Mid-Atlantic Distributed Energy Resources Workshop

Daniel J. Dowiak Channel Sales Manager Ingersoll-Rand Energy Systems February 21, 2002

Agenda

Distributed Generation Technologies

Commercial
Emerging

Who are the players?
Value Proposition

Distributed Generation Technologies

- Reciprocating Engines
 - Gas
 - Diesel
- Microturbines
- Photovoltaic
- Wind

Who are the players?

- Reciprocating Engines
 Caterpillar
 Cummins
 - Generac
 - Coast Intelligen
 - Hess Microgen
 - Teco Gen

Caterpillar teams with Active Power to provide UPS with the addition of a flywheel

Cummins and Capstone Microturbines for a new line of power generation equipment by Cummins -"Powered by Capstone"

Coast Intelligen - German MAN engine, high system efficiency, proprietary heat recovery package, excellent service & maintenance intervals Hess Microgen multiple sizes, high efficiency, substantial resources support product.

Generac - DG50 -50kW gas reciprocating engine, simple design and installation

TECO Gen - long history in cogen, limited sizes, reputation getting better.

Who are the players?

- Microturbines
 - Capstone
 - Honeywell Power Systems
 - Ingersoll-Rand
 - Turbec
 - Elliot Energy Systems
 - Bowman
 - Kawasaki

Capstone 30 and 60 kW systems. Air bearings, single shaft, "household name" in microturbines

Ingersoll-Rand Energy Systems, NREC original design, dual shaft, industrial pedigree, 70 kW with heat recovery integral to unit.

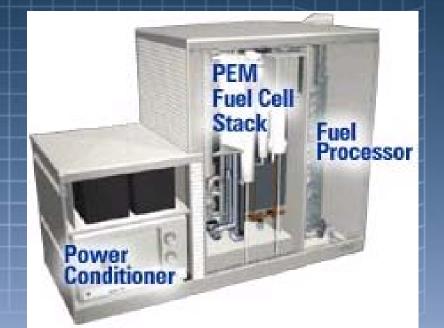
Turbec - Joint venture of Volvo Aero and ABB. 100 kW system testing in Europe, opened US operations summer 2001

Elliott provides microturbines to Bowman, multiple sizes, portable power

Who are the players?

- Fuel Cells
 - Fuel Cell Energy
 - Siemens Westinghouse
 - Ballard
 - Plug Power
 - GE
 - UTC Fuel Cells (ONSI)

UTC Fuel Cells (United Technologies, ONSI), phosphoric acid, mature technology, only commercially available, moving to PEM


Fuel Cell Energy molten carbonate, MW size, stationary power.

Ballard - PEM - heavy investment from transportation industry (GM, Ford, DiamlerChrysler), stationary power.

Plug Power - PEM residential applications, partnership with GE.

Siemans-Westinghouse - solid oxide - working on hybrid systems, equipment problems with high operating temperatures.

Who are the players?

- Photovoltaic
 - Astropower
 - EPV
 - Energy Conversion Devices
 - Kyocera Solar
 - Siemens Solar
 - SunPower Corp.

Photovoltaics

Regional opportunities

- Best US locations Southwest
- 1 MW in New Jersey requires approximately 1 square mile
- Technology evolving
- Expensive
- Excellent application for "net metering"

Who are the players?

- Wind
 - Manufacturers
 - The Wind Turbine Company
 - Bergy Windpower
 - Mitsubishi
 - Developers
 - AEP Energy Services
 - FPL Energy
 - Enron Wind (?)

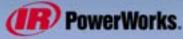
Wind

- Regional opportunities
 - Best US locations West (California)
 - Projects in PA and upper Midwest
- Technology evolving
- Expensive
- Sitting issues

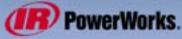
Value Proposition

Customer Perspectives

- Return on Investment (ROI)
- Simple Payback
- Immediate Cost Savings
- Financing
 - On Balance Sheet
 - Off Balance Sheet
- Own/Operate



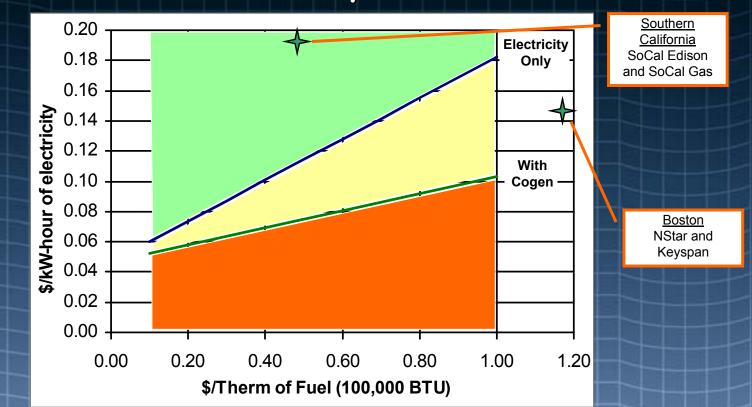
Cost to Generate Fuel Cost v Equipment Efficiency


Fuel Price (\$/MMBtu) (no heat recovery)

Generator Efficiency	\$5.00	\$6.00	\$7.00	\$8.00	\$9.00
20%	\$0.0854	\$0.1024	\$0.1195	\$0.1366	\$0.1536
25%	\$0.0683	\$0.0819	\$0.0956	\$0.1092	\$0.1229
30%	\$0.0569	\$0.0683	\$0.0797	\$0.0910	\$0.1024
35%	\$0.0488	\$0.0585	\$0.0683	\$0.0780	\$0.0878

Technology Comparison Costs & Efficiency

	Gas Recip	MT	Fuel Cell	PV	Wind
Capacity	50 kW - 5 MW	30 kW - 100 kW	50 kW - 2 MW	1 kW - 1 MW	10 kW - 1 MW
Efficiency - Ihv ⁽¹⁾	35%	21% - 30%	40% - 57%	6% - 19%	25%
Equipment \$/kW ⁽²⁾	\$500 - \$700	\$1000 - \$1,300	\$4,500 - ? ⁽⁴⁾	\$3,000 - \$5,000	\$600 ⁽⁵⁾
Installation \$/kW	\$200 - \$300	\$250 - \$500	+/-\$1,000	\$3,000	\$400 ⁽⁵⁾
O&M \$/kW ⁽³⁾	\$0.01	\$0.011	\$0.002	\$0.001 - \$0.004	\$0.01


Technology Comparison Costs & Efficiency

Notes for previous chart

- (1) Efficiencies of renewable energy technologies, PV and Wind, should not be compared directly with those of fossil technologies, since there is no fuel "cost".
- (2) This is the cost for the equipment and does not include the cost of engineering, installation, etc.
- (3) O&M excludes fuel cost. There are no fuel costs for wind or PV systems but relative fuel costs should be considered in evaluation of fossil technologies.
- (4) Before any grants or subsidies.
- (5) Estimated from equipment costs.

Cogeneration Acts To Decrease Electricity Cost

- Reduces the fuel needed by facility's furnace, boiler, etc.
- Displaces some of original fuel costs
- Becomes a "credit" against the DG electricity cost

Final Comments

- Distributed Generation is here to stay regardless of the technology.
- Incentives and subsidies will expedite the deployment and perfection of the all DG technologies.
- As DG becomes more widely deployed, the costs <u>will</u> be reduced.

Contact Information

Daniel J. Dowiak Channel Sales Manger Ingersoll-Rand Energy Systems 856-439-9998 dan_dowiak@irco.com

