
Robert Fowler

John Mellor-Crummey Nathan Tallent
Gabriel Marin
(and others)

Department of Computer Science
Rice University

HPCToolkit for Top-Down
Analyzing Node Performance

(soon: http://www.cs.rice.edu/~rjf/newstuff/RiceTools_5_2003.ppt)

Outline

• Other Stuff
—Motivation
—Compilation Tools

• HPCTools Toolkit
—hpcview
—bloop
—what you can do with it

2

What we (Rice Parallel Compilers Group) do –
Code optimization

Aggressive (mostly source-to-source) compilation.
Hand application of optimizing transformations.

Try out transformations by hand first.
Work on real codes with algorithm, library, and application developers.

We spend a lot of time (too much?) analyzing executions. Why?
1. Deeply pipelined, out of order, superscalar processors with non-

blocking caches and deep memory hierarchies.
2. Aggressive (-O4), bad, and/or idiosyncratic vendor compilers.
3. Amdahl’s law says that you have to get all the pieces right.

What we did –-
Built tools to meet our needs w.r.t. the run/analyze/tune cycle.
They were so useful that we are now distributing them

Why I’m here --
To kickstart some collaboration on performance work.
To present the tools
To identify targets of opportunity for future projects.

Background

Immediate Impact Supporting Applications in “Expeditions”

Long Term Research Affecting Future HPC Systems

Performance diagnosis tools.

Hand application of aggressive transformations
to important codes.

Compilation for Processor-
in-Memory Architectures.

Source-to-source
transformation tools.

High Performance
Script-Programming Systems

High Perf.
Libraries and
Components

Fundamental compiler
algorithms.

Scalable, rapidly
converging
algorithms for
applicationsCompiler optimization

for Explicit SPMD
Languages (UPC, CAF)

1B

Work towards vertical integration along this spectrum.

Short to long term interests

Itanium-2 Compiler/Performance Fun!

610 sec175 secEFC 7.1

345 sec325 secORC 2.0

dHPFHand-codedNAS SP(1)

(2) WRF sequential execution times:

900 MHz I2 à .67 sec/iteration
667 MHz EV67 à .92 sec/iteration

(3) efc does not have a “-g3”option, i.e. you can either

Profile and debug or turn on optimization.

(900MHz dual-processor McKinley)

• Near production-quality F90 front end from Open64
• Working prototype for a CAF subset

—allocate co-arrays using static constructor-like strategy
—co-array access

– remote data access uses ARMCI get/put
– process local data access uses load/store

—synch_all, synch_team synchronization
—multi-dimensional array section operations

• Successfully compiled and executed NAS MG
—platforms: SGI Origin, Itanium2 + Myrinet
—performance similar to hand-coded MPI

• We haven’t started to apply aggressive optimizations.

The Rice Co-Array Fortran Compiler

NAS MG Efficiency (Class C)

Itanium-2/
Myrinet 2000/

efc

Itanium-2/
Myrinet 2000/

efc

Source-to-source loop translator

4A

Current capabilities
• Apply code motion to enable fusion
• Skew spatial loops to enable fusion and blocking
• Fuse loops at multiple levels
• Reduce storage for fused and blocked code
• Block and unroll loops to reuse values in registers
• Generate code with a guard-free core
Planned enhancements
• Skew temporal loops to improve temporal locality
Status
• Ready for user trials if you can run on SPARC or SGI
• Porting (~.5M lines of legacy C++) to Linux/IA32 compilers.

Performance Results

Automatic N-level fusion and storage optimization
applied to the NCOMMAS Runga-Kutta Kernel. (Origin 2k)

5C

0.470.721.160.941-level fusion w/
unroll-and-jam

0.060.391.140.692-level fusion w/
array contraction

0.060.411.420.671-level fusion w/
array contraction

0.450.851.310.941-level fusion

1111Original
TLB MissesL2 MissesL1 MissesCyclesCode

Hardware Performance Counters

• What they do
—count “events”
—record information about an instruction as it executes

• Utility
—capture information about performance critical details that

is otherwise inaccessible
– cache and TLB misses, mispredicted branches, etc.

• Ways to exploit them
—instrument code to start, stop, read, reset counters

– typically a manual process
—sample events during execution

3

Sample-based Performance Analysis

• Each time an event threshold count is exceeded
—sample the program counter
—record it in a histogram

• Map sampled PC values back to source lines
• Advantages

—provides a high-level view of where “events” happen during
execution

—can be started at launch time without prior preparation

NOTE: on Alpha EV67, most sampling is instruction based
rather than event based

4

hpcview

A tool for exploring profile-like data
• Evaluate node performance of large scientific applications
• Pinpoint key code fragments and issues
• Complementary to tools for analyzing parallel efficiency

5

Approach

• Gather multiple performance metrics from hardware
performance counters, simulation, and other sources
— ssrun on SGI, papirun on Linux, DCPI and uprofile on Tru64.

• Compute user-specified derived tuning metrics with an
expression interpreter
—e.g. wasted time = cycles - FLOPS

• Correlate metrics with program structure and source code
• Provide integrated user interface based on hypertext

browsing technology

Works for all languages, programming models and large applications

6

Support a Hierarchy of Views

• Problem
— line-level performance statistics may be inaccurate, and

offer a myopic view of program performance

• Goal
— language-independent solution that enables construction of

hierarchical program views

• Approach
— recover program structure through analysis of application

binaries with bloop tool

7

Source code

Hierarchical display of metrics

Files

18% cycles in
SMV multiply

~19 cycles
per FLOP

Navigation
8

Hierarchical display of metrics

Source Text Pane

Files

Sort on any column

Navigation

14% of cycles spent in this
loop
14% of cycles spent in this
loop

Assessment of HPCView Functionality

• Top down analysis focuses attention where it belongs
—sorted views put the important things first

• Integrated browsing interface facilitates exploration
—rich network of connections makes navigation simple

• Hierarchical, loop-level reporting facilitates analysis
—more sensible view when statement-level data is imprecise

• Binary analysis handles multi-lingual applications and libraries
—succeeds where language and compiler based tools can’t

• Sample-based profiling, aggregation and derived metrics
—reduce manual effort in analysis and tuning cycle

• Multiple metrics provide a better picture of performance
• Platform independent analysis tool
• Limited by quality of the compiler, instrumentation.

20

bloop

• Recovers loop nesting structure from application binaries
—identify basic blocks
—recover control flow graph (CFG)
—identify natural loop nests in CFG

• Map machine instructions to source lines using symbol table
• Normalize output to recover source-level view
• Current binary formats

—MIPS, Alpha, Pentium4, IA64, Sparc

9

<PGM n="/apps/smg98/test/smg98">
...
<F n="/apps/smg98/struct_linear_solvers/smg_relax.c">

<P n="hypre_SMGRelaxFreeARem">
<L b="146" e="146">

<S b="146" e="146"/>
</L>

</P>
<P n="hypre_SMGRelax">

<L b="297" e="328">
<S b="297" e="297"/>
<L b="301" e="328">

<S b="301" e="301"/>
<L b="318" e="325">

<S b="318" e="325"/>
</L>
<S b="328" e="328"/>

</L>
<S b="302" e="302"/>

</L>
</P>
...

</F>
</PGM>

Recovered Program Structure

Program

File

Statement

Loop

Procedure

10

Flattening for Top Down Analysis

• Problem
—strict hierarchical view of a program is too rigid
—want to compare program components at the same level as peers

• Solution
—enable a scope’s descendants to be flattened to compare their

children as peers

flatten

Current scope

11

unflatten

Using HPCTools Toolkit

ssrun –fcy_hwc a.out ; prof –lines a.out.fcy_hwc.f123

platform dependent
profile

source

hyperlinked
database

portable profile

ptran

hpcview

a.out

bloop a.out

program
structure

portable profile

...

configuration file

12

<HPCVIEW>
<TITLE name="POP 4-way shmem, model_size=medium" />

<PATH name="." />
<PATH name="./compile" />
<PATH name="../sshmem" />
<PATH name="../source" /> -
<METRIC name="pcc" displayName="Cycles">

<FILE name="pop.fcy_hwc.pxml" />
</METRIC>
<METRIC name="dc" displayName="L1 miss">

<FILE name="pop.fdc_hwc.pxml" />
</METRIC>
<METRIC name="dsc" displayName="L2 miss">

<FILE name="pop.fdsc_hwc.pxml" />
</METRIC>
<METRIC name="fp" displayName="FP insts">

<FILE name="pop.fgfp_hwc.pxml" />
</METRIC>
<METRIC name="rat" displayName="cy per FLOP">-

<COMPUTE>
<math> <apply> <divide/> <ci>pcc</ci> <ci>fp</ci> </apply> </math>

</COMPUTE>
</METRIC>
</HPCVIEW>

hpcview Configuration File

Paths to interesting
source directories

Heading on Display

Metrics defined by Platform
Independent Profile Files

Expression for derived
metric

13

Some Uses for hpcview

• Identifying unproductive work
—where is the program spending its time not performing FLOPS

• Memory hierarchy utilization
—bandwidth utilization: misses x line size/cycles
—is prefetching being used? is it helping or hurting?

• Cross architecture comparisons
—what program features cause performance differences?

• Explore the gap between peak and observed performance
—(max instructions per cycle * cycles) - graduated instructions

• Evaluating load balance in a parallelized code
—how do profiles for different processes compare

14

papirun/papiprof

• papirun: open-source equivalent of SGI’s “ssrun”
—initiate sample-based profiling of an execution
—collect data about user program and all dynamic libraries
—current implementation for Linux

• papiprof: prof-like tool for use with papirun
—interpret profiles collected with papirun
—output styles

– ascii profile format
– XML-based profile format for use with HPCView

15

Getting/Using HPCToolkit

At NCSA – Currently no supported installations.
(Will work anywhere PAPI can generate profiles.)

Old URL: http://www.cs.rice.edu/~dsystem/hpctools/
New URL: http://hipersoft.cs.rice.edu/hpctoolkit

Getting Started:
Old distribution regime -- Source and a variety of binary tarballs.
New distribution regime -- Use CVS to get a source distribution.

Using an installed copy:
setenv HPCTOOLKIT <where it’s installed>
source $HPCTOOLKIT/Sourceme-csh
(Modify examples in the distribution.)

21

The End

Sample Flowgraph from an Executable

Loop nesting structure
—blue: outermost level
—red: loop level 1
—green loop level 2

Observation
optimization complicates

program structure!

11

Normalizing Program Structure

Coalesce duplicate lines
(1) if duplicate lines appear in different loops

– find least common ancestor in scope tree; merge corresponding
loops along the paths to each of the duplicates
 purpose: re-rolls loops that have been split

(2) if duplicate lines appear at multiple levels in a loop nest
– discard all but the innermost instance

 purpose: handles loop-invariant code motion

apply (1) and (2) repeatedly until a fixed point is reached

Constraint: each source line must appear at most once

121

