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Diffusion MRI is a non-invasive imaging technique that allows the
measurement of water molecule diffusion through tissue in vivo. The
directional features of water diffusion allow one to infer the
connectivity patterns prevalent in tissue and possibly track changes
in this connectivity over time for various clinical applications. In this
paper, we present a novel statistical model for diffusion-weighted MR
signal attenuation which postulates that the water molecule diffusion
can be characterized by a continuous mixture of diffusion tensors. An
interesting observation is that this continuous mixture and the MR
signal attenuation are related through the Laplace transform of a
probability distribution over symmetric positive definite matrices. We
then show that when the mixing distribution is a Wishart distribution,
the resulting closed form of the Laplace transform leads to a Rigaut-
type asymptotic fractal expression, which has been phenomenologically
used in the past to explain the MR signal decay but never with a
rigorous mathematical justification until now. Our model not only
includes the traditional diffusion tensor model as a special instance in
the limiting case, but also can be adjusted to describe complex tissue
structure involving multiple fiber populations. Using this new model in
conjunction with a spherical deconvolution approach, we present an
efficient scheme for estimating the water molecule displacement
probability functions on a voxel-by-voxel basis. Experimental results
on both simulations and real data are presented to demonstrate the
robustness and accuracy of the proposed algorithms.
© 2007 Elsevier Inc. All rights reserved.

Introduction

Diffusion-weighted imaging (DWI) is a magnetic resonance
(MR) technique exploiting the sensitivity of the MR signal to the
Brownian motion of water molecules. It adds to the conventional

relaxation-weighted MR imaging (MRI) the capability of measur-
ing the water diffusion characteristics in local tissue, which may be
substantially altered by diseases, neurologic disorders, and during
neurodevelopment and aging. DWI has steadily evolved into an
important clinical tool since its sensitivity to the evaluation of early
ischemic stages of the brain was shown (Moseley et al., 1990b).
The directional dependence of water diffusion in fibrous tissues,
like muscle and white-matter in the brain, provides an indirect but
powerful means to probe the anisotropic microstructure of these
tissues (Cleveland et al., 1976; LeBihan et al., 1986; Moseley et
al., 1990a). As of today, DWI is the unique noninvasive technique
capable of quantifying the anisotropic diffusion of water molecules
in tissues allowing one to draw inference about neuronal
connections between different regions of the central nervous
system.

Diffusion tensor MRI (DT-MRI or DTI), introduced by Basser
et al. (1994), provides a relatively simple way of characterizing
diffusional anisotropy and predicting the local fiber direction
within the tissue from multidirectional diffusion-weighted MRI
data. DTI assumes a displacement probability characterized by an
oriented Gaussian probability distribution function yielding a
signal decay given by

SðGÞ ¼ S0exp $bgTDg
! "

; ð1Þ

where S0 is the signal in the absence of any diffusion weighting
gradient, b=(γδG)2t is the b-value, γ is the gyromagnetic ratio, δ
is the diffusion gradient duration, t is the effective diffusion time,
D is the apparent diffusion tensor and G and g are the magnitude
and direction of the diffusion sensitizing gradient G, respectively.
Despite its modest requirements, the DTI model has been shown to
be quite successful in regions of the brain and spinal cord with
significant white-matter coherence and has enabled the mapping of
anatomical connections in the central nervous system (Conturo et al.,
1999; Mori et al., 1999; Basser et al., 2000). However, the major
drawback of DTI is that it can only reveal a single fiber orientation in
each voxel and fails in voxels with orientational heterogeneity
(IVOH) (von dem Hagen and Henkelman, 2002; Tuch et al., 2002)
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making it an inappropriate model for use in the presence of multiple
fibers within a voxel.

This limitation of DT-MRI has prompted interest in the
development of both improved image acquisition strategies and
more sophisticated reconstruction methods. By sampling the
diffusion signal on a three-dimensional Cartesian lattice, the q-space
imaging (QSI) technique, also referred to as diffusion spectrum
imaging (DSI) (Wedeen et al., 2000), utilizes the Fourier relation
between the diffusion signal and the average particle displacement
probability density function (PDF) P(r) (Callaghan, 1991):

SðqÞ ¼ S0

Z

R3
PðrÞeiqd rdr: ð2Þ

where r is the displacement vector and q=γδG. However, the
sampling burden of QSI makes the acquisition time-intensive and
limits its widespread application. Tuch et al. (1999) developed a
clinically feasible approach called high angular resolution diffusion
imaging (HARDI), in which apparent diffusion coefficients,Dapp, are
measured alongmanydirections. It has been shown that the diffusivity
function has a complicated structure in voxels with orientational
heterogeneity (von dem Hagen and Henkelman, 2002; Tuch et al.,
2002). Several studies proposed to represent the diffusivity function
using the spherical harmonic expansion (Frank, 2002; Alexander et
al., 2002) or higher order Cartesian tensors leading to a generalization
of DTI (Özarslan and Mareci, 2003; Özarslan et al., 2004).

A second class of approaches attempts to transform the limited
number of multidirectional signals into a probability function,
which is typically a compromised version of P(r) with presumably
the same directional characteristics. Among these, Tuch et al.
(2003) proposed the so called q-ball imaging (QBI) method, in
which the radial integral of the displacement PDF is approximated
by the spherical Funk–Radon transform (Tuch, 2004). Recent
studies have expressed QBI in a spherical harmonic basis
(Anderson, 2005; Hess et al., 2006; Descoteaux et al., 2006).
Another reconstruction algorithm referred to as persistent angular
structure (PAS) MRI was proposed by Jansons and Alexander
(2003). This method computed a function on a fixed spherical shell
in three dimensions, by assuming its Fourier transform best fits the
measurements and incorporating a maximum-entropy condition.
More recently, a robust and fast transform, called the diffusion
orientation transform (DOT), was introduced by Özarslan et al.
(2006b). By expressing the Fourier relation in spherical coordi-
nates and evaluating the radial part of the integral analytically,
DOT is able to transform the diffusivity profiles into probability
profiles. Much of the compromise in the DOT is due to the mono-
exponential decay assumption of the MR signal, and hence can be
avoided by using the extension of the transform to multi-
exponential attenuation as described in Özarslan et al. (2006b).
However, this extension would necessitate collecting data on
several spherical shells in the wave vector space.

There exists a third class of methods in which some multi-
compartmental models or multiple-fiber population models have
been used to characterize the diffusion-attenuated MR signal. Tuch
et al. (2002) proposed to model the diffusion signal using a mixture
of Gaussian densities:

SðqÞ ¼ S0
Xn

j

wjexp $bgTDjg
! "

: ð3Þ

where wj is the apparent volume fraction of the compartment with
diffusion tensor Dj. Assaf et al. (2004) described the signal

attenuation by the weighted sum of the contributions from the
hindered and the restricted compartments. Behrens et al. (2003)
introduced a simple partial volume model, where the predicted
diffusion signal is split into an infinitely anisotropic and an
isotropic component respectively. The model parameters are then
estimated using a Bayesian framework. This partial volume model
was further extended in Hosey et al. (2005) and Behrens et al.
(2007) in order to allow the inference on multiple fiber
orientations. However, both extensions require complicated
solution techniques to address the model selection problem
properly, for example, the Markov Chain Monte Carlo (MCMC)
analysis in Hosey et al. (2005) and the automatic relevance
determination (ARD) in Behrens et al. (2007).

To avoid determining the number of components in the
modeling stage and possible instabilities associated with the fitting
of these models, Tournier et al. (2004) employed the spherical
deconvolution method, assuming a distribution, rather than a
discrete number, of fiber orientations. Under this assumption, the
diffusion MR signal is the convolution of a fiber orientation
distribution (FOD), which is a real-valued function on the unit
sphere, with some kernel function representing the response
derived from a single fiber. A number of spherical deconvolution
based approaches have followed (Anderson, 2005; Alexander,
2005; Tournier et al., 2006) with different choices of FOD
parameterizations, deconvolution kernels and regularization
schemes.

What is common to DTI and many of the multicompartmental
models is that each major fiber population is assumed to be
represented by a Gaussian function characterized by a single
tensor. In this work, we introduce an alternative approach in which
each major compartment is assumed to possess a distribution of
diffusion tensors. Since diffusion tensors are the covariance
matrices for displacements, it is natural to choose this distribution
as the Wishart distribution defined on the manifold of 3×3
symmetric positive-definite matrices. This choice lends itself to a
new formulation of DTI in which the mean tensor in the Wishart
distribution yields the fiber orientation. The signal decay
associated with a Wishart-distributed random tensors is no longer
a Gaussian, but given through a Laplace transform defined for
matrix-valued functions. This Laplace transform is evaluated in a
closed form yielding a Rigaut-type asymptotic fractal expression
which has been used in the past to model the MR signal decay
(Köpf et al., 1998) but never with a rigorous mathematical
justification until now. Furthermore, similar to what is done in the
third class of methods as described above, our formulation is
readily extended to a mixture of Wishart distributions to tackle the
fiber crossing problem. In fact, DTI and the multicompartmental
models are limiting cases of our method when the tensor
distribution is chosen to be a Dirac distribution or a mixture of
Dirac distributions. The theoretical results exhibit surprising
consistency with the experimental observations.

The rest of the paper is organized as follows: the next section
presents the technical details of our new model. In the first
subsection of Applications, we introduce a new diffusion tensor
imaging framework as a direct application of the proposed model
and compare it with the traditional DTI method. A method for
resolving multiple fiber orientations based on the proposed model
is developed in the second subsection of Applications. Experi-
ments section contains the results of application of our new
methods to synthetic and real diffusion-weighted MRI data and
comparisons with results from representative existing methods. We
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draw conclusions in the last section. Related theory and
preliminary results have been presented by the authors in an
abbreviated version of this work (Jian et al., 2007).

Theory

As mentioned in the Introduction, we assume that each voxel is
associated with an underlying probability distribution defined on
the space of diffusion tensors. Formally speaking, by assumption,
at each voxel there is an underlying probability measure induced
on the manifold of n×n symmetric positive-definite matrices,
denoted by Pn.

1 Let F be the underlying probability measure, then
we can model the diffusion signal by:

SðqÞ ¼ S0

Z

Pn

exp $bgTDg
# $

dF ¼ S0

Z

Pn

f ðDÞexp $bgTDg
# $

dD ð4Þ

where f ðDÞ is the density function of F with respect to some
carrier measure dD on Pn. Note that Eq. (4) implies a more general
form of mixture model with f ðDÞ being a mixing density over the
covariance matrices of Gaussian distributions. Clearly, our model
simplifies to the diffusion tensor model when the underlying
probability measure is the Dirac measure.

Since bgTDg in Eq. (4) can be replaced by traceðBDÞ where
B ¼ bggT , the diffusion signal model presented in the form of (4)
can be expressed as follows

SðqÞ ¼ S0

Z

Pn

exp $bgTDg
! "

dF ¼ S0

Z

Pn

exp $traceðBDÞð ÞdF; ð5Þ

which is exactly the Laplace transform of the probability measure
F on Pn (For definition of Laplace transform on Pn, see Appendix
A.1).

This expression naturally leads to an inverse problem:
recovering of a distribution F defined on Pn that best explains
the observed diffusion signal S(q). This is an ill-posed problem
and in general is intractable without additional constraints. Note
that in conventional DTI, the diffusion tensor can be interpreted as
the concentration matrix (inverse of the covariance matrix) of the
associated Gaussian distribution in the q-space. It is common
practice in multi-variate analysis literature to impose a Wishart
distribution on this concentration matrix as a prior. In fact, the
Wishart distribution is the standard conjugate prior for the
concentration matrix estimation problem. Based on this motiva-
tion, in this paper, we propose to model the underlying
distribution through a parametric probability family on Pn, in
particular, the Wishart distribution or the mixture of Wishart
distributions.

In the following, we first briefly introduce the definition of
Wishart distribution as well as its relevant properties, then we
analytically derive that when the mixing distribution in the
proposed continuous mixture tensor model is a Wishart distribu-
tion, the Laplace transform leads to a Rigaut-type asymptotic
fractal law for the MR signal decay which has been phenomen-

ologically used previously to explain the MR signal decay but
never with a rigorous mathematical justification until now.

As one of the most important probability distribution families
for nonnegative-definite matrix-valued random variables (“random
matrices”), the Wishart distribution (Wishart, 1928) is most
typically used when describing the covariance matrix of multi-
normal samples in multivariate statistics (Murihead, 1982).

Usually, the probability density function of Wishart distribution
with respect to the Lebesgue measure dY is defined as follows
(Murihead, 1982):

Definition 1. A random matrix YaPn is said to have the (central)
Wishart distribution Wn(p,Σ) with scale matrix Σ and p degrees of
freedom, n≤p, if the joint distribution of the entries of Y has the
density function:

f Yð Þ ¼ cjYjðp$n$1Þ=2jΣj$p=2exp $ 1
2
trace Σ$1Y

! "% &
; ð6Þ

with ΣaPn and c=2−np/2Γn(p / 2)
− 1 where Γn is the multivariate

gamma function:

CnðpÞ ¼
Z

Pn

exp $traceðYÞð Þ jYjp$ðnþ1Þ=2dY

and |·| denotes the determinant of a matrix.
Recently Letac and Massam (1998) showed Wishart distribu-

tion can be viewed as a natural generalization of the gamma
distribution by introducing the definition in Eq. (7).

Definition 2. (Letac and Massam, 1998)

For ΣaPn and for p in K ¼ 1
2 ; 1;

3
2 ; N ; n$1

2

' (
[ n$1

2 ; l
! "

,
the Wishart distribution γp,Σ with scale parameter Σ and shape
parameter p is defined as

dgp;ΣðYÞ ¼ CnðpÞ$1jYjp$ðnþ1Þ=2jΣj$pexp $trace Σ$1Y
! "! "

dY;

ð7Þ

where Γn is the multivariate gamma function:

CnðpÞ ¼
Z

Pn

exp $traceðYÞð Þ jYjp$ðnþ1Þ=2dY

and |·| denotes the determinant of a matrix.
Note that the above definition differs slightly from the

traditional notation Wn(p,Σ) for Wishart distribution (e.g., in
Anderson, 1958; Murihead, 1982) and the correspondence between
the two notations is simply given by γp/2,2Σ=Wn(p,Σ). In the rest
of this paper, we will use the notation γp,Σ as provided in Letac
and Massam (1998).

Clearly, the definition in Eq. (7) leads to a natural generalization
of the gamma distribution. Further, it can be shown that the
Wishart distribution preserves the following two important
properties of the gamma distribution:

Theorem 1. The expected value of a matrix-valued random
variable with a γp,Σ distribution is, pΣ.

Theorem 2. The Laplace transform of the (generalized) gamma
distribution γp,Σ is
Z

exp $trace Huð Þð Þgp;ΣðduÞ ¼ jIn þHΣj$p

where HþΣ$ 1ð ÞaPn: ð8Þ
1 Throughout this paper, Pn is by default the manifold of 3×3 symmetric

positive-definite matrices.
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Substituting the general probability measure F in (5) by the
Wishart measure γp,Σ and noting that B ¼ bggT , we have

SðqÞ=S0 ¼ jIn þ BΣj$p ¼ 1þ bgTΣg
! "! "$p

: ð9Þ

Consider the family of Wishart distributions γp,Σ and let the
expected value be denoted by D̂ ¼ pΣ. In this case, the above
expression takes the form:

SðqÞ=S0 1þ bgT D̂g
) *

=p
) *$p

: ð10Þ

This is a familiar Rigaut-type asymptotic fractal expression
(Rigaut, 1984) when the argument is taken to be the ADC associated
with the expected tensor of the Wishart distributed diffusion tensors.2

The important point is that this expression implies a signal decay
characterized by a power-law in the large-|q|, hence large-b region
exhibiting asymptotic behavior. This is the expected asymptotic
behavior for the MR signal attenuation in porous media (Sen et al.,
1995). Note that although this form of a signal attenuation curve had
been phenomenologically fitted to the diffusion-weighted MR data
before (Köpf et al., 1998), until now, there was no rigorous derivation
of the Rigaut-type expression used to explain the MR signal behavior
as a function of b-value. Therefore, this derivation may be useful in
understanding the apparent fractal-like behavior of the neural tissue in
diffusion-weighted MR experiments (Köpf et al., 1998; Özarslan et
al., 2006a). Note that in Eq. (10) the value of p depends on the
dimension of the space inwhich diffusion is taking place. Although for
fractal spaces this exponent can be a non-integer, the analog of
Debye–Porod law of diffraction (Sen et al., 1995) ensures that in
three-dimensional space the signal should have the asymptotic
behavior, S(q)∼q−4. Since b∝q2 a reasonable choice for p is 2.

To empirically validate (10), the following experiment is
designed. We first draw a sequence of random samples of
increasing sample size from a Wishart distribution with p=2, and
then for each random sample D1; N ; Dnf g of rank-2 tensors, the
corresponding multi-exponential signal decay can be simulated
using a discrete mixture of tensors as follows:

E qð Þ ¼ S qð Þ=S0 ¼
1
n

Xn

i¼1

exp $bgTDig
! "

: ð11Þ

To illustrate the relation between signal decay behavior and the
sample size, we plot the signal decay curves for different sample
sizes in Fig. 1, by fixing the direction of diffusion gradient q and
increasing the strength q= |q|. The left extreme dotted curve depicts
the signal decay from a mono-exponential model, where the
diffusion tensor is taken to be the expected value of the Wishart
distribution. The right extreme solid curve is the Rigaut-type decay
derived from (10). Note that the tail of the solid curve is linear
indicating the power-law behavior. The dotted curves between
these two extremes exhibit the decay for random samples of
increasing size but smaller than 10,000. The dashed curve uses a
random sample of size 10,000 and is almost identical to the
expected Rigaut-type function. As shown in the figure, a single
tensor gives a Gaussian decay, and the sum of a few Gaussians also
produces a curve whose tail is Gaussian-like, but as the number of

tensors increases, the attenuation curve converges to a Rigaut-type
asymptotic fractal curve with desired linear tail and the expected
slope in the double logarithmic plot.

It is well known that the gamma distribution γp,σ with integer p
is also the distribution of the sum of p independent random
variables following exponential distribution with parameter σ. It
follows from the central limit theorem that if p (not necessarily an
integer) is large, the gamma distribution γp,σ can be approximated
by the normal distribution with mean pσ and variance pσ2. More
precisely, the gamma distribution converges to a normal distribu-
tion when p goes to infinity. A similar behavior is exhibited by the
Wishart distribution. Note that when p tends to infinity, we have

SðqÞYS0exp $bgT D̂g
) *

: ð12Þ

which implies that the mono-exponential model can be viewed as a
limiting case (p→∞) of our model. Hence Eq. (10) can be seen as
a generalization of Eq. (1). By the linearity of the Laplace
transform, the bi-exponential and multi-exponential models can be
derived from the Laplace transform of the discrete mixture of
Wishart distributions as well.

Applications

A new framework for diffusion tensor estimation

The model in Eq. (5) also suggests a new method for the
estimation of diffusion tensors from diffusion-weighted images.
We first consider a set of diffusion measurements performed at a
voxel containing a single fiber bundle. In this case, it is natural to
use the Wishart distribution γp,Σ as the mixing distribution in Eq.
(5) and thus the following equation is obtained:

S0
SðqÞ

% &1=p

$trace BΣð Þ ¼ 1

or in the matrix form:

S1ð Þ$
1
p Bxx

: : : 2Bxz

S2ð Þ$
1
p Bxx

: : : 2Bxz

: : : : : : : : : : : :

SKð Þ$
1
p Bxx

: : : 2Bxz

0

BBBB@

1

CCCCA

S0ð Þ1p

Sxx

: : :

Sxz

0

BBBB@

1

CCCCA
¼

1
1
: : :

1

0

BB@

1

CCA; ð13Þ

where K is the number of measurements at each voxel and Bij and
Σij are the six components of the matrices B and Σ, respectively.

2 Note that the form of 10 is slightly different from Rigaut's (1984) own
formula; however, it possesses the desirable properties of the original
formula such as concavity and the asymptotic linearity in the log–log
plots—hence the phrase “Rigaut-type”.

Fig. 1. The Wishart distributed tensors lead to a Rigaut-type signal decay.
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Note that in the above expression the components of the matrices B
and Σ should be ordered consistently. The final estimation of
diffusion tensor D̂ is obtained by taking the expected value of the
Wishart distribution γp,Σ, i.e. D̂ ¼ pΣ.

Hence, the diffusion tensor estimation problem can be
reformulated as the solution to a linear system. As a result, the S0
and the six components in Σ can be estimated efficiently by using
linear regression as has been customarily done in the traditional
diffusion tensor estimation methods. Note that, since the focus of
this paper is not simply the estimation of diffusion tensors from the
DW-MRI measurements, as an application example of the proposed
model, we chose to demonstrate that one may use a linear regression
based formulation (as in the traditional DTI estimation) for
estimating the diffusion tensors using the proposed Wishart mixing
density model. Alternatively, one may use a nonlinear regression
formulation for estimating the diffusion tensors and this would
involve solving the following equation for pΣ using a non-linear
least-squares technique such as the Levenberg–Marquardt algorithm
(Press et al., 1992):

min
Σ

SðqÞ $ S0 1þ trace BΣð Þð Þ$p! "2 ð14Þ

Note that in this nonlinear least-squares formulation, the data does
not undergo any transformation prior to estimation of the diffusion
tensors. In the results reported in the first subsection of Experiments,
we use this nonlinear least-squares formulation to estimate the
diffusion tensors and compare the accuracy of estimation to that
obtained from a nonlinear least-squares estimation of pΣ but using
the traditional mono-exponential Stejskal–Tanner model (Wang et
al., 2004). In both the cases, the solution obtained from the
corresponding linear-regression formulations are used as the
initialization for the Levenberg–Marquardt nonlinear solver. For
reasonably high signal-to-noise ratio, the solutions from the linear
regression and the nonlinear least-squares are very close as was
observed for the Stejskal–Tanner model in Basser et al. (1994).

It should be pointed out that many complicated methods which
involve nonlinear optimization and enforce the positivity constraint
on the diffusion tensor, as in (Chefd'hotel et al., 2004; Wang et al.,
2004), can be applied to the Wishart model proposed here. Similarly,
the resulting diffusion tensor field represented by the estimated pΣ at
each voxel and can be then analyzed by numerous existing diffusion
tensor image analysis methods (Weickert and Hagen, 2005).

Multi-fiber reconstruction using deconvolution

However, the singleWishart model can not resolve the intra-voxel
orientational heterogeneity due to the single diffusionmaximum in the
model. Actually, the Laplace transform relation between the MR
signal and the probability distributions on Pn naturally leads to an
inverse problem: to recover a distribution onPn that best explains the
observed diffusion signal. In order to make the problem tractable,
several simplifying assumptions are made as follows.

We first propose a discrete mixture of Wishart distribution
model where the mixing distribution in Eq. (5) is expressed as
dF ¼

PN
i¼1 widgpi;Σi. In this model (pi,Σi) are treated as basis and

will be fixed as described below. This leaves us with the weights w,
as the unknowns to be estimated. Note the number of
components in mixture, N, only depends on the resolution of
the manifold discretization and should not be interpreted as the
expected number of fiber bundles. We assume that all the pi take

the same value p=2 based on the analogy between the Eq. (10)
and Debye–Porod law of diffraction (Sen et al., 1995) in three-
dimensional space as discussed in the section of Theory. Since
the fibers have an approximately cylindrical geometry, it is
reasonable to assume that the two smaller eigenvalues of
diffusion tensors are equal. In practice, we fix the eigenvalues
of Di ¼ pΣi to specified values (λ1, λ2, λ3)= (1.5, 0.4, 0.4)μ2/ms
consistent with the values commonly observed in the white-
matter tracts (Tuch et al., 2002). This rotational symmetry leads
to a tessellation where N unit vectors evenly distributed on the
unit sphere are chosen as the principal directions of Σi. In this
way, the distribution can be estimated using a spherical
deconvolution scheme (Tournier et al., 2004). For K measure-
ments with qj, the signal model equation:

SðqÞ ¼ S0
XN

i¼1

wi 1þ trace BΣið Þð Þ$p ð15Þ

leads to a linear system Aw ¼ s, where s=(S(q)/S0) is the vector
of normalized measurements, w=(wi), is the vector of weights to
be estimated and A is the matrix with Aji ¼ 1þ trace BjΣi

! "! "$p.
It is worth noting that if we take p=∝, the deconvolution kernel
becomes the Gaussian function and the resulting w resembles
very closely the fiber orientation estimated using continuous
axially symmetric tensors (FORECAST) method proposed in
Anderson (2005).

To avoid an under-determined system, K≥N is required without
an interpolation on the measurements or exploring the sparsity
constraints on w. Since the matrix A only depends on the sampling
scheme and therefore needs only one-time computation, the
computational burden of this method is light and comparable to
that of the traditional linear least squares estimation of diffusion
tensors from the Stejskal–Tanner equation. However, the induced
inverse problem can be ill-conditioned due to the possible singular
configurations of the linear system. In practice, we employ the
damped least squares (DLS) (Wampler, 1986) inverse to overcome
the instability problem. Instead of inverting small singular values,
the damped least squares technique builds a smooth function
converging to zero when the singular value tends towards zero.
Note that the DLS is the closed form solution to one special case of
the Tikhonov regularization used in Tournier et al. (2006).

Özarslan et al. (2006b) have shown that the distinct fiber
orientations can be estimated by computing the peaks of the
probability profiles, i.e. the probabilities for water molecules to
move a fixed distance along different directions. Using a similar
idea, we now present a way to compute the displacement
probabilities using the proposed continuous distribution of tensors
model.

First, the displacement probabilities can be approximated by the
Fourier transform P(r)= ∫E(q)exp(− iq ·r)dq where E(q)=S(q)/S0 is
the MR signal attenuation. Assuming a continuous diffusion tensor
model as in Eq. (4) withmixing distribution FðDÞ ¼

PN
i¼1 widgpi;Σi,

we have

PðrÞ ¼
Z

R3

Z

Pn

exp $qTDqt
! "

dFðDÞexp $iqd rð Þdq

c
XN

i¼1

wiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4ptÞ3jD̂ij

q exp $rT D̂
$1

i r=4t
) *

ð16Þ

where D̂i ¼ pΣi are the expected values of gp;Σi.

168 B. Jian et al. / NeuroImage 37 (2007) 164–176



After the displacement probability profile is computed as a real-
valued function on the sphere, we represent all the resulting
probability profiles in terms of spherical harmonics series and only
the spherical harmonics expansion coefficients are stored for later
visualization and finding fiber orientations. The existence of
analytical angular derivatives of spherical harmonic functions
enables the use of fast numerical optimization routines to find the
peaks of the probability surfaces. However, due to the noise and
truncation artifacts introduced in the finite order spherical
harmonics expansion, we use a numerical optimization in
conjunction with a heuristic approach in order to estimate the
distinct fiber orientations. We first select a large number of
randomly sampled points on the sphere and evaluate the spherical
harmonic expansion of the probability profile at each of these
points, and find the local maxima by searching within a fixed
radius neighborhood. Then, a Quasi-Newton method was used to
refine the position of each local maximum. Finally, we remove
duplicate local maxima and any insignificant spikes with function
values smaller than some threshold. The result of this heuristic
pruning leads to significant maxima that correspond to the fiber
orientations.

Experiments

A series of experiments were performed on synthetic data sets
and on real rat brain data sets in order to evaluate the behavior of
the proposed continuous tensor distribution model, as well as to
validate the methods developed for diffusion tensor estimation and
multi-fiber reconstruction, respectively.

Diffusion tensor field estimation using Wishart model

The first experiment was designed to assess the method
proposed in the first subsection of Applications on a synthetic data
set. The simulations employed the exact form of the MR signal
attenuation from particles diffusing inside cylindrical boundaries
(Söderman and Jönsson, 1995). The data set used in this
experiment was generated to represent single-fiber diffusion with
sinusoidally varying orientations as shown in Fig. 2(a).

To quantitatively compare the accuracy of the tensor fits
obtained using the proposed Wishart model and the traditional
mono-exponential Stejskal–Tanner equation, we added different
levels of Rician-distributed noise to the synthetic data set and
then computed the angular deviation (in degrees) between the
dominant eigenvector of the estimated diffusion tensor field and
the ground truth orientation field which was used to generate the
synthetic data set. Rician noise was imposed on the magnitude
MR signal by using additive independent Gaussian noise on the
real and imaginary parts of the complex-valued MR signal and
taking its magnitude. For more details on this technique of
approximating Rician noise, we refer the reader to Gudbjartsson
and Patz (1995).

Fig. 2(b) shows the statistics of deviation angles obtained by
applying the two different models (ours and the traditional
Stejskal–Tanner model) to the synthetic data with increasing
levels of Rician-distributed noise (σ=.01, …, .09) imposed on the
magnitude of the MR signal. From the figure, we can see that the
overall accuracy of these two models are very close to each other.
However, the average angle errors using the Wishart model are
lower than those obtained using the mono-exponential Stejskal–
Tanner equation for increasing levels of noise.

Multi-fiber reconstruction on simulated data

We have applied the scheme described in the second subsection
of Applications to the simulations of single fiber and crossing fiber
systems. As in previous experiments, the simulations were
performed following the exact form of the MR signal attenuation
from particles diffusing inside cylindrical boundaries (Söderman
and Jönsson, 1995).

Fig. 3 shows the probability surfaces for a simulated image of
two-fiber crossing bundles computed using the proposed method.
The surfaces are consistent with the underlying known fibrous
structure. The curved and linear fiber bundles were chosen so that a
distribution of crossing angles is achieved across the region with
orientational heterogeneity. We notice that distinct fiber orienta-
tions are better resolved when the different fiber bundles make
larger angles with each other.

We also empirically investigated the performance of our
reconstruction method. Of special interest is its accuracy in fiber

Fig. 2. Diffusion tensor fitting of a simulated data set. (a) Visualization of the
noiseless tensor field. (b) Comparison of the accuracy of the estimated
dominant eigenvectors using different methods under different noise levels.
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orientation detection in the presence of noise. To study this
problem, we first took the HARDI simulations of 1-, 2- and 3-fiber
crossing profiles with known fiber orientations and computed the
probability profiles which are depicted in Fig. 4.

In the case of the noiseless signal, the proposed method as well
as QBI and DOT are all able to recover the fiber orientation quite
accurately. The Q-ball orientation distribution functions (ODF) is
computed by using the spherical harmonic expansion formula
given in Anderson (2005, Eq. (21)). Since our method and the
non-parametric DOT method compute the probability values
directly, we fit the resulting probability profiles from proposed
method and DOT using spherical harmonics basis for the purpose
of better surface display via rendering. The existence of analytical
angular derivatives of spherical harmonic functions also enables us
to apply fast gradient-based numerical optimization routines
(described earlier) to find the peaks of the probability surfaces.

To provide a more quantitative assessment of the proposed
method and its sensitivity to noise, we performed a series of
experiments as follows:

⋅ For all the 1-, 2- and 3-fiber crossing systems as shown in
Fig. 4, the noise profile was created as described in the first

subsection of Experiments with increasing noise levels
(σ=.02, .04, .06, .08).⋅ For each noise corrupted fiber system, we recomputed the
probability profiles by using the proposed method and DOT.
Similarly, the Q-ball ODF were computed using the formula
given byAnderson (2005, Eq. (21)). All the resulting surfaces
were represented by spherical harmonics coefficients.⋅ We then estimated the fiber orientations of each system by
numerically finding the maxima of the probability surfaces
with a Quasi-Newton numerical optimization algorithm and
computed the deviation angles ψ between the estimated and
the true fiber orientations. In this case, since the ground truth
fiber orientations were known, the initial orientations were
chosen from random perturbations about the known ground
truth fiber orientations.⋅ For each system and each noise level, the above steps were
repeated 100 times to provide a distribution of deviation
angles. Table 1 reports the mean and standard deviation of
these distributions in degrees.

As expected, the deviation angles between the recovered and
the true fiber orientations increase with increasing noise levels and

Fig. 3. Probability maps from a simulated image of two crossing fiber bundles computed using (a) DOT and (b) proposed method.
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it is more challenging to accurately resolve the distinct orientations
when there are more fiber orientations. The statistics reported in
Table 1 also indicate that the proposed method has stronger
resistance to the noise than the DOT and the QBI methods
respectively. Figs. 5 and 6 also illustrate this finding.

Multi-fiber reconstruction on real data

The rat optic chiasm is an excellent experimental validation of
our approach due to its distinct myelinated structure with both
parallel and descussating optic nerve fibers. HARDI data from

optic chiasm region of excised, perfusion-fixed rat nervous tissue
was acquired at 14.1 T using Bruker Avance imaging systems. A
diffusion-weighted spin echo pulse sequence was used. Diffusion-
weighted images were acquired along 46 directions with a b-value
of 1250 s/mm2 along with a single image acquired at b≈0 s/mm2.
Echo time and repetition time were 23 ms and 0.5 s respectively; Δ
value and δ value were 12.4 ms and 1.2 ms; bandwidth was set to
35 kHz; signal average was 10; matrix size was 128×128×5 and
resolution was 33.6×33.6×200 μm3. The optic chiasm images
were signal-averaged to 67.2×67.2×200 μm3 resolution prior to
probability calculations.

Fig. 7 shows the displacement probabilities computed from the
optic chiasm image. For the sake of clarity, we excluded every
other pixel and overlaid the probability surfaces on generalized
anisotropy (GA) maps (Özarslan et al., 2005). As evident from this
figure, our method is able to demonstrate the distinct fiber
orientations in the central region of the optic chiasm where
ipsilateral myelinated axons from the two optic nerves cross and
form the contralateral optic tracts.

To investigate the capability of diffusion-weighted imaging in
revealing the effects in local tissue caused by diseases or
neurologic disorders, further experiments were carried out on
two data sets collected from a pair of epileptic/normal rat brains.

Under deep anesthesia, a Sprague-Dawley rat was transcardially
exsanguinated and then perfused with a fixative solution of 4%
paraformaldehyde in phosphate-buffered saline (PBS). The corpse
was stored in a refrigerator overnight then the brain was extracted
and stored in the fixative solution. For MR measurements, the
brain was removed from the fixative solution then soaked in PBS,
without fixative, for approximately 12 h (overnight). Prior to MR
imaging, the brain was removed from the saline solution and

Fig. 4. Simulations of 1, 2 and 3 fibers (b=1500 s/mm2). Orientations:
azimuthal angles ϕ1=30, ϕ2={20, 100}, ϕ3={20, 75, 135}; polar angles
were all 90°. Top: Q-ball ODF surfaces; Bottom: Probability surfaces
computed using proposed method.

Table 1
Mean and standard deviation values for the deviation angles ψ between the computed and true fiber orientations after adding Rician noise of increasing noise
levels σ

ψ (σ=0) ψ (σ=0.02) ψ (σ=0.04) ψ (σ=0.06) ψ (σ=0.08)

From proposed method
1 fiber {0.243} 0.65±0.39 1.19±0.65 1.66±0.87 2.19±1.27
2 fibers {0.74} 1.18±0.66 2.55±1.29 3.85±2.12 4.91±3.26

{0.69} 1.30±0.66 2.76±1.34 3.63±1.91 5.11±2.65
3 fibers {1.02} 4.87±3.23 8.59±5.82 11.79±6.86 13.84±8.73

{0.97} 5.81±3.61 7.70±5.02 11.27±6.36 12.54±7.48
{1.72} 4.92±3.32 7.94±4.59 12.57±7.09 14.27±7.66

From DOT
1 fiber {0.414} 0.71±0.35 1.08±0.58 1.84±0.88 2.20±1.28
2 fibers {1.55} 1.97±0.96 3.37±1.90 5.39±2.99 7.00±4.25

{1.10} 1.73±1.00 3.28±1.87 4.78±2.37 6.29±3.19
3 fibers {4.11} 7.89±5.71 10.82±6.66 14.56±8.74 16.68±10.21

{3.46} 6.94±3.70 11.28±5.98 16.92±10.36 17.02±10.95
{1.68} 6.76±5.21 10.90±5.63 14.08±9.05 13.99±9.74

From QBI
1 fiber {0.089} 1.28±0.75 3.34±1.97 5.94±3.19 7.67±4.16
2 fibers {0.45} 2.39±1.26 4.82±2.44 7.95±4.45 8.91±4.64

{0.42} 2.30±1.10 4.94±2.15 7.49±3.88 9.34±4.45
3 fibers {0.90} 10.80±5.59 12.15±4.42 20.21±11.10 18.78±11.39

{0.90} 11.59±5.44 13.07±4.74 19.54±11.80 20.79±10.81
{0.19} 11.66±5.18 12.25±4.93 20.36±11.50 19.10±10.18

Note, in all cases, we discarded very large deviation angles that are greater than 30° when σ=0.02, 40° when σ=0.04, 50° when σ=0.06 or σ=0.08 since these
large errors are mostly due to the failure of the numerical optimization routine.
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Fig. 5. Resistance to noise (2 fibers, σ=0.08): (a) ODF from QBI; (b) Proposed method.
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Fig. 6. Resistance to noise (3 fibers, σ=0.04): (a) ODF from QBI; (b) Proposed method.
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placed in a 20-mm tube with fluorinated oil (Fluorinert FC-43, 3M
Corp., St. Paul, MN) and held in place with plugs. Extra care was
taken to remove any air bubbles in the sample preparation.

Themultiple-slice diffusion-weighted image data were measured
at 750MHz using a 17.6 T, 89 mm bore magnet with Bruker Avance

console (Bruker NMR Instruments, Billerica, MA). A spin-echo,
pulsed-field-gradient sequence was used for data acquisition with a
repetition time of 1400 ms and an echo time of 28 ms. The diffusion-
weighted gradient pulses were 1.5ms long and separated by 17.5ms.
A total of 32 slices, with a thickness of 0.3 mm, were measured with
an orientation parallel to the long-axis of the brain (slices progressed
in the dorsal–ventral direction). These slices have a field-of-view
30 mm×15 mm in a matrix of 200×100. The diffusion-weighted
images were interpolated to a matrix of 400×200 for each slice.
Each image was measured with 2 diffusion weightings: 100 and
1250 s/mm2. Diffusion-weighted images with 100 s/mm2 were
measured in 6 gradient directions determined by the vertices of an
icosahedron in one of the hemispheres. The images with a diffusion-
weighting of 1250 s/mm2 were measured in 46 gradient directions,
which are determined by the tessellations of the icosahedron on the
same hemisphere. The 100 s/mm2 images were acquired with 20
signal averages and the 1250 s/mm2 images were acquired with 5
signal averages in a total measurement time of approximately 14 h.

Fig. 8 shows the displacement probabilities calculated from
excised coronal rat brain MRI data in (a) a control and (b) an
epileptic rat. The hippocampus and entorhinal cortex is expanded
and it depicts the orientations of the highly anisotropic and
coherent fibers. Note voxels with crossing orientations located in
the dentate gyrus (dg) and entorhinal cortex (ec). The region
superior to CA1 represent the stratum lacunosum–moleculare and
statum radiatum. Note that in the control hippocampus, the
molecular layer and stratum radiatum fiber orientations paralleled
the apical dendrites of granule cells and pyramidal neurons,
respectively. In the epileptic hippocampus, the CA1 subfield
pyramidal cell layer is notably lost relative to the control. The

Fig. 7. Probability maps computed from a rat optic chiasm data set overlaid on
axially oriented GAmaps. The decussations of myelinated axons from the two
optic nerves at the center of the optic chiasm are readily apparent. Decussating
fibers carry information from the temporal visual fields to the geniculate body.
Upper left corner shows the corresponding reference (S0) image.

Fig. 8. Probability maps of coronally oriented GA images of a control and an epileptic hippocampus. Upper left corner shows the corresponding reference (S0)
images where the rectangle regions enclose the hippocampi. In the control hippocampus, the molecular layer and stratum radiatum fiber orientations paralleled
the apical dendrites of granule cells and pyramidal neurons respectively, whereas in the stratum lacunosum, moleculare orientations paralleled Schaffer collaterals
from CA1 neurons. In the epileptic hippocampus, the overall architecture is notably altered; the CA1 subfield is lost, while an increase in crossing fibers can be
seen in the hilus and dentate gyrus (dg). Increased crossing fibers can also be seen in the entorhinal cortex (ec). Fiber density within the statum lacunosum
moleculare and statum radiale is also notably reduced, although fiber orientation remains unaltered.
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architecture of the dentate gyrus is also notably altered with more
evidence of crossing fibers. Future investigations employing this
method should improve our understanding of normal and
pathologically altered neuroanatomy in regions of complex fiber
architecture such as the hippocampus and entorhinal cortex.

Conclusion

In this paper, we presented a new mathematical model for the
diffusion-weighted MR signals obtained from a single voxel.
According to our model, the signal is generated by a continuous
distribution of diffusion tensors, where the relevant distribution is a
Wishart distribution. In this case, the MR signal was shown to be a
Laplace transform of this distribution defined on the manifold of
symmetric positive-definite tensors. We presented an explicit form of
the expected MR signal attenuation given by a Rigaut-type
asymptotic fractal formula. This form of the signal attenuation has
the correct asymptotic dependence of the signal values on the
diffusion gradient strength. Moreover, the angular dependence of the
expectedMR signal is different from the angular dependence implied
by traditional DTI. The simulations of diffusion inside cylindrical
boundaries suggested that the principal eigenvectors of the diffusion
tensors obtained from the proposed model are more accurate than
those implied by traditionalDTI. Using this newmodel in conjunction
with a deconvolution approach, we presented an efficient estimation
scheme for the distinct fiber orientations and the water molecule
displacement probability functions at each voxel in a HARDI data set.
Both synthetic and real data sets were used to depict the performance
of the proposed algorithms. Comparisons with competing methods
from literature depicted our model in a favorable light.

Appendix A

A.1. Laplace transform on PPPPn

For definition of Laplace transforms on Pn, we follow the
notations in Terras (1985).

Definition 3. The Laplace transform of f : PnYC, denoted byLf ,
at the symmetric matrix ZaCn&n is defined by Herz (1955):

Lf ðZÞ ¼
Z

Pn

f ðYÞexp $trace YZð Þ½ (dY; where

dY ¼ jdyij 1ViVjVn: ð17Þ

For a sufficiently nice function f, the integral above converges in
the right half plane, ReðZÞNX0 (ReðZÞ denotes the real part of Z),
meaning that ReðZÞ $ X0aPn and the inversion formula for this
Laplace transform is:

ð2piÞ$nðnþ1Þ=2
Z

ReZ¼X0

Lf ðZÞexp traceðYZÞ½ (

dZ ¼
f ðYÞ; for YaPn;

0; otherwise:

, ð18Þ

Here dZ ¼ jdzij and the integral is over symmetric matrices Z
with fixed real part.

If f is the density function of some probability measure F on Pn

with respect to the dominating measure dY, i.e. dFðYÞ ¼ f ðYÞdY,
then Eq. (17) also defines the Laplace transform of the probability
measure F on Pn which is denoted by LF.
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