
PAPI, DynInst and Hardware
Performance Analysis Tools

Philip Mucci, Research Consultant
Innovative Computing Laboratory/UTK

Performance Evaluation Research Center/NERSC/LBNL

pjmucci@lbl.gov

Lawrence Berkeley National Laboratory
Performance Workshop, August 8th, 2003

August 8th, 2003 1

The PAPI Interface

PAPI provides two standardized APIs to access
the underlying performance counter
hardware

• A low level interface designed for tool
developers and expert users.

• The high level interface is for application
engineers.

August 8th, 2003 1

Overview of Talk

• Overview of PAPI
– Features, Functionality and Usage
– 2.3.4 Release Status
– Changes coming in 3.0

• Dynamic Instrumentation
• Performance Analysis Tools
• Trends in the field

August 8th, 2003 1

Purpose

The purpose of the PAPI project is to
design, standardize and implement a
portable and efficient API to access the
hardware performance monitor counters
found on most modern microprocessors.

August 8th, 2003 1

Motivation

• To increase application performance and
system throughput

• To characterize application and system
workload on the CPU

• To stimulate performance tool development
and research

• To stimulate research on more sophisticated
feedback driven compilation techniques

August 8th, 2003 1

Goals

• Provide a solid foundation for cross platform
performance analysis tools.

• Loosely standardize interface among users,
tool developers, vendors and academics.

• Provide implementations for the more
popular HPC machines.

• Easy to use, well documented and freely
available. (Truly Open Source)

August 8th, 2003 1

The Fallacy of Good Scalability

• Engineers often report near linear scalability
for large parallel application codes to
hundreds of processors.
– Closer inspection reveals poor per processor

performance for their problem class.
– How does one judge performance?

• Do we have good algorithm? (maybe)
• Do we have a good compiler? (?)
• We need real performance data from the processor!

August 8th, 2003 1

Peak Performance

• How fast is fast?
– Single CPU performance in the scientific marketplace

often results from good data locality, predictable branch
behavior, and instruction pipelines filled with
independent instructions. (Out-of-order scheduling and
execution helps the latter 2)

– Determining the “reuse potential” for a numerically
intensive problem often dictates peak performance.

– Certain ratios of metrics can help diagnose this problem.
FP stalls vs. Mem stalls, loads vs. stores, misses vs.
references, etc…

August 8th, 2003 1

HPC Performance Analysis

• Portability of an application is of the utmost
concern to most HPC environments.

• No common performance tools except
prof/gprof.

• Most commercial tools are based on time.
• HPC have memory and floating point intensive

workloads which require detailed analysis.
• Research tools are the most common “solution”

among the labs.

August 8th, 2003 1

Overview of Hardware Counters

• Small number of registers dedicated for
performance monitoring functions.

1. AMD Athlon, 4 counters
2. Pentium <= III, 2 counters
3. Pentium IV, 18 counters
4. IA64, 4 counters
5. Alpha 21x64, 2 counters

– Power 3, 8 counters
– Power 4, 8 counters
– UltraSparc II, 2 counters
– MIPS R14K, 2 counters

August 8th, 2003 1

Power 4 Module and Block Diagram

August 8th, 2003 1

Itanium 2 Block Diagram

August 8th, 2003 1

Itanium 2 Block Diagram

August 8th, 2003 1

Importance of Optimization

August 8th, 2003 1

PAPI Implementation

Tools

PAPI Low Level
PAPI High Level

Hardware Performance Counters

Operating System

Kernel Extension
PAPI Machine Dependent Substrate

Machine
Specific

Layer

Portable
Layer

August 8th, 2003 1

Preset Events

• Proposed standard set of event names
deemed most relevant for application
performance tuning

• No standardization of the actual definition
• Mapped to native events on a given

platform

August 8th, 2003 1

Preset Events 2

• PAPI supports approximately 100 preset
events.
– Preset events are mappings from symbolic

names to machine specific definitions for a
particular hardware event.
• Example: PAPI_TOT_CYC

– PAPI also supports presets that may be derived
from the underlying hardware metrics
• Example: PAPI_L1_DCM

August 8th, 2003 1

Sample Preset Listing

Test case 8: Available events and hardware information.

Vendor string and code : GenuineIntel (-1)
Model string and code : Celeron (Mendocino) (6)
CPU revision : 10.000000
CPU Megahertz : 366.504944

Name Code Derived Description (Note)
PAPI_L1_DCM 0x80000000 No Level 1 data cache misses
PAPI_L1_ICM 0x80000001 No Level 1 instruction cache misses
PAPI_L2_DCM 0x80000002 No Level 2 data cache misses
PAPI_L2_ICM 0x80000003 No Level 2 instruction cache misses
PAPI_L3_DCM 0x80000004 No Level 3 data cache misses
PAPI_L3_ICM 0x80000005 No Level 3 instruction cache misses
PAPI_L1_TCM 0x80000006 Yes Level 1 cache misses
PAPI_L2_TCM 0x80000007 No Level 2 cache misses
PAPI_L3_TCM 0x80000008 No Level 3 cache misses
PAPI_CA_SNP 0x80000009 No Requests for a snoop
PAPI_CA_SHR 0x8000000a No Requests for shared cache line
PAPI_CA_CLN 0x8000000b No Requests for clean cache line
PAPI_CA_INV 0x8000000c No Requests for cache line inv.

August 8th, 2003 1

Native Events

• PAPI supports native events:
– An event countable by the CPU can be counted

even if there is no matching preset PAPI event.
– The developer uses the same API as when setting

up a preset event, but a CPU-specific bit pattern
is used instead of the PAPI event definition.

August 8th, 2003 1

High-level Interface

• Meant for application programmers wanting
coarse-grained measurements

• As easy to use as the calls present in IRIX.
• Requires no setup code
• Restrictions:

– Only PAPI preset events may be used
– Not thread safe (in PAPI 2.3.4)

August 8th, 2003 1

High-level API Calls

• PAPI_num_counters()

• PAPI_start_counters(int *cntrs, int alen)

• PAPI_stop_counters(long_long *vals, int alen)

• PAPI_accum_counters(long_long *vals, int alen)

• PAPI_read_counters(long_long *vals, int alen)

• PAPI_flops(float *rtime, float *ptime,
long_long *flpins, float *mflops)

August 8th, 2003 1

Low-level Interface

• Increased efficiency and functionality over the
high level PAPI interface

• Approximately 60 functions
(http://icl.cs.utk.edu/projects/papi/files/html_man/papi.html#4)

• Thread-safe for all 1:1 thread libraries.
(Native, OpenMP, Pthreads, etc...)

• Supports both presets and native events

August 8th, 2003 1

Low-level Functionality

• API Calls for:
– Counter multiplexing
– Callbacks on user defined overflow value
– SVR4 compatible profiling
– Processor information
– Address space information
– Static and dynamic memory information
– Accurate and low latency timing functions
– Hardware event inquiry functions
– Eventset management functions
– Simple locking operations

August 8th, 2003 1

PAPI and Multiplexing

• Multiplexing allows simultaneous use of more
counters than are supported by the hardware.
– This is accomplished through timesharing the

counter hardware and extrapolating the results.
• Users can enable multiplexing with one API

call and then use PAPI normally.

August 8th, 2003 1

Interrupts on Counter Overflow

• PAPI provides the ability to call user-
defined handlers when a specified event
exceeds a specified threshold.

• For systems that do not support counter
overflow at the hardware level, PAPI
emulates this in software at the user level.
– Code must run a reasonable length of time.

August 8th, 2003 1

Hardware Profiling

• On overflow of hardware counter, dispatch
a signal/interrupt.

• Get the address at which the code was
interrupted.

• Store counts of interrupts for each address.
• Vendor/GNU prof and gprof (-pg and –p

compiler options) use interval timers.

August 8th, 2003 1

Results of Statistical Profiling

• The result: A probabilistic distribution of where
the code spent its time and why.

Program Text Addresses

Event
Count

August 8th, 2003 1

For More Information

• http://icl.cs.utk.edu/projects/papi/
– Software and documentation
– Reference materials
– Papers and presentations
– Third-party tools
– Mailing lists

August 8th, 2003 1

PAPI 2.3.4 Release

• Supported Platforms
– IBM 604, 604e, Power 3, 4
– Intel x86, Pentium IV
– Intel Itanium I, II
– Sun UltraSparc I/II/III
– SGI R10K/R12K/R14K
– Compaq Alpha 21164/21264

with DADD/DCPI
– Cray T3E
– AMD Opteron
– Windows/x86 (not PIV)

• Enhancements
– Static/dynamic

memory info
– Multiplexing

improvements
– Lots of bug fixes

August 8th, 2003 1

PAPI 3.0

• Using lessons learned from years earlier
– Substrate code: 90% used only 10% of the time

• Complete internal redesign for:
– Efficiency
– Robustness
– Feature Set
– Elegance
– Portability

August 8th, 2003 1

Some PAPI 3.0 Features

• Multiway multiplexing
– Use all available counter registers instead of one

per time slice.
• Superb performance

– Example: On Pentium 4, a PAPI_read() costs 230
cycles. (Register read costs 100 cycles)

• Full native and programmable event support
– Thresholding
– Instruction matching
– Per event counting domains

August 8th, 2003 1

PAPI 3.0 Features 2

• Third-party interface
– Allows PAPI to control counters in other

processes
• Internal timer/signal/thread abstractions

– Support signal forwarding
• Additional internal layered API to support

robust extensions

August 8th, 2003 1

PAPI 3.0 Features 3

• Advanced profiling interface
– Support profiling on multiple counters
– Support hardware or operating system assisted

profiling
• New sampling interface

– P4, IA64 provide Event Address Registers of
BTB misses, Cache misses, TLB misses, etc...

• Revised memory usage API
– Process footprint

August 8th, 2003 1

PAPI 3.0 Features 4

• System-wide and process wide counting
implementation

• Expanded high level API
– Thread safe

• New language bindings:
– Java
– Lisp
– Matlab

August 8th, 2003 1

PAPI 3.0 Release

• Initial release expected around SC 2003
(limited scope)

• Additional platforms will be added as they
come available:
– Cray X-1 (partially complete)
– Nec SX-6
– Blue Gene (BG/L)

August 8th, 2003 1

DyninstAPI

• API for runtime code patching– new code can be added to a program while it executes– permits instrumentation and modification of programs• Provides processor independent abstractions– same patching can be applied to multiple systems• Includes meta-instrumentation– tracks overhead on inserted code

August 8th, 2003 1

IBM's DPCL vs. DynInst

• Parallel framework
based on early
DynInst

• Async/Sync
operation

• Functions for getting
data back to tool

• Integrated with POE

• Available on all
HPC platforms (and
Windows)

• Breakpoints
• Arbitrary ins. points
• Full Loop, CFG and

Basic Block
decoding

August 8th, 2003 1

• Popularized by James Larus with EEL: An
Executable Editor Library at U. Wisc.
– http://www.cs.wisc.edu/~larus/eel.html

• Technology matured by Dr. Bart Miller and (now
Dr.) Jeff Hollingsworth at U. Wisc.
– DynInst Project at U. Maryland

• http://www.dyninst.org/

– IBM’s DPCL: A Distributed DynInst
• http://oss.software.ibm.com/dpcl/

A Brief History of Dynamic Instrumentation

August 8th, 2003 1

Why Runtime Code Patching?

• Performance measurement
– Recording application behavior

• Correctness debugging
– Fast conditional breakpoints
– Data breakpoints

• Execution driven simulation
– Architecture studies

• Testing
– Code coverage testing
– Forcing hard to execute paths to be taken

August 8th, 2003 1

Advantages of Runtime Code Patching

• No forethought needed
– No user inserted probes
– No special compiling or linking
– Start anytime during execution

• Only insert code when needed
– No wasted checks for “disabled” code
– Can add new code during execution

August 8th, 2003 1

Machine
Dependent
Code

Structure of the Dyninst Library

Mutator Mutatee

Mutator App

API

Dyninst
Code

Ptrace or procfs

Application
Code

Snippets

Run-time Library

August 8th, 2003 1

API Library

• Provides:
– Functions for control of mutatee
– Runtime code generation
– Information about mutatee

• A set of C++ classes
– Bpatch_Thread
– BPatch_image
– BPatch_snippet
– BPatch_variableExpr

August 8th, 2003 1

Representing Code Snippets

• Platform Independent Representation
– Same code can be inserted into apps on any system

• Simple Abstract Syntax Tree
– Can refer to application state (variables & params)
– Includes simple looping construct
– Permits calls to application subroutines

• Type Checking
– Ensures that snippets are type compatible
– Based on structural equivalence

• allows flexibility when adding new code

August 8th, 2003 1

Type Support in Dyninst

• Access to local (stack) variables
• Complex types

– non-integer scalars
– structures
– arrays
– Fortran common blocks

• Correctness debugging
– print contents of data structures

August 8th, 2003 1

Fine-Grained Instrumentaton

• New classes added to dyninstAPI
– BPatch_basicBlock
– BPatch_sourceBlock
– BPatch_flowGraph

• Arbitrary Instrumentation points
– Conservative base trampoline

• Base trampoline deletion

August 8th, 2003 1

Arbitrary Instrumentation Points

• Code Coverage needs basic block level
instrumentation
– dyninstAPI used to support function level

instrumentation for sparc-solaris
– added arbitrary instrumentation points for SPARC

• More state must be maintained in base trampolines
– save/restore condition codes before/after arbitrary

instrumentation points
– Sparc arch supports user mode condition-code

write/read for version v8plus and later

August 8th, 2003 1

Memory Instrumentation

• Dynamic memory access instrumentation
– collect low level memory accesses
– with the flexibility of dynamic instrumentation

• Possible applications
– offline performance analysis (Sigma etc.)
– online optimization
– tools to catch memory errors

August 8th, 2003 1

Memory Instrumentation Features

• Finding memory access instructions
– loads, stores, prefetches

• Builds on Arbitrary Instrumentation
• Decoded instruction information

– type of instruction
– constants and registers involved in computing

• the effective address
• the number of bytes moved

– available in the mutator before execution

• Memory access snippets
– effective address in process space
– byte count
– available in mutatee at execution time

August 8th, 2003 1

Saving Binary Modifications

• Re-running with same modified code
requires
– Parse debug symbols
– Two processes
– DyninstAPI shared library
– Time to re-insert instrumentation

• Not a checkpointing mechanism
– Mutated binary begins at the top of main()
– Data initialized as in original binary*

August 8th, 2003 1

Dyninst Status

• Supported platforms
– SPARC (Solaris)
– x86 (Solaris, Linux, NT)
– Alpha (Tru64 UNIX)
– MIPS (IRIX)
– Power/PowerPC (AIX)

• Software available on the web
– http://www.dyninst.org
– Includes TCL command tool
– Over 250 sites have downloaded

August 8th, 2003 1

Paradyn from U. Wisconsin
• From Bart Miller Group• Dynamic discovery of bottlenecks based on testing hypotheses with dynamic instrumentation• Supports all forms of parallelism• Different real-time visualization plugins• Working with PAPI team to discover bottlenecks based on hardware metrics• Just released version 4.0• http://www.paradyn.org

August 8th, 2003 1

TAU from U. Oregon

• From Allen Malony's Group
• Source or binary based instrumentation
• Supports all forms of parallelism
• Integration with Vampir for trace

visualization of MPI, OpenMP and both
• http://www.cs.uoregon.edu/research/paracomp/tau

August 8th, 2003 1

TAU System Architecture

August 8th, 2003 1

TAU/ParaProf Screenshot

August 8th, 2003 1

Vampir (NAS Parallel Benchmark – LU)

Timeline display Callgraph display

Communications display

Parallelism display

August 8th, 2003 1

Vampir: PAPI Counter Traces

August 8th, 2003 1

TAU OpenMP+MPI Vampir Visualization

August 8th, 2003 1

SvPablo from UIUC

•Source based
instrumentation of
loops and function
calls

• Supports serial and
MPI jobs

• Freely available

• Rough F90 parser

August 8th, 2003 1

Vprof from Sandia National Laboratory

•Based on statistical
sampling of the
hardware counters

•Must instrument the
source

•Ported to other
architectures for
generalized use

•Parallel codes with
some modification

•Not actively
supported

http://aros.ca.sandia.gov/~cljanss/perf/vprof

August 8th, 2003 1

HPCToolkit from Rice University

• Tools for:
– Collecting raw statistical profiles
– Conversion of profiles into platform independent

XML
– Synthesizing browsable representations that

correlate metrics with source code
• http://www.hipersoft.rice.edu/hpctoolkit

August 8th, 2003 1

HPCToolkit Tools

• Collection: papirun/hvprof, equivalent to
SGI's “ssrun”

• Loop/CFG recovery from binary: bloop
• Data formatting: papiprof
• Data display and exploration: hpcview
• Call stack profiles: csprof
• Data is aggregated into an XML database
• HPCView is a Java applet that generates

dynamic HTML

August 8th, 2003 1

HPCView Screenshot

August 8th, 2003 1

PerfSuite from NCSA

• Libraries and tools for machine information,
memory information, aggregate counts,
derived metrics and statistical profiles

• Targeted for x86 and IA64 systems
• http://perfsuite.ncsa.uiuc.edu

August 8th, 2003 1

PerfSuite Tools

• psinv: Gather information on a processor and
the PAPI events it supports

• psrun: Collection of aggregate/derived counts
or statistical profiles of unmodified binaries

• psprocess: Formatting and output of psrun
data into text or HTML

August 8th, 2003 1

Psprocess Example Output

August 8th, 2003 1

Psrun Statistical Profile Example Output

Function Summary
--
Samples Self % Total % Function

1839543 35.01% 35.01% inl3130
541829 10.31% 45.32% ns5_core
389741 7.42% 52.74% inl0100
355349 6.76% 59.51% spread_q_bsplines
213172 4.06% 63.56% gather_f_bsplines
200546 3.82% 67.38% do_longrange
182691 3.48% 70.86% make_bsplines
149924 2.85% 73.71% ewald_LRcorrection
112883 2.15% 75.86% inl3100
105317 2.00% 77.86% solve_pme
92257 1.76% 79.62% flincs

August 8th, 2003 1

PerfSuite Libraries

• libperfsuite: Provides simple wrappers for
machine information, process memory usage
and high-precision timing

• libpshwpc: Provides simple wrappers that are
used to collect hardware performance data

August 8th, 2003 1

Libpshwpc Example

program mxm
include 'fperfsuite.h'

c Initialize libpshwpc

call PSF_hwpc_init(ierr)

c Start performance counting using libpshwpc

call PSF_hwpc_start(ierr)

c Stop hardware performance counting and write the
c results to a file named 'perf.XXXXX' (XXXXX will be
c replaced by the process ID of the program)

call PSF_hwpc_stop('perf', ierr)

c Shutdown use of libpshwpc and the underlying libraries

call PSF_hwpc_shutdown(ierr)

•Environment variables
and XML input file
dictate what gets
measured

August 8th, 2003 1

HPMToolkit from IBM ACTC

• Command line utility to gather aggregate
counts.
– PAPI version has been tested on IA32 & IA64
– User can manually instrument code for more

specific information
– Reports derived metrics like SGI’s perfex

• Libhpm for manual instrumentation
• Hpmviz is a GUI to view resulting data
http://www.ncsa.uiuc.edu/UserInfo/Resources/Software/Tools/HPMToolkit

August 8th, 2003 1

hpmviz Screenshot

August 8th, 2003 1

Libhpm Example

#include "libhpm.h"
hpmInit(tasked, "my program");
hpmStart(1, "outer call");
do_work();
hpmStart(2, "computing meaning of life");
do_more_work();
hpmStop(2);
hpmStop(1);
hpmTerminate(taskID);

August 8th, 2003 1

ToolGear Overview

• Dynamic instrumentation and analysis suite from
LLNL

• Based on DPCL from IBM
– Tested only on AIX

• Qt Front end can theoretically accept data from
any source

• GUI displays instrumentable points
• Instrumented points update display with data in

real time
• http://www.llnl.gov/CASC/tool_gear

August 8th, 2003 1

ToolGear Architecture

August 8th, 2003 1

ToolGear Screenshot: Instrumentation

August 8th, 2003 1

ToolGear Screenshot 2: Tree View

August 8th, 2003 1

ToolGear Screenshot 3: MPI Profiling

August 8th, 2003 1

• A portable tool to dynamically instrument serial
and parallel programs for the purpose of
performance analysis.

• Simple and intuitive command line interface like
GDB.

• Java/Swing GUI.
• Instrumentation is done through the run-time

insertion of function calls to specially developed
performance probes.

DynaProf

August 8th, 2003 1

Why the “Dyna” in DynaProf?

• Instrumentation:
– Functions are contained in shared libraries.
– Calls to those functions are generated at run-time.
– Those calls are dynamically inserted into the program’s

address space.
• Built on DynInst and DPCL
• Can choose the mode of instrumentation,

currently:
– Function Entry/Exit
– Call site Entry/Exit
– One-shot

August 8th, 2003 1

• Make collection of run-time performance data
easy by:
– Avoiding instrumentation and recompilation
– Avoiding perturbation of compiler optimizations
– Providing complete language independence
– Allowing multiple insert/remove instrumentation

cycles

DynaProf Goals

August 8th, 2003 1

– Using the same tool with different probes
– Providing useful and meaningful probe data
– Providing different kinds of probes
– Allowing custom probe development Make

collection of run-time performance data easy by:

DynaProf Goals 2

August 8th, 2003 1

Dynaprof Probes

• perfometerprobe
– Visualize hardware event rates in “real-time”

• papiprobe
– Measure any combination of PAPI presets and native

events
• wallclockprobe

– Highly accurate elapsed wallclock time in
microseconds.

• The latter 2 probes report:
– Inclusive
– Exclusive
– 1 Level Call Tree

August 8th, 2003 1

DynaProf Probe Design

• Probes export a few functions with loosely
standardized interfaces.

• Easy to roll your own.
– If you can code a timer, you can write a probe.

• DynaProf detects thread model.
• Probes dictate how the data is recorded and

visualized.

August 8th, 2003 1

Threads and Dynaprof Probes

• For threaded code, use the same probe!
• Dynaprof detects threads and loads a special

version of the probe library.
• Each probe specifies what to do when a new

thread is discovered.
• Each thread gets the same instrumentation.

August 8th, 2003 1

PAPI Probe

• Can count any PAPI preset or Native event
accessible through PAPI

• Can count multiple events
• Supports PAPI multiplexing
• Supports multithreading

– AIX: SMP, OpenMP, Pthreads
– Linux: SMP, OpenMP, Pthreads

August 8th, 2003 1

Wallclock Probe

• Counts microseconds using RTC
• Supports multithreading

– AIX: SMP, OpenMP, Pthreads
– Linux: SMP, OpenMP, Pthreads

August 8th, 2003 1

Reporting Probe Data

• The wallclock and PAPI probes produce very
similar data.

• Both use a parsing script written in Perl.
– wallclockrpt <file>

– papiproberpt <file>
• Produce 3 profiles

– Inclusive: Tfunction = Tself + Tchildren

– Exclusive: Tfunction = Tself

– 1-Level Call Tree: Tchild= Inclusive Tfunction

August 8th, 2003 1

Sample DynaProf Session
$./dynaprof
(dynaprof) load tests/swim
(dynaprof) list
DEFAULT_MODULE
swim.F
libm.so.6
libc.so.6
(dynaprof) list swim.F
MAIN__
inital_
calc1_
calc2_
calc3z_
calc3_
(dynaprof) list swim.F MAIN__
Entry

Call s_wsle
Call do_lio
Call e_wsle
Call s_wsle
Call do_lio
Call e_wsle
Call calc3_

(dynaprof) use probes/papiprobe

Module papiprobe.so was loaded.

Module libpapi.so was loaded.

Module libperfctr.so was loaded.

(dynaprof) instr module swim.F calc*

swim.F, inserted 4 instrumentation points

(dynaprof) run

papiprobe: output goes to

/home/mucci/dynaprof/tests/swim.1671

August 8th, 2003 1

Instrumenting SWIM for IPC

(dynaprof) use probes/papiprobe PAPI_TOT_CYC, PAPI_TOT_INS
Module papiprobe.so was loaded.
Module libpapi.so was loaded.
Module libperfctr.so was loaded.
(dynaprof) instr function swim.F calc*
Swim.F, inserted 3 instrumentation points
(dynaprof) instr
calc1_
calc2_
calc3_
calc3z_

August 8th, 2003 1

Swim Benchmark: Cycles &
Instructions

Exclusive Profile of Metric PAPI_TOT_INS.

Name Percent Total Calls
------------- ------- ----- --------
TOTAL 100 1.723e+09 1
calc2 38.28 6.598e+08 120
calc1 32.31 5.567e+08 120
calc3 22.33 3.847e+08 118
unknown 7.084 1.221e+08 1

Inclusive Profile of Metric PAPI_TOT_INS.

Name Percent Total SubCalls
------------- ------- ----- --------
TOTAL 100 1.723e+09 0
calc2 39.42 6.793e+08 1680
calc1 35.28 6.08e+08 1800
calc3 22.87 3.942e+08 1652

1-Level Inclusive Call Tree of Metric PAPI_TOT_INS.

Parent/-Child Percent Total Calls
------------- ------- ----- --------
TOTAL 100 1.723e+09 1
calc1 100 6.08e+08 120
- fsav 0.02065 1.255e+05 120
- mpi_irecv 0.03132 1.904e+05 120
- mpi_isend 0.05911 3.593e+05 120
- mpi_isend 0.06434 3.912e+05 120
-mpi_waitall 0.9013 5.479e+06 120
- mpi_irecv 0.03132 1.904e+05 120
- mpi_irecv 0.03132 1.904e+05 120
- mpi_isend 0.05356 3.256e+05 120
- mpi_isend 0.05079 3.088e+05 120
-mpi_waitall 6.813 4.142e+07 120
- mpi_irecv 0.03132 1.904e+05 120
- mpi_irecv 0.03132 1.904e+05 120
- mpi_isend 0.07504 4.562e+05 120
- mpi_isend 0.06757 4.108e+05 120
-mpi_waitall 0.161 9.791e+05 120
al 2 100 6 793e+08 120

Exclusive Profile of Metric PAPI_TOT_CYC.

Name Percent Total Calls
------------- ------- ----- --------
TOTAL 100 3.181e+09 1
calc2 34.85 1.108e+09 120
calc1 33.48 1.065e+09 120
calc3 26.1 8.301e+08 118
unknown 5.568 1.771e+08 1

Inclusive Profile of Metric PAPI_TOT_CYC.

Name Percent Total SubCalls
------------- ------- ----- --------
TOTAL 100 3.181e+09 0
calc2 35.98 1.144e+09 1680
calc1 35.61 1.133e+09 1800
calc3 26.88 8.55e+08 1652

1-Level Inclusive Call Tree of Metric PAPI_TOT_CYC.

Parent/-Child Percent Total Calls
------------- ------- ----- --------
TOTAL 100 3.181e+09 1
calc1 100 1.133e+09 120
- fsav 0.03432 3.887e+05 120
- mpi_irecv 0.07356 8.332e+05 120
- mpi_isend 0.0663 7.51e+05 120
- mpi_isend 0.0739 8.371e+05 120
-mpi_waitall 0.7189 8.143e+06 120
- mpi_irecv 0.1646 1.864e+06 120
- mpi_irecv 0.03407 3.859e+05 120
- mpi_isend 0.1867 2.115e+06 120
- mpi_isend 0.06067 6.872e+05 120
-mpi_waitall 4.22 4.78e+07 120
- mpi_irecv 0.03979 4.506e+05 120
- mpi_irecv 0.03008 3.407e+05 120
- mpi_isend 0.1014 1.148e+06 120
- mpi_isend 0.07568 8.573e+05 120
-mpi_waitall 0.1076 1.219e+06 120
al 2 100 1 144e+09 120

August 8th, 2003 1

Swim Benchmark: Instructions
per Cycle

Exclusive Profile of Metric PAPI_TOT_INS.

Name Percent Total Calls
------------- ------- ----- --------
TOTAL 100 1.723e+09 1
calc2 38.28 6.598e+08 120
calc1 32.31 5.567e+08 120
calc3 22.33 3.847e+08 118
unknown 7.084 1.221e+08 1

Inclusive Profile of Metric PAPI_TOT_INS.

Name Percent Total SubCalls
------------- ------- ----- --------
TOTAL 100 1.723e+09 0
calc2 39.42 6.793e+08 1680
calc1 35.28 6.08e+08 1800
calc3 22.87 3.942e+08 1652

1-Level Inclusive Call Tree of Metric PAPI_TOT_INS.

Parent/-Child Percent Total Calls
------------- ------- ----- --------
TOTAL 100 1.723e+09 1
calc1 100 6.08e+08 120
- fsav 0.02065 1.255e+05 120
- mpi_irecv 0.03132 1.904e+05 120
- mpi_isend 0.05911 3.593e+05 120
- mpi_isend 0.06434 3.912e+05 120
-mpi_waitall 0.9013 5.479e+06 120
- mpi_irecv 0.03132 1.904e+05 120
- mpi_irecv 0.03132 1.904e+05 120
- mpi_isend 0.05356 3.256e+05 120
- mpi_isend 0.05079 3.088e+05 120
-mpi_waitall 6.813 4.142e+07 120
- mpi_irecv 0.03132 1.904e+05 120
- mpi_irecv 0.03132 1.904e+05 120
- mpi_isend 0.07504 4.562e+05 120
- mpi_isend 0.06757 4.108e+05 120
-mpi_waitall 0.161 9.791e+05 120

l 2 100 6 793 08 120

Exclusive Profile of Metric PAPI_TOT_CYC.

Name Percent Total Calls
------------- ------- ----- --------
TOTAL 100 3.181e+09 1
calc2 34.85 1.108e+09 120
calc1 33.48 1.065e+09 120
calc3 26.1 8.301e+08 118
unknown 5.568 1.771e+08 1

Inclusive Profile of Metric PAPI_TOT_CYC.

Name Percent Total SubCalls
------------- ------- ----- --------
TOTAL 100 3.181e+09 0
calc2 35.98 1.144e+09 1680
calc1 35.61 1.133e+09 1800
calc3 26.88 8.55e+08 1652

1-Level Inclusive Call Tree of Metric PAPI_TOT_CYC.

Parent/-Child Percent Total Calls
------------- ------- ----- --------
TOTAL 100 3.181e+09 1
calc1 100 1.133e+09 120
- fsav 0.03432 3.887e+05 120
- mpi_irecv 0.07356 8.332e+05 120
- mpi_isend 0.0663 7.51e+05 120
- mpi_isend 0.0739 8.371e+05 120
-mpi_waitall 0.7189 8.143e+06 120
- mpi_irecv 0.1646 1.864e+06 120
- mpi_irecv 0.03407 3.859e+05 120
- mpi_isend 0.1867 2.115e+06 120
- mpi_isend 0.06067 6.872e+05 120
-mpi_waitall 4.22 4.78e+07 120
- mpi_irecv 0.03979 4.506e+05 120
- mpi_irecv 0.03008 3.407e+05 120
- mpi_isend 0.1014 1.148e+06 120
- mpi_isend 0.07568 8.573e+05 120
-mpi_waitall 0.1076 1.219e+06 120

calc2 0.59
calc1 0.53
calc3 0.46

August 8th, 2003 1

DynaProf GUI

• Displays module tree for instrumentation
• Simple selection of probes and

instrumentation points
• Single-click execution of common

DynaProf commands
• Coupling of probes and visualizers (e.g.

Perfometer)

August 8th, 2003 1

Dynaprof Status

• It's a bit rough
• Supported Platforms

– Using DynInst 3.0
• Linux 2.x
• AIX 4.3/5

– Using DPCL (formal MPI support)
• AIX 4.3
• AIX 5

• Available as a development snapshot from:

http://www.cs.utk.edu/~mucci/dynaprof

• Includes:
– Java/Swing GUI
– User’s Guide
– Probe libraries

August 8th, 2003 1

The End

Thanks!

Philip J. Mucci
LBNL 50B-3207

510 486-8616
pjmucci@lbl.gov
mucci@cs.utk.edu

