diffusion-weighted

images. Therefore, in real experiments, one can expect to achieve

results that will be of similar or better quality with the image

presented in Fig. 3c.

To provide a more quantitative assessment of the DOT

method and its sensitivity to increasing noise levels, we took

the HARDI simulations of 1-, 2- and 3-fiber profiles presented

in Fig. 1 and numerically computed the fiber orientations by

finding the maxima of the probability profiles (see Table 1). In

this table, w denotes the angle between the computed and the

true fiber orientations in degrees whereas r is the noise level.

Note that, when no noise was introduced (r = 0), there was a

small deviation of the computed fiber direction from the true

fiber orientation because of the finite sampling of the

hemisphere (at 81 gradient orientations), the termination of the

LS at order 8 and the precision of the numerical procedure used

to compute the maxima of the probability profiles. The

simulations of the signal profiles with noise were repeated

100 times for each noise level to provide a distribution of

deviation angles. We report the mean and standard deviations of

these distributions in columns 3–6 of Table 1. As expected, the

w values increase with increasing noise, and it is more

challenging to accurately resolve the distinct fiber orientations

when there are more fiber orientations.
Imaging parameters

To test the performance of the DOT, we calculated the

orientation probabilities on HARDI data from three anatomical

regions of excised, perfusion-fixed rat nervous tissue (optic

chiasm, brain and spinal cord). These experiments were performed
with the approval of the University of Florida Institutional Animal

Care and Use Committee. The images were acquired at 17.6 T

(brain) or 14.1 T (spinal cord and optic chiasm) using Bruker

Avance imaging systems. A diffusion-weighted spin echo pulse

sequence was used. Diffusion-weighted images were acquired

along 81 (brain) or 46 (spinal cord and optic chiasm) directions

with a b-value of 1500 s/mm2 (brain and spinal cord) or 1250 s/

mm2 (optic chiasm) along with a single image acquired at b � 0

s/mm2. Echo times were 23, 28, 25 ms; repetition times were 0.5,

2, 1.17 s; D values were 12.4, 17.8 and 17.5 ms; d values were

1.2, 2.2 and 1.5 ms; bandwidth was set to 35, 32 and 39 kHz;

signal averages were 10, 6, 7; matrix sizes were 128 � 128 � 5,

100 � 100 � 60, 72 � 72 � 40 and resolutions were 33.6� 33.6�
200 Am3, 150 � 150 � 300 Am3, 60 � 60 � 300 Am3 for optic

chiasm, brain and spinal cord data respectively. The optic chiasm

images were signal averaged to 67.2 � 67.2 � 200 Am3

resolution prior to probability calculations. In Fig. 4, we show a

particular axial slice from a HARDI data set collected from

excised rat spinal cord.
Results

The probability maps were calculated by following the

procedure described in the Theory section. Terms up to l =

8 were included in all calculations. Representative images of the

Il(u) values, when u is chosen to point through the image plane,

are presented in Fig. 5. Note that the intensity values in the I10(u)

image are very small. The plm coefficients that generate the

probability surfaces are shown in Fig. 6 for the same slice. It was

not necessary to show the coefficients with negative m values

because of Eq. (11). Note that this relationship also ensures that

pl0 are real.

The computed plm components were used in the calculation

of the scalar measures described in the previous section. In Fig.

7, we show the variance and GA maps computed from the optic

chiasm and brain data sets. The GA index was calculated both

from the plm coefficients and a second-order tensor fit to the

data. It is apparent that, although the GA values are similar in

the unidirectional section of the optic chiasm, in the region of

decussating optic nerve fibers, GA values implied by DTI were

lower than those calculated from the probability surfaces. Also

included are the entropy (r) and the SE maps calculated from

both samples. It should be noted that V, GA, r and SE values

depend on the choice of R0.

Visualization of the probability profiles was done by computing

the probabilities along many directions and displaying the

parametrized surface defined in Eq. (19). To increase the sharpness

of the probability profiles, we have subtracted the minimum

probability existing in the profile from all probability values. This



Fig. 4. Representative HARDI data set from an excised, perfusion-fixed rat spinal cord. At the upper left corner is the image with no diffusion weighting followed by 46 diffusion-weighted images.
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Fig. 5. Il(u) images up to l = 10 from coronal sections of rat brain when u is

chosen to point through the image plane.

E. Özarslan et al. / NeuroImage 31 (2006) 1086–1103 1093
process was followed by a normalization of the surface to fill the

cube (voxel) it will be located in so that all visualized surfaces have

similar sizes. As a result, the visualized surfaces emphasize the

directionality but are not intended to provide information on the true

values for the probabilities.

We have overlaid these orientation surfaces on generalized

anisotropy (GA) maps (Özarslan et al., 2005) computed from
Fig. 6. The LS coefficients of the probability profile up to
the displacement probabilities as shown above. The coloring

schemes proposed for DTI orientation visualization (Pajevic and

Pierpaoli, 1999) are not readily applicable to probability

surfaces. The ‘‘peakedness’’ on the image plane is obvious.

However, one may miss the orientations through the image

plane. To prevent this, we color-coded the surfaces such that, as

the values of the z-component of the parametrized surface vary

from the maximum probability value present in the probability

profile to minus this maximum probability value, the color of

the surface changes from green to blue. In all calculations, R0

was set to 16 Am, and the last term kept in the Laplace series

was l = 8.

The rat optic chiasm is a distinct white matter structure with

both parallel and decussating optic nerve fibers, thus providing

an excellent experimental validation for our approach. The top

panel of Fig. 8 shows the diffusivity profile obtained from the

diffusion-attenuated signal values. The bottom panel demon-

strates the displacement probabilities computed from the

diffusivity profiles using the DOT method. Every other pixel

of the optic chiasm image was included for the sake of clarity.

The diffusivity profiles fail to give meaningful results in the

central region of the optic chiasm where fiber orientations are

heterogeneous. The probability profiles, however, demonstrate

the distinct fiber orientations in the central region of the optic

chiasm where myelinated axons from the two optic nerves cross
l = 4 computed from the excised rat brain data set.



Fig. 7. From left to right: variance, GA, GA from the rank-2 tensor, entropy and SE images calculated for excised rat optic chiasm (top) and brain (bottom)

samples.
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one another to reach their respective contralateral optic tracts.

These orientation maps are consistent with the work by Lessell

(1977).

Fig. 9 shows the displacement probabilities calculated from

excised coronal rat brain MRI data. At the top left is a diffusion-

weighted image that shows the selected ROI. This region is

expanded in the large image and depicts the orientations of the

highly anisotropic and coherent fibers of the external capsule and

corpus callosum bordered inferiorly by the hippocampus and

superiorly by radial cortical trajectories. Note, voxels with

crossing orientations located superiorly to the external capsule

represent the interdigitation of fibers entering the cortex from the

external capsule and the corpus callosum into the radial

orientations of the cortex. Future investigations employing this

method should improve our understanding of normal and

pathologically altered neuroanatomy in regions of complex fiber

architecture such as the rat brainstem (Fig. 10).

Finally, we show the probability maps computed from

excised spinal cord data in Fig. 11. Again, the ROI is specified

on a diffusion-weighted image shown on the top left section.

The corresponding orientation maps are depicted in the top right

panel. Selected pixels of this image were enlarged on the bottom

panels of the figure. To demonstrate the shapes more clearly,

seven selected surfaces were rotated by �90- about the x axis so

that the up-and-down direction in the individual surfaces shown

in blue corresponds to the in-and-out direction in red images.

The magnified surfaces may represent locations where ventral

root fibers from a-motor neurons cross white matter to enter the

gray matter of the spinal cord.
Discussion

Exponential attenuation assumption

We have assumed so far that the signal attenuation along

each radial line in q-space is characterized by a monoexpo-

nential decay. Therefore, it was possible to extract orientational

information from data acquired on a single spherical shell and

at the origin of the q-space. We would like to note that this is

the very assumption intrinsic to DTI, establishing the corre-

spondence between the diffusion tensor and the assumed

Gaussian PDF whose orientational mode is estimated from

the principal eigenvector of the diffusion tensor. The satisfac-
tory performance of DTI in systems with single fiber

orientations has prompted us to keep the monoexponentiality

assumption for the radial behavior while complicating the

angular structure; this results in non-Gaussian probability

profiles. This assumption worked both with our simulations

and with real data sets.

In Fig. 12, we show simulated signal values from a one

fiber system with a fiber radius of 10 Am when the angle

between the fiber orientation and the signal values was assumed

by the exponentiality assumption when the experiment is

performed at b = 1500 s/mm2. Note that this is a logarithmic

plot, therefore the true deviations between the real and assumed

signal values are much smaller than what they appear on the

right side of the plot when the signal values are small. Because

the q-space is the frequency space for the probabilities, from a

signal processing point-of-view, the exponentiality assumption

can be thought of as a low-pass filtering of the true probability

values. Therefore, the result is a broadened PDF. The computed

PDF PV(R) can be related to the true PDF P(R) through a

convolution with the kernel (̄(R), which is the Fourier transform

of the function E( q1, u)
q2/q1

2

E(q, u)�1. Here, E( q1, u) is the

HARDI signal attenuation at a b-value corresponding to a q-

value of q1, and E(q, u) is the full q-space signal attenuation

function.

In order to demonstrate the effect of the monoexponential

signal decay assumption, we performed rigorous simulations of

high resolution q-space experiments. In these simulations, signal

attenuation values were computed on a 1283 Cartesian q-space

grid, yielding a resolution of (0.5 Am)3 in the displacement

space. Signal decay values were transformed to the displacement

probabilities via a fast Fourier transform (FFT). Later, isoprob-

ability surfaces of the probability maps were computed and the

resulting surfaces were sharpened by subtracting the minimum

probability value. Next, the surfaces were expanded to cover a

large region of the designated space to exaggerate the

orientational structure of these surfaces. The same procedure

was applied to the signal values as assumed by the HARDI

experiment with monoexponential signal attenuation assumption

and the effective kernel that causes the broadening of the

probability maps. Note that in this scheme both the transform

(between the signal and probability domains) and the surfaces to

be visualized are different from the DOT analysis. The results

for simulated one- and two-fiber voxels are provided in Fig. 13a

where the signal decays were computed using Eq. (22) as



Fig. 8. Diffusivity profiles (top) and probability maps (bottom) computed from a rat optic chiasm data set overlaid on axially oriented GA maps. The

decussations of myelinated axons from the two optic nerves at the center of the optic chiasm are readily apparent using the DOT method. These crossing fibers

carry information from the temporal visual fields to the contralateral cerebral hemispheres. In Figs. 8–11, the orientation surfaces are color-coded such that

portions of the surfaces pointing towards or away from the reader are green and blue respectively (see inset).
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before. In these simulations, the water molecules are trapped

inside the bounding cylinders, therefore the signal attenuation is

clearly not monoexponential even when there is only one fiber.

In both cases, one gets slightly anisotropic convolution kernels2

that give rise to some broadening of the computed probability

profiles without creating a realizable change in the peaks of the

isosurfaces. This may aid in understanding why it was possible

to map the fiber orientations accurately in the simulations (see

Table 1) under the assumption that the signal decays mono-

exponentially along each direction. Note that the nature of the
2 Note that the sharpening and expansion of the isosurfaces overempha-

size the anisotropy of the convolution kernels significantly.
convolution kernel in the one-fiber system also justifies the

performance of DTI in producing correct fiber orientations in

the presence of restricted diffusion.

The same simulations were repeated under the assumption

that, in each fiber population, the diffusion process is Gaussian

and can be modeled using a diffusion tensor with axial

symmetry, where the ratio of the diffusivity along the fiber axis

to those along directions perpendicular to it is 8. Although this

is a less realistic model for diffusion taking place within fibrous

tissues, it provides an independent test for the assumption we

have employed. The results are provided in Fig. 13b. As

expected, the convolution kernel is just a delta function when

there is only one Gaussian which is a consequence of the fact



Fig. 9. Probability map of a coronally oriented GA image of the rat brain. Diffusion fiber orientations in the parietal cortex were collinear with the apical

dendrites and axons of cortical pyramidal neurons found in cortical layers III–V. In the dorsal hippocampus, the molecular layer and stratum radiatum fiber

orientations paralleled the apical dendrites of granule cells and pyramidal neurons respectively, whereas in the stratum lacunosum, moleculare orientations

paralleled Schaffer collaterals from CA1 neurons and perforant fibers from the entorhinal cortex.
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that MR signal is truly monoexponential in this case. In the case

of two orientations, the convolution kernel is slightly anisotropic

and very local resulting in a minor blurring of the probability

maps. The sharpened isosurfaces clearly demonstrate that the

peaks of the isosurfaces are not altered.
Fig. 10. The diffusion orientation transform (DOT) described in this paper also cha

this probability map from one side of the rat medulla.
Avoiding some kind of deviation from the true probability

values seems impossible when the reconstruction is performed

from limited samples of q-space (e.g. HARDI experiments).

However, when data points are collected from a greater region in

q-space (such as on several concentric shells), the DOT method
racterized the complex cytoarchitecture of the rat brainstem well as shown in



Fig. 11. Probability maps calculated from a diffusion-weighted data set acquired from an excised rat spinal cord. The surfaces in the bottom row depict the

probability profiles selected from the image matrix and rotated �90- about the x axis. These crossing fiber orientations may represent coherent ventral root

spinal nerve fibers penetrating along the x axis perpendicular to ascending and descending white matter axons in the anterior funiculus to reach the anterior

horn motor neurons.

E. Özarslan et al. / NeuroImage 31 (2006) 1086–1103 1097
provides a unique opportunity to significantly and efficiently

reduce the broadening mentioned above. This scheme is described

in the next section.

Another case in which the monoexponential signal decay

assumption may fail is when ‘‘diffraction’’ effects are present,

giving rise to non-monotonic dependence of the signal values

on the gradient strength (Callaghan et al., 1991). This effect is

observed in the presence of a great deal of periodicity and

therefore is unlikely to be observed when there are hetero-

geneities in the fiber orientations. Avram et al. (2004) have

reported that in coherent cylinders the diffraction-like effects are
Fig. 12. Logarithmic plot of the signal attenuation values as a

function of the b-value. The symbols indicate the signal

attenuations calculated from a simulation of a single fiber system,

while the lines indicate the monoexponential fits when the HARDI

experiment is performed at a b-value of 1500 s/mm2. The curves

correspond to different angles between the diffusion gradient and

fiber orientations.
observed experimentally when the diffusion gradients are

oriented almost perpendicular to the fiber axis. In a HARDI

experiment, this may cause some problems since the signal

values perpendicular to the fiber axis will be quite sensitive to

the selection of the b-value.

We also have investigated the effect of b-value on the

constructed probability surfaces. To this end, we simulated

HARDI experiments performed at increasing b-values on 1-

and 2-fiber systems. We also repeated the simulations for fibers

of radii 5 and 10 Am. The selected results are provided in Fig. 14.

The most reassuring finding is that there has been no realizable

alteration in the peaks of the distributions indicating that the

calculated fiber orientations are robust to the choice of b-value.

However, it is evident that the probability surfaces are sharper

and multiple orientations are better resolved at higher b-values.

As we have demonstrated before, a b-value of 1500 s/mm2 seems

sufficient to resolve the fiber crossings when the radii of the

fibers are 5 Am. However, when the radii are doubled, it is

advantageous to collect the data at higher b-values. It should be

noted that spurious peaks start to develop at very high b-values

(see the first two rows of the last column). This may be explained

by the crossing of the signal decay curves in Fig. 12, which

suggests that at high b-values the order of signal values from

different orientations may be altered.

Extension to multiexponential attenuation

We have thus far employed the monoexponentiality assumption

of the signal attenuation. However, the same formalism provides a

surprisingly simple extension to multiexponential attenuation,

which has been shown in numerous articles to provide a very

accurate characterization of the radial behavior (in q-space) of the

MR data collected from tissue (e.g. Niendorf et al., 1996).



Fig. 13. Simulations of single (top two rows) and two-fiber (bottom two rows) systems. (a) The signal values were computed using Eq. (22). The first

column shows the water displacement probability maps that would be obtained from a rigorous three-dimensional q-space measurement and the

employment of an FFT. The second column depicts the convolution kernels that are induced by the monoexponentiality assumption. The resulting

probability maps, which can be obtained either by employing the monoexponential attenuation assumption and taking an FFT or convolving the

function in the first column with the kernel in the second, are shown in the third column. The isosurfaces of the three-dimensional maps were

sharpened and expanded to clarify the orientational appearance of the corresponding maps. (b) The same images were provided for signal profiles

generated from oriented Gaussians. Evidently, the employment of the monoexponential attenuation assumption broadens the probability maps without

significantly altering its orientational features. Note that the sharpening of the isosurfaces exaggerates the directional dependence of the associated

smoothing kernels.
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To derive the correct generalization, we start by replacing the

Stejskal–Tanner Eq. (2) with the expression:

E b; uð Þ ¼
XNE

i

fi uð Þe�bDi uð Þ; ð23Þ

where NE is the number of terms (exponentials, transients) in the

series, Di(u) is the i-th diffusion coefficient for the gradient

direction u and fi(u) is the ‘‘volume fraction’’ of the i-th

exponential satisfying the relationship

XNE

i

fi uð Þ ¼ 1 ð24Þ

Carrying out the same algebra as before, Eqs. (5) and (14) hold

with the definition

Il uð Þ ¼
XNE

i

fi uð ÞIli uð Þ ð25Þ

where

Ili uð Þ ¼ 4p
Z V

0

dq q2 jl 2pqR0ð Þ exp�4p2q2tDi uð Þ
� �

; ð26Þ
which is the same expression when D(u) in Eq. (6) is replaced by

Di(u). Therefore, either of the forms given in Eqs. (27) or (28) can

still be used to calculate Ili(u) from Di(u).

The extension to multiexponential attenuation requires the

following modifications for the implementation of the DOT:

(1) Fit multiexponential function Eq. (23) along each radial line

in q-space to estimate fi(u) and Di(u).

(2) For each diffusion coefficient Di(u) corresponding to each

term in the series, calculate Ili(u) from Eq. (26).

(3) Calculate Il(u) from Eq. (25).

(4) Apply either the parametric or nonparametric reconstruction

as before.

Fig. 15 shows the biexponential fits to the data points already

presented in Fig. 12. The improvement in the functional fits is

evident. We would like to stress that we utilize the multiexponential

fit solely to provide an approximation and extrapolation to the

signal attenuation and by no means do we intend to make inferences

about the compartmentation in tissue from this fit. In other words,

we exploit the performance of multiexponential fits realized in

studies involving compartmentation to improve on the orientation

mapping results that are achieved using the DOT technique.



Fig. 14. Simulations of 1- and 2-fiber systems as a function of b-value where the radii of the fibers were taken to be 5 and 10 Am.
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We have tested the proposed extension scheme on our

simulated data from 1-, 2- and 3-fiber systems. The results are

shown in Fig. 16. It is clear that the monoexponential and

multiexponential fits provide the same orientational information,

yet the constructed probability surfaces in the latter case resolve

the distinct fiber orientations better, most notably in the 3-fiber

system. However, the results indicate that transition from bi- to

triexponential fits does not result in a significant improvement.

This demonstrates the sufficient accuracy of the biexponential

fits to the signal attenuation values.

Unfortunately, using a biexponential attenuation fit in our for-

malism would necessitate collecting about three times the number of

data points when compared with the case in which the mono-

exponentiality assumption is made. This is because there are 2� NE

unknowns in the fit, and if one chooses to collect data at b = 0, then
Fig. 15. The symbols indicate the signal attenuations calculated for the

same system as in Fig. 12, whereas the lines indicate the curves obtained

from a biexponential fit to these data points. The curves correspond to

different angles between the diffusion gradient and fiber orientations.
at least 2 � NE � 1 spherical shells have to be sampled for the NE

exponential fits.
Conclusion

The DOT technique provides a direct estimation of displace-

ment probability surfaces within each voxel from multi-orienta-

tional diffusion-weighted MRI data. The method is robust and fast.

DOT can be implemented nonparametrically for direct estimation

of probability values along desired directions or by using an SHT

that gives the Laplace series coefficients of the probability profile.

In either case, high resolution probability surfaces can be

reconstructed easily from the signal values. Furthermore, the

behavior of the MR signal intensities with increasing b-values can

be characterized by mono- or multiexponential fits. Our findings

indicate that multiexponential fits result in improved reconstruc-

tions. However, when the acquisition time or the available gradient

strength is limited, the monoexponentiality assumption can be

employed. This results in some broadening of the PDF whose

angular structure is smoother. As demonstrated in excised rat

nervous tissue, the potential applications of our approach include

more accurate estimates of fiber orientations that will improve the

existing fiber tractography schemes. This then could enable the

reliable mapping of more connections between different parts of

fibrous tissues.
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Fig. 16. Simulations of 1-, 2- and 3-fiber systems with mono- (b = 2500 s/mm2), bi- and triexponential fits (from data up to b = 9000 s/mm2). Similar to Fig. 1,

the orientations of the simulated fibers are specified by the azimuthal angles /1 = 30-, /2 = {20-, 100-} and /3 = {20-, 75-, 135-} for the 1-, 2- and 3-fiber

systems respectively. All fibers lie on the image plane.

Table 2

Al(u) and Bl(u) functions up to l = 8

l Al(u) Bl(u)

0 1 0

2 �(1 + 6b�2) 3

4 1 + 20b�2 + 210b�4 15/2 (1–14b�2)

6 �(1 + 42b�2 + 1575/2

b�4 + 10,395b�6)

105/8 (1–36b�2 + 396b�4)

8 1 + 72b�2 + 10,395/4

b�4 + 45,045b�6+675,675b�8

315/16 (1–66b�2 +

1716b�4 � 17,160b�6)

In this table, b stands for b(u).
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Appendix A. The radial integral

The integral in Eq. (6) can be evaluated and it is given by

Il uð Þ ¼
Rl
0C

l þ 3
2

� �
2l þ 3p3=2 D uð Þtð Þ lþ3ð Þ=2C l þ 3=2ð Þ

�1F1

�
l þ 3

2
; l þ 3

2
; � R2

0

4D uð Þt

�
; ð27Þ

where 1F1 is the confluent hypergeometric function of the first kind

(see Appendix B). Using the recurrence relations of the confluent

hypergeometric functions provided in Eq. (31) iteratively, these

functions can be written as the sum of two terms, one of them

being proportional to 1F1
�
1
2
; 3
2
; � R2

0

4D uð Þt
�
where the other term will

be proportional to 1F1

�
3
2
; 3
2
; � R2

0

4D uð Þt
�
. Using Eqs. (32) and (33), it

can be seen that these functions are proportional to the error

function and Gaussian respectively.

Therefore, the resulting expression is given by

Il uð Þ ¼ Al uð Þ
exp � b uð Þ2=4

 �
4pD uð Þtð Þ3=2

þ Bl uð Þ erf b uð Þ=2ð Þ
4pR3

0

; ð28Þ
where

b uð Þ ¼ R0ffiffiffiffiffiffiffiffiffiffiffiffi
D uð Þt

p : ð29Þ

Al(u) and Bl(u) functions up to l = 8 are given in

Table 2. Note that, throughout the paper, only the even-

order terms are included as a consequence of the antipodal

symmetry of the diffusivity profiles as well as displacement

PDFs. The derivation of the particular forms for the Al(u)

and Bl(u) for arbitrary (even) values of l is provided in

Appendix C.



Fig. 17. Dependence of the radial integral Il on R0 (top) and on diffusivity

(bottom). The curves are drawn for l values ranging from 0 to 8.
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In Fig. 17a, we plot the Il values as a function of R0

calculated with double precision using Eq. (28) where D = 1.5 �
10�3 mm2/s and t = 25 ms. Very large values taken by the

higher-order terms near the origin are due to round-off and errors.

However, this is not a big concern because we will be mostly

interested in the values of this function in the 10–20 Am range.

Note that the contribution from higher-order terms is rapidly

collapsing for R0 values in this range. Shown in Fig. 17b are the

curves generated by keeping R0 fixed at the value of 15 Am and

varying the diffusion coefficients between 3 � 10�4 and 3 �
10�3 mm2/s. This plot indicates the nontrivial manner in which

an angular diffusivity profile influences the Il and hence the

probability values.
Appendix B. Confluent hypergeometric functions of the first

kind

The confluent hypergeometric function of the first kind (also

known as Kummer’s function of the first kind or Kummer’s

function) 1F1(a; b; x) is given by the series (Abramowitz and

Stegun, 1977)

1F1 a; b; xð Þ ¼
XV
k ¼ 0

að Þkxk
bð Þkk!

; ð30Þ

where (a)k = a(a + 1)(a + 2) III (a + k � 1) with (a)0 = 1.

Among others, the confluent hypergeometric function of the

first kind satisfies the recurrence relations

b� að Þ1F1 a� 1; b; xð Þ þ 2a� bþ xð Þ1F1 a; b; xð Þ
� a1F1 aþ 1; b; xð Þ ¼ 0

b b� 1ð Þ1F1 a; b� 1; xð Þ þ b 1� b� xð Þ1F1 a; b; xð Þ
þ x b� að Þ1F1 a; bþ 1; xð Þ ¼ 0

1þ a� bð Þ1F1 a; b; xð Þ � a1F1 aþ 1; b; xð Þ
þ b� 1ð Þ1F1 a; b� 1; xð Þ ¼ 0: ð31Þ

Many of the commonly used functions are special instances of

the confluent hypergeometric function of the first kind. For example,

1F1 a; a; xð Þ ¼ ex ð32Þ

1F1

1

2
;
3

2
; � x2

��
¼ p1=2

2x
erf xð Þ: ð33Þ

Finally, the asymptotic behavior of the function 1F1(a; b; x)as

|x| Y V when x is real, is given by

1F1 a; b; xð Þ
C bð Þ

¼ eipax�a

C b� að Þ
XV�1

n¼0

að Þn 1þ a� bð Þn
n!

� xð Þ�n þ O jxj�V

 �#"

þ exxa�b

C að Þ
XW�1

n¼0

b� að Þn 1� að Þn
n!

�x�n þ O jxj�W

 �#"

;

ð34Þ

where V and W are the number of terms kept in the first and second

series respectively.
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Appendix C. Al and Bl coefficients

Although the recursion relations of the confluent hypergeometric functions provided in Eq. (31) are useful in seeing that the Il(u)

functions can be expressed as the sum of two terms (one involving exponential and the other involving error functions as in Eq. (28)), the

derivation of the analytical form of the Al and Bl coefficients using these recursion relations is a formidable task. Therefore, in order to find

analytical expressions for the Al and Bl coefficients for a general l value, we make a term-by-term comparison of the asymptotic form of the

Il function evaluated from Eq. (34) with the asymptotic form of Eq. (28). After some tedious algebra, we have found that, if Aln and Bln are

defined such that

Al uð Þ ¼
Xl=2
n ¼ 0

Alnb uð Þ�2n
and Bl uð Þ ¼

Xl=2�1

n ¼ 0

Blnb uð Þ�2n; ð35Þ

the following expressions hold:

Aln ¼
A0 ; if n < 2

A0 þ
Xn�1

t¼1

� 1ð Þt � 1
2t � 3ð Þ!! lþ 3

2

� �
n� t�1

1� l
2

� �
n� t�1

l þ 1ð Þ!!
C l=2ð Þ n� t � 1ð Þ!2l=2�2nþ t

; if nz 2

8>><
>>: ð36Þ

where (l + 1)!! = (l + 1)(l � 1) III 1 and

A0 ¼ � 1ð Þl=2 þ n

n!
22n

l

2

��
n

� l

2
� 1

2

��
n

ð37Þ

and

Bln ¼
l þ 3
2

� �
n
1� l

2

� �
n
l þ 1ð Þ!!

C l
2

� �
n!2l=2�1�2n

: ð38Þ

We have verified using Mathematica that these expressions indeed yield the correct coefficients for the Il(u) functions.
Appendix D. Convergence of the Laplace series for the

probability profile

Theorem. The series given by (see Eq. (5))

P R0rð Þ ¼
XV
l ¼ 0

Xl
m¼�l

� ið ÞlYlm rð Þ
Z

duYlm uð Þ4Il uð Þ ð39Þ

is convergent.

Proof. We start by inserting the upper bound for the spherical

Bessel functions of order l (Abramowitz and Stegun, 1977)

jjl 2pqR0ð Þj V
ffiffiffi
p

p
pqR0ð Þl

2C l þ 3
2

� � ¼ 2pqR0ð Þl

2l þ 1ð Þ!! ð40Þ

into Eq. (6). This yields the upper bound for the functions Il(u)

Il uð Þ V l þ 1ð Þ!!
2l þ 1ð Þ!!2l=2 4pD uð Þtð Þ3=2

R2
0

D uð Þt

�� l=2

: ð41Þ

Note that using the addition theorem for spherical harmonics

(Arfken and Weber, 2001),

Xl
m ¼ �l

Ylm rð ÞYlm uð Þ4 ¼ 2l þ 1

4p
Pl urð Þ; ð42Þ

where Pl(x) is the l-th order Legendre polynomial, it is possible to

express Eq. (39) in the following form:

P R0rð Þ ¼
XV
l ¼ 0

.l; ð43Þ

where

%l ¼
� ið Þl 2l þ 1ð Þ

4p

Z
duIl uð ÞPl urð Þ: ð44Þ
Using the generating function for the Legendre polynomials, it

is possible to prove that (Arfken and Weber, 2001)

Pl cos cð Þ V 1: ð45Þ

Using Eqs. (41) and (45), it is easy to see that

j.l j V
l þ 1ð Þ!!

2l � 1ð Þ!!2l=2 4pDmintð Þ3=2
R2
0

Dmint

�� l=2

¼ nl; ð46Þ

where Dmin = min D(u). Note that

lim
l Y V

nlþ2

nl
¼ lim

l Y V

l þ 3

2l þ 1ð Þ 2l þ 3ð Þ
R2
0

2Dmint
¼ 0: ð47Þ

Therefore, using the d’Alembert (Cauchy) ratio test, the

series ~l =0
V nl converges. Using the comparison test, it is

straightforward to see that the series ~l = 0
V |.l| converges since

0� |.l| V sl. Therefore, the series in Eq. (39) is absolutely

convergent. g
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E. Özarslan et al. / NeuroImage 31 (2006) 1086–1103 1103
and restricted water diffusion in brain white matter. Magn. Reson.

Med. 52 (5), 965–978.

Avram, L., Assaf, Y., Cohen, Y., 2004. The effect of rotational angle and

experimental parameters on the diffraction patterns and micro-

structural information obtained from q-space diffusion NMR: impli-

cation for diffusion in white matter fibers. J. Magn. Reson. 169 (1),

30–38.

Basser, P.J., 1995. Inferring microstructural features and the physiolog-

ical state of tissues from diffusion-weighted images. NMR Biomed.

8 (7–8), 333–344.

Basser, P.J., 2002. Relationships between diffusion tensor and q-space

MRI. Magn. Reson. Med. 47, 392–397.

Basser, P.J., Mattiello, J., LeBihan, D., 1994. Estimation of the effective

self-diffusion tensor from the NMR spin echo. J. Magn. Reson., B 103

(3), 247–254.

Basser, P.J., Mattiello, J., LeBihan, D., 1994. MR diffusion tensor

spectroscopy and imaging. Biophys. J. 66 (1), 259–267.

Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A., 2000. In

vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44,

625–632.

Callaghan, P.T., 1991. Principles of Nuclear Magnetic Resonance Micros-

copy. Clarendon Press, Oxford.

Callaghan, P.T., Coy, A., MacGowan, D., Packer, K.J., Zelaya, F.O., 1991.

Diffraction-like effects in NMR diffusion studies of fluids in porous

solids. Nature 351, 467–469.

Chenevert, T.L., Brunberg, J.A., Pipe, J.G., 1990. Anisotropic diffusion in

human white matter: demonstration with MR techniques in vivo.

Radiology 177 (2), 328–329.

Cleveland, G.G., Chang, D.C., Hazlewood, C.F., Rorschach, H.E., 1976.

Nuclear magnetic resonance measurement of skeletal muscle: anisotro-

py of the diffusion coefficient of the intracellular water. Biophys. J. 16

(9), 1043–1053.

Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony,

J.S., McKinstry, R.C., Burton, H., Raichle, M.E., 1999. Tracking

neuronal fiber pathways in the living human brain. Proc. Natl. Acad.

Sci. 96, 10422–10427.

Frank, L.R., 2002. Characterization of anisotropy in high angular

resolution diffusion-weighted MRI. Magn. Reson. Med. 47 (6),

1083–1099.

Inglis, B.A., Bossart, E.L., Buckley, D.L., Wirth, E.D., Mareci, T.H.,

2001. Visualization of neural tissue water compartments using

biexponential diffusion tensor MRI. Magn. Reson. Med. 45 (4),

580–587.

Jansons, K.M., Alexander, D.C., 2003. Persistent angular structure: new

insights from diffusion magnetic resonance imaging data. Inverse

Problems 19, 1031–1046.

Lessell, S., 1977. The histology and histochemistry of the rat’s optic nerve

and chiasm. Am. J. Ophthalmol. 84 (5), 681–688.

Liu, C.L., Bammer, R., Moseley, M.E., 2003. Generalized diffusion tensor

imaging (GDTI): a method for characterizing and imaging diffusion

anisotropy caused by non-Gaussian diffusion. Isr. J. Chem. 43 (1–2),

145–154.

Maier, S.E., Vajapeyam, S., Mamata, H., Westin, C.F., Jolesz,

F.A., Mulkern, R.V., 2004. Bioexponential diffusion tensor

analysis of human brain diffusion data. Magn. Reson. Med. 51

(2), 321–330.

Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C.M., 1999. Three-

dimensional tracking of axonal projections in the brain by magnetic

resonance imaging. Ann. Neurol. 45, 265–269.

Moseley, M.E., Cohen, Y., Kucharczyk, J., Mintorovitch, J., Asgari, H.S.,

Wendland, M.F., Tsuruda, J., Norman, D., 1990. Diffusion-weighted
MR imaging of anisotropic water diffusion in cat central nervous

system. Radiology 176 (2), 439–445.

Niendorf, T., Dijkhuizen, R.M., Norris, D.G., van Lookeren Campagne, M.,

Nicolay, K., 1996. Biexponential diffusion attenuation in various states

of brain tissue: implications for diffusion-weighted imaging. Magn.

Reson. Med. 36 (6), 847–857.
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Özarslan, E., Vemuri, B.C., Mareci, T.H., 2004a. Generalized diffusion

tensor imaging of excised rat brain. Proc. of the 12th Scientific Meeting

of ISMRM, p. 92.
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