Terpinolene [CASRN 586-62-9]

Review of Toxicological Literature

Prepared for

Scott Masten, Ph.D. National Institute of Environmental Health Sciences P.O. Box 12233 Research Triangle Park, North Carolina 27709 Contract No. N01-ES-65402

Submitted by

Raymond Tice, Ph.D. Integrated Laboratory Systems P.O. Box 13501 Research Triangle Park, North Carolina 27709

October 1999

Terpinolene was nominated by NIEHS due to its high potential for human exposure.

Terpinolene is mainly used as a synthetic food flavoring additive or fragrance enhancer.

It is produced by the alcoholic sulfuric acid treatment of pinene or by fractionation of wood turpentine. The EPA OPPT High Production Volume Chemicals List records production of terpinolene to be between 3.4 and 4.5 million pounds in 1990 (approximately 1500 to 2000 metric tons).

There is a large body of information on the occurrence and persistence of terpinolene in the environment since it occurs naturally in many plant species and may be released by their decomposition or release of volatile oils into the atmosphere. Terpinolene has also been detected in emissions from gas- and steam-heated plywood veneer dryers. Terpinolene reacts readily with atmospheric oxidizing radicals and would not persist very long. If released into the soil, terpinolene would be expected to be strongly adsorbed and leaching through to the groundwater or volatilization would be unlikely. Studies have shown that biodegradation of terpinolene may occur in soil as well as in water. Its persistence in water is reduced by its volatilization, but its adsorption to sediment and suspended particulate matter may attenuate its volatilization from water.

Significant dietary exposure to terpinolene occurs through ingestion of such foods as ice cream and ices (64 ppm), candies (0.12 - 48 ppm), non-alcoholic beverages (16 ppm), and baked goods (49 ppm). It is also found as 9% of the distilled oil in commercial lime oils, which may account for some of the terpinolene in baked goods and other desserts. NIOSH estimated that nearly 50,000 workers were occupationally exposed to terpinolene in the 1970s and early 1980s. Inhalation of volatilized terpinolene can occur from some air fresheners. Dermal exposure can occur from such products as soaps (200 - 4000 ppm), lotions (100 - 1000 ppm), perfumes (1200 - 5000 ppm), and detergents (20 - 4000 ppm).

Terpinolene is regulated by the Food and Drug Administration (FDA) as a synthetic food additive.

Terpinolene has low acute toxicity. Oral and dermal $LD_{50}s$ are 3800 mg/kg (27.9 mmol/kg) in rats and mice and >5000 mg/kg (> 36 mmol/kg) in rabbits, respectively. Terpinolene was not irritating to the skin of 24 human volunteers when applied at a concentration of 20% in petrolatum for 48 hours under a closed patch. It is not a sensitizer in the maximization test. Eczematous lesions of the hands and forearms were reported by a woman using a machine cleaner containing terpinolene. Patch testing gave a positive reaction.

Terpinolene did not promote liver regeneration in partially hepatectomized rats.

Terpinolene also possesses fungicidal, insecticidal, and pheromone-like properties.

No information was found on metabolism, pharmacokinetics, acute and subchronic toxicity, chronic toxicity, synergistic or antagonistic activities, reproductive and developmental toxicity, carcinogenicity, genotoxicity, immunotoxicity or structure-activity relationships of terpinolene.

TABLE OF CONTENTS

EXE(UTIVE SUMM	IARYi
1.0	BASIS FOR N	OMINATION1
2.0	INTRODUCT 2.1 Chemic 2.2 Physica 2.3 Comme	ION1cal Identification and Analytical Methods1Il-Chemical Properties1ercial Availability2
3.0	PRODUCTIO	N PROCESSES2
4.0	PRODUCTIO	N AND IMPORT VOLUMES2
5.0	USES	2
6.0	ENVIRONME	INTAL OCCURRENCE AND PERSISTENCE
7.0	HUMAN EXP	OSURE
8.0	REGULATOR	RY STATUS
9.0	TOXICOLOG 9.1 Genera 9.1.1 I 9.1.2 0 9.1.3 I 9.1.4 9 9.1.5 0 9.1.6 9 9.2 Reprod 9.3 Carcino 9.4 Initiation 9.5 Anticar 9.6 Genoto 9.7 Cogeno 9.8 Antiger 9.9 Immun 9.10 Other I	ICAL DATA
10.0	STRUCTURE	-ACTIVITY RELATIONSHIPS9

11.0	ONLIN	NE DATABASES AND SECONDARY REFERENCES	10
	11.1 11.2	Secondary References	11
12.0	REFE	RENCES	, 11
13.0	REFE	RENCES CONSIDERED BUT NOT CITED	.13
ACKN	NOWLE	DGEMENTS	. 14
APPE	NDIX A	UNITS AND ABBREVIATIONS	A-1
APPE	NDIX B	B PHYTOCHEMICAL AND ETHNOBOTANICAL DATABASE RESULT FOR TERPINOLENE	TS B-1
TABL	ES		

Half-life of Terpinolene When Exposed to Various	
Atmospheric Radicals	4
Regulations Relevant to Terpinolene	6
Acute Toxicity Values for Terpinolene	7
	Half-life of Terpinolene When Exposed to VariousAtmospheric RadicalsRegulations Relevant to TerpinoleneAcute Toxicity Values for Terpinolene

1.0 BASIS FOR NOMINATION

Terpinolene was nominated by NIEHS due to its high potential for human exposure.

Terpinolene [CASRN 586-62-9]

2.0 INTRODUCTION

2.1 Chemical Identification

The monoterpene terpinolene ($C_{10}H_{16}$; mol. wt. = 136.24) is also called:

Cyclohexene, 1-methyl-4-(1-methylethylidene)-4-Isopropylidene-1-methylcyclohexene *p*-Mentha-1,4(8)-diene *p*-Mentha-2,4(8)-diene 1-Methyl-4-isopropylidene-1-cyclohexene 1,4(8)-Terpadiene Terpinolen

Terpinolene can be determined by gas chromatography (RIFM no. 75-132) or by infrared spectroscopy (RIFM no. 75-132) (Opdyke, 1988). Terpinolene is a highly flammable compound and, in air, may form explosive mixtures (HSDB, 1998). Terpinolene is known to polymerize readily (Furia and Bellanca, 1971).

2.2 Physical-Chemical Properties

Property	Information	Reference
Physical State	Colorless to very pale, straw- yellow, oily liquid	Furia and Bellanca (1971)
Odor	Sweet, pine-like odor	Furia and Bellanca (1971)
Taste	Somewhat sweet, citrus flavor	Furia and Bellanca (1971)
Boiling Point (°C)	185 at 760 mm Hg	Weast and Astle (1980)
Density (20 °C/4 °C)	0.8623	Weast and Astle (1980)
Soluble in	ethanol, alcohol, and benzene	Weast and Astle (1980)
Water Solubility	2 mg/L (estimated)	Esposito (1999)
Vapor Pressure (mmHg at 25 °C)	0.595	HSDB (1998)
Flash Point (°C)	37.222	HSDB (1998)

2.3 Commercial Availability

Technical and perfume/fragrance grades of terpinolene are available from Glidco Inc. in tank car, tank truck, and 55-gallon drums (Chemcyclopedia Online, 1999). All grades of terpinolene are available from Penta Manufacturing Co. (Fairfield, NJ) in 1- and 5-gallon pails.

Other terpinolene suppliers include:

Aldrich Chemical Company, Inc. *	Milwaukee, WI
Advanced Synthesis Technologies *	San Ysidro, CA
Berje Chemical Products, Inc.	Bloomfield, NJ
Bush Boake Allen, Inc. *	Montvale, NJ
Fluka Chemical Company Ltd.*	Oakville, Ontario
Indofine Chemical Company, Inc.	Belle Mead, NJ
Millennium Specialty Chemicals *	Jacksonville, FL
TCI America, Inc.	Portland, OR
*Bulk suppliers	

Source: Chemical Sources International. Chem. Sources-U.S.A. (1999)

3.0 PRODUCTION PROCESSES AND ANALYSES

Terpinolene is produced by the alcoholic sulfuric acid treatment of pinene (Opdyke, 1988). It can also be isolated by fractionation of wood turpentine (Lewis, 1993).

4.0 PRODUCTION AND IMPORT VOLUME

Terpinolene is produced by Millennium Specialty Chemicals, Inc., located in Jacksonville, FL (SRI, 1998). U.S. production was probably greater than 2.27×10^6 grams (2.3 tons) in 1979 and 1981 (HSDB, 1998). The EPA OPPT High Production Volume Chemicals List records production of terpinolene to be between 3.0 and 4.0 million pounds (14,000 to 18,000 metric tons) per year (U.S. EPA, 1998).

5.0 **USES**

Terpinolene is mainly used as a synthetic food flavoring additive or fragrance enhancer. It is used as a flavor additive in artificial essential oils, fruits, citrus, ice cream, non-alcoholic beverages, candy, and baked goods (Furia, 1980; Furia and Bellanca, 1971). Its use in fragrances is reported to exceed 50,000 pounds per year (Opdyke, 1988). Terpinolene is used in the emulsion polymerization of acrylonitrile-butadiene-styrene (ABS) plastics (Morneau et al., 1978), acting as a chain-transfer agent in the blend of highbutadiene-content ABS with styrene-acrylonitrile (SAN) copolymer.

Terpinolene has been tested as a possible agent for the enhancement of transdermal drug delivery (Kitahara et al., 1993; Monti et al., 1995). Terpinolene, in mixtures with other terpenes, has been patented as gall stone solvents (Opdyke, 1988).

6.0 ENVIRONMENTAL OCCURRENCE AND PERSISTENCE

Terpinolene is reported to be a minor constituent of a few essential oils. It is present in the oil of nutmeg and mace, both of which are derived from *Myristica fragrans* (Forest and Heacock, 1987). It is a minor constituent of *Manilla elemi*, several commercially important tree species, *Nectandra elaiophora*, and *Dacrydium colensoi* (Furia and Bellanca, 1971). A list of plant species containing terpinolene, the parts of the plants where it is primarily found, and the relative amounts are provided in **Appendix B**.

Analysis of emissions from several gas- and steam-heated plywood veneer dryers in the U.S. revealed that 96-97% of the gaseous emissions from the dryer stacks that processed veneer from larch, white fir, red fir, and loblolly pine consisted of terpenes, with 0.3 to 1.9% of the detected terpenes consisting of terpinolene (Cronn et al., 1983). Other Swedish studies also detected elevated levels of terpinolene in the vicinity of forestry operations (Strömvall, 1992; Strömvall and Petersson, 1991; and Strömvall and Petersson, 1993).

Terpinolene would exist almost entirely as a vapor in the atmosphere considering its vapor pressure of 0.595 mmHg at 25 °C (HSDB, 1998). It is not expected to degrade by photolysis in the atmosphere since terpinolene does not absorb sunlight (HSDB, 1998). Terpinolene is highly reactive in a number of photooxidation reactions that occur in the atmosphere so it is not expected to persist very long (HSDB, 1998). The half-life estimates of the reaction of terpinolene in the atmosphere with three photooxidants are given in the following table.

If released to the soil, terpinolene is expected to be strongly adsorbed due to its estimated K_{oc} of 4766 (HSDB, 1998). Since it would remain relatively immobile in the soil, it would not be expected to leach through the soil and into the groundwater. Terpinolene's strong adsorption to soil would limit its volatilization there, even though its estimated Henry's Law Constant of

0.0614 atm-cu m/mole suggests that it may volatilize readily from moist near surface soils (HSDB, 1998).

Terpinolene would be expected to biodegrade in soil, with the process being accelerated in acclimated soils (Misra et al., 1996). Biodegradability in wastewater was variable (Wilson and Hrutfiord, 1975, cited by HSDB, 1998).

Terpinolene would be expected to rapidly volatilize in water based on an estimated halflife of 3.4 hours for volatilization from a model river (HSDB, 1998). Adsorption to sediment and suspended particulate matter may attenuate the volatilization of terpinolene from water based on the estimated half-life of 41 days in an average pond (HSDB, 1998). Photolysis is not a means of degradation in water since molecules similar to terpinolene which possess isolated double bonds do not absorb light at wavelengths above 290 nm. There are no studies that would determine the rate of biodegradation in water, if any, that would exist under controlled or laboratory conditions; however, the earlier mentioned study of treated wastewater from kraft paper mills would suggest that biodegradation might occur in water.

_	Table 1. Han-me of Terpinolene when Exposed to various Atmospheric Radicals					
	Radicals	Atmospheric Concentration of the Radicals (per cm ³)	Half-life of Terpinolene (minutes)			
ł	Hydroxyl	5 x 10 ⁵	84.0			
(Dzone	7 x 10 ¹¹	1.7 – 23.0			
1	Nitrate	2.4×10^8	1.0			

Table 1. Half-life of Terpinolene When Exposed to Various Atmospheric Radicals

Taken from HSDB (1998)

7.0 HUMAN EXPOSURE

Human exposure is usually by ingestion of foods containing terpinolene as a flavor enhancer or by dermal contact with or inhalation of terpinolene used as a fragrance additive. Exposure to terpinolene is likely to occur as a result of incidental exposure from use (solvents, flavorings, manufacture of synthetic resins) or disposal, natural plant emission from degradation and respiration, and natural forest products industry atmospheric emissions. Exposure may occur from its presence in soil, water, and air. The usual concentrations of terpinolene as a fragrance additive are the following: 200 ppm in soaps, 20 ppm in detergents, 100 ppm in creams and lotions, and 1200 ppm in perfumes (Opdyke, 1988). However, the concentration in these products could reach a maximum of 4000 ppm in soaps, 400 ppm in detergents, 1000 ppm in creams and lotions, and 5000 ppm in perfumes.

As a flavor additive, terpinolene may be found in non-alcoholic beverages (16 ppm), ice cream and ices (64 ppm), candy (0.12 - 48 ppm), and baked goods (49 ppm) (Furia and Bellanca, 1971). Terpinolene is a 9% constituent of commercial distilled lime oils, which may account for its presence in baked goods and other desserts (Mookherjee and Wilson, 1996).

Many foods have naturally occurring levels of terpinolene. Terpinolene has been detected in the mixture of volatile constituents of mangoes (2.0 μ g/g) grown in Florida and stored in a deep freezer (-15 °C) for 14 months (MacLeod and Snyder, 1988; cited by HSDB, 1998). The terpinolene concentration in fresh mango fruit was found to be 1.1 μ g/g. Terpinolene has also been detected in a variety of nectarines; Sunfire nectarines were found to have a concentration of 10 ppb (Engel et al., 1988; Takeoka et al., 1988; both cited by HSDB, 1998). For more information about the plants and fruit that contain terpinolene see **Appendix B**.

Terpinolene was also found in 12 of 22 samples of commercial gins (Villalon-Mir et al., 1985).

NIOSH estimated that, between 1972 and 1974, 49,927 workers were potentially exposed to terpinolene in the United States (NIOSH, 1974; Cited by HSDB, 1999). NIOSH has estimated that, between 1981 and 1983, 47,312 workers were potentially exposed to terpinolene in the United States (NIOSH, 1983; cited by HSDB, 1998).

Natural release of terpinolene from U.S. woodlands also may contribute to human exposure. Terpinolene is frequently emitted from some trees into the environment (Zimmerman, 1979; cited by Guenther et al., 1994). Monoterpene release is highest in U.S. forests located in the Southeast and Northwest (Guenther et al., 1994). High monoterpene emissions have been measured in forests containing Northwest conifers, Western pines, Douglas firs, and Southern pines. For a list of plant species and their relative terpinolene content, see **Appendix B**.

8.0 REGULATORY STATUS

Terpinolene was given the status of a "generally regarded as safe" (GRAS) direct food additive by the Flavor Extract Manufacturers Association (FEMA No. 3046) in 1965 and is approved by the FDA for use in foods (Opdyke, 1988). It may be used alone or in combination with flavoring substances or adjuvants generally recognized as safe in food, prior sanctioned for such use, or designated by an appropriate section in Part 172.

The Council of Europe included terpinolene in the list of artificial food flavoring substances that may be added to food without risk to human health in 1974 (Opdyke, 1988).

U. S. government regulations pertaining to terpinolene are summarized below.

	Regulation	Summary of Regulation
	21 CFR 172.515	Terpinolene is regulated by the FDA as a synthetic flavoring substance and adjuvant. Synthetic flavoring substances may be safely used in foods in accordance with the following conditions:
F D A		a) They are used in the minimum quantity required to produce their intended effect and otherwise in accordance with all the principles of good manufacturing practice.
		b) They may be used alone or in combination with flavoring substances or adjuvants generally recognized as safe in food, prior sanctioned for such use, or designated by an appropriate section in Part 172.

 Table 2. Regulations Relevant to Terpinolene

9.0 TOXICOLOGICAL DATA

9.1 General Toxicology

9.1.1 Human Data

Terpinolene was not irritating to human skin when applied at a concentration of 20% in petrolatum for 48 hours under a closed patch in 24 volunteers, and it was not a sensitizer in the maximization test (Opdyke, 1988). However, in a case report and was reported that a 49-year-old woman developed eczematous lesions of the hands and forearms using a machine cleaner containing terpinolene (Castelain et al., 1980). Upon patch testing, terpinolene gave a positive reaction.

9.1.2 Chemical Disposition, Metabolism, and Toxicokinetics

No metabolic or toxicokinetic studies were identified for terpinolene.

9.1.3 Acute Exposure

Acute toxicity values for terpinolene are presented in Table 3.

Terpinolene was not irritating in rabbits when applied to intact or abraded skin with an occluded patch for 24 hours (Opdyke, 1988). Using a commercial air freshener containing at least 14 ingredients, one of which was terpinolene, Anderson and Anderson (1997) found the LD_{50} in male Swiss-Webster mice for the product to be approximately 640 ppm. This is based on the total volatile organic chemicals in the exposure chamber during a series of exposure concentrations.

Route	Species (sex and strain n.p.)	LD_{50}	Reference
Oral	Rat	4.39 mL/kg (3790 mg/kg)	Opdyke (1988)
	Mouse	4.40 mL/kg (3800 mg/kg)	Opdyke (1988)
Dermal	Rabbit	>5.79 mL/kg (>5000 mg/kg)	Opdyke (1988)

 Table 3. Acute Toxicity Values for Terpinolene

Abbreviations: n.p. = not provided; LD_{50} = dose lethal to 50% of the test animals

9.1.4 Short-Term and Subchronic Exposure

No short-term or subchronic toxicity studies were identified for terpinolene.

9.1.5 Chronic Exposure

No chronic toxicity studies were identified for terpinolene

9.1.6 Synergistic and Antagonistic Activities

No synergistic or antagonistic activity studies were identified for terpinolene

9.2 **Reproductive and Teratological Effects**

No reproductive or teratological studies were identified for terpinolene.

9.3 Carcinogenicity

No carcinogenicity studies were identified for terpinolene

9.4 Initiation/Promotion Studies

No initiation or promotion studies were identified for terpinolene

9.5 Anticarcinogenicity

No anticarcinogenicity studies were identified for terpinolene

9.6 Genotoxicity

No genotoxicity studies were identified for terpinolene

9.7 Cogenotoxicity

No cogenotoxicity studies were identified for terpinolene

9.8 Antigenotoxicity

No antigenotoxicity studies were identified for terpinolene.

9.9 Immunotoxicity

No immunotoxicity studies were identified for terpinolene other than the human dermal sensitization studies mentioned in **Section 9.1.1**.

9.10 Other Data

Many monoterpenes are now being studied for their fungicidal and insectidal properties. Terpinolene has been shown to be effective against budworm larval growth (Zou and Cates, 1997). It has also been shown effective against fungal spores of *Diplodia pinea* (Chou and Zabkiewicz, 1976).

Terpinolene has also been observed to possess pheromone-like properties in some insects. It is an alarm pheromone found in the cephalic secretions of the Australian termite (Buckingham, 1994; Castelain et al., 1980). Terpinolene, when evaluated in a bioassay as a bait for beetle traps, was found to attract both sexes of the western balsam bark beetle at a dose of 1 mg (0.0073 mmoles).

Terpinolene also exhibits antibacterial properties. It was shown to be effective against one of the bacteria that cause acne, *Propionibacterium acnes*, at a concentration of 50 μ g/mL (Kubo et al., 1994).

Terpinolene was tested for its effect on promoting liver regeneration in partially hepatectomized rats (Gershbein, 1977). Little difference was seen in liver regeneration between the treated group, given 2450-2950 mg/kg (17.98 – 21.65 mmol/kg) by subcutaneous injection, and the control groups.

10.0 STRUCTURE-ACTIVITY RELATIONSHIPS

No structure-activity relationship information was identified for terpinolene.

11.0 ONLINE DATABASES AND SECONDARY REFERENCES

11.1 Online Databases

Chemical Information System Files

SANSS (Structure and Nomenclature Search System) TSCATS (Toxic Substances Control Act Test Submissions)

National Library of Medicine Databases

EMIC and EMICBACK (Environmental Mutagen Information Center)

STN International Files

BIOSIS CANCERLIT CAPLUS EMBASE HSDB MEDLINE Registry RTECS TOXLINE

TOXLINE includes the following subfiles:

Toxicity Bibliography	TOXBIB	
International Labor Office	CIS	
Hazardous Materials Technical Center	HMTC	
Environmental Mutagen Information Center File	EMIC	
Environmental Teratology Information Center File (continued after	ETIC	
1989 by DART)		
Toxicology Document and Data Depository	NTIS	
Toxicological Research Projects	CRISP	
NIOSHTIC®	NIOSH	
Pesticides Abstracts	PESTAB	
Poisonous Plants Bibliography	PPBIB	
Aneuploidy	ANEUPL	
Epidemiology Information System	EPIDEM	
Toxic Substances Control Act Test Submissions	TSCATS	
Toxicological Aspects of Environmental Health	BIOSIS	
International Pharmaceutical Abstracts	IPA	
Federal Research in Progress	FEDRIP	
Developmental and Reproductive Toxicology	DART	

In-House Databases

CPI Electronic Publishing Federal Databases on CD Current Contents on Diskette[®] The Merck Index, 1996, on CD-ROM

11.2 Secondary References

Weast, R.C., and M.J. Astle. 1980. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data. 61st ed. Chemical Rubber Company (CRC) Press:Boca Raton, FL. p. C-583.

12.0 REFERENCES

American Chemical Society. 1999. Chemcyclopedia Online. http://pubs3.acs.org:8899/chemcy/. Last accessed May 4, 1999.

Anderson, A.C., and J.H. Anderson. 1997. Toxic effects of air freshener emissions. Arch. Environ. Health 52:433-441.

Buckingham, J. 1994. Dictionary of Natural Products. Chapman & Hall, New York, NY. p. 3819.

Castelain, P.-Y., J.P. Camoin, and J. Jouglard. 1980. Contact dermatitis to terpene derivatives in a machine cleaner. Contact Dermatitis 6:358-360.

Chemical Sources International. 1999. Chem Sources, U.S.A. Edition. Chemical Sources International, Clemson, SC. p. 915.

Chou, C.K.S., and J.A. Zabkiewicz. 1976. Toxicity of monoterpenes from *Pinus radiata* cortical oleo resin to *Diplodia pinea* spores. Eur. J. For. Pathol. 6:354-359. Abstract.

Cronn, D.R., S.G. Truitt, and M.J. Campbell. 1983. Chemical characterization of plywood veneer dryer emissions. Atmos. Environ. 17:201-212.

Duke, J.A. Dr. Duke's Phytochemical and Ethnobotanical Databases. <u>http://www.ars-grin.gov/cgi-bin/duke/</u>. Last accessed May 4, 1999.

Esposito, R. 1999. Genium's Handbook of Safety, Health, and Environmental Data for Common Hazardous Substances. Genium Publishing, Schenectady, NY. p. 3281-3282.

Forrest, J.E., and R.A. Heacock. 1972. Nutmeg and mace, the psychotropic spices from Myristica fragrans. Lloydia 35:440-449.

Furia, T.E. 1980. CRC Handbook of Food Additives. Vol. 2. CRC Press:Boca Raton, FL. pg. 302.

Furia, T.E., and N. Bellanca. 1971. Fenaroli's Handbook of Flavor Ingredients. CRC Press, Boca Raton, FL. pg. 617.

Gershbein, L.L. 1977. Regeneration of rat liver in the presence of essential oils and their components. Food Cosmet. Toxicol. 15:173-181.

Guenther, A., P. Zimmerman, and M. Wildermuth. 1994. Natural volatile organic compound emission rate estimates for U.S. woodland landscapes. Atmos. Environ. 28:1197-1210.

Kitahara, M., F. Ishiguro, K. Takayama, K. Isowa, and T. Nagai. 1993. Evaluation of skin damage of monoterpenes, percutaneous absorption enhancers, by using cultured human skin cells. Biol. Pharm. Bull. 16:912-916.

Kubo, I., H. Muroi, and A. Kubo. 1994. Naturally occuring antiacne agents. J. Natur. Prod. 57:9-17.

Misra, G., and S.G. Pavlostathis. 1997. Biodegradation kinetics of monoterpenes in liquid and soil-slurry systems. Appl. Microbiol. Biotechnol. 47:572-577.

Misra, G., S.G. Pavlostathis, E.M. Perdue, and R. Aruajo. 1996. Aerobic biodegradation of selected monoterpenes. Appl. Microbiol. Biotechnol. 45:831-838.

Monti, D., M.F. Saettone, B. Giannaccini, and D. Galli-Angeli. 1995. Enahncement of transdermal penetration of dapriprazole through hairless mouse skin. J. Controlled Release 33:71-77.

Mookherjee, B.D., and R.A. Wilson. 1993. Oils, Essential. In: Kirk-Othmer Encyclopedia of Chemical Technology. 4th Edition. Kroschwitz, J.I., and M. Howe-Grant (Eds). John Wiley & Sons, New York, NY. pp. 603-674.

Morneau, G.A., W.A. Pavelich, and L.G. Roettger. 1981. ABS Resins. In: Kirk-Othmer Encyclopedia of Chemical Technology. Third Edition. Gryson, M., and D. Eckroth. (eds.). John Wiley & Sons, New York, NY. ps. 442-456.

Opdyke, D.L.J. 1988. Fragrance raw materials monographs: Terpinolene. Food Cosmet. Toxicol. 14(Suppl.):877-878.

SRI International. 1998. Directory of Chemical Producers. United States of America. Stanford Research Institute International, Menlo Park, CA. p. 644.

Stromvall, A.-M. 1992. Terpenes emitted to air from forestry and the forest industry. Govt. Report Announcements & Index (GR&I). No12, NTIS/DE4730409. 25 pp.

Stromvall, A.-M., and G. Petersson. 1991. Conifer Monoterpenes emitted to the air by logging operations. Scand. J. For. Res. 6:253-258.

Stromvall, A.-M., and G. Petersson. 1993. Photooxidant-forming monoterpenes in air plumes from kraft pulp industries. Environ. Pollut. 79:219-223.

U.S. Environmental Protection Agency (EPA). 1998. OPPT High Production Volume Chemicals Database. <u>http://www.epa.gov/oppintr/chemtest/hpv.htm</u>. Last accessed June 30, 1998.

Villalon-Mir, M., G. Lopez, H.L. De La Serrana, M.D.C. Lopez-Martinez, and R. Garcia-Villanova. 1985. A comparative study of gas chromatography of alcohols, aldehydes, esters, and essential components which make up a standard gin and those from other commercial gins. An. Bromatol. 36:61-69. Abstract.

Zou, J., and R.G. Cates. 1997. Effects of terpenes and phenolic and flavonoid glycosides from Douglas fir on western spruce budworm larval growth, pupal weight, and adult weight. J. Chem. Ecol. 23:2313-2326. Abstract.

13.0 REFERENCES CONSIDERED BUT NOT CITED

Atkinson, R., D. Hasegawa, and S.M. Aschmann. 1990. Rate constants for the gas phase reactions of ozone with a series of monoterpenes and related compounds at 296 plus or minus 2K. Int. J. Chem. Kinet. 22:871-887. Abstract.

Japar, S.M., C.H. Wu, and H. Niki. 1974. Rate constants for the gas phase reaction of ozone with alpha-pinene and terpinolene. Environ. Lett. 7:245-249.

Larsen, B.R., M. Lahaniati, A. Calogirou, and D. Kotzias. 1998. Atmospheric oxidation products of terpenes: a new nomenclature. Chemosphere 37:1207-1220.

Lewis, R.J. 1992. Sax's Dangerous Properties of Industrial Materials. Eighth Edition. Van Nostrand Reinhold, New York, NY. p.3196.

Li, J., and E.M. Perdue. 1995. Physiochemical properties of selected monoterpenes. Abstr. Pap. Am. Chem. Soc. 209(1-2):ENVR 183.

Platt, A.E., and T.C. Wallace. 1981. Styrene Plastics. In: Kirk-Othmer Encyclopedia of Chemical Technology. Third Edition. Gryson, M., and D. Eckroth. (eds.). John Wiley & Sons, New York, NY. ps.801-847.

Ragab, M., and S.E. El-Nemr. 1990. Chemical composition and volatile constituents of canned mango juice. Nahrung 34:591-599. Abstract.

Rogers, J.A., Jr. 1981. Oils Essential. In: Kirk-Othmer Encyclopedia of Chemical Technology. Third Edition. Gryson, M., and D. Eckroth. (eds.). John Wiley & Sons, New York, NY. ps.307-332.

Schuetzle, D., and R.A. Rasmussen. 1978. The molecular mechanism of secondary aerosol particles formed from terpenes. J. Air Pollut. Contr. Assoc. March 1978:236-240.

Wilkins, K. 1994. Volatile organic compounds from household waste. Chemosphere 29:47-53.

ACKNOWLEDGEMENTS

Support to the National Toxicology Program for the preparation of Terpinolene — Draft Review of Toxicological Literature was provided by Integrated Laboratory Systems, Inc., through NIEHS Contract Number N01-ES-65402. Contributors included: Raymond R. Tice, Ph.D. (Principal Investigator); Bonnie L. Carson, M.S. (Co-Principal Investigator); John W. Winters, B.S.; and Claudine A. Gregorio, M.A..

APPENDIX A

UNITS AND ABBREVIATIONS

APPENDIX A UNITS AND ABBREVIATIONS

 $^{\circ}C = degrees Celsius$

mg/kg = milligram(s) per kilogram

- mg/L = milligram(s) per liter
- ml/kg = milliliter(s) per kilogram
- mm Hg = millimeter(s) of mercury
- mol. wt. = molecular weight
- n.p. = not provided
- ppm = parts per million

10/99

Appendix B

Phytochemical and Ethnobotanical Database Results for Terpinolene

Phytochemical and Ethnobotanical Database

Plants Containing Terpinolene

Ordered by quantity

Species	Part	Quantity (ppm)
Pastinaca sativa L Parsnip	Root Essent. Oil	666,000
<i>Melaleuca alternifolia</i> CHEEL Tea-Tree	Leaf	236-6,125
Myristica fragrans HOUTT Mace, Nutmeg	Seed	2,720
Apium graveolens L Celery	Fruit Essent. Oil	2,000
	Leaf Essent. Oil	2,000
Daucus carota L Carrot	Root	1,520
<i>Canarium indicum</i> L Java-Olive, Manila Elemi	Essential Oil	1,500
Petroselinum crispum (MILLER) NYMAN ex A. W. HILL Parsley	Seed	700
Illicium verum HOOK. f Star-Anise	Fruit	435
Origanum majorana L Marjoram	Plant	430
<i>Melaleuca linariifolia</i> SMITH Paperbark Tea tree	Leaf	600-750
Rosmarinus officinalis L Rosemary	Plant	350
Juniperus communis L Common Juniper, Juniper	Fruit	320
Foeniculum vulgare MILLER Fennel	Plant	230
Hedeoma reverchonii GRAY Reverchon's Pennyroyal	Plant	222
Laurus nobilis L Bay	Leaf	200
Eucalyptus citriodora HOOK Lemon Eucalyptus	Leaf	160
<i>Monarda didyma</i> L Beebalm, Oswego Tea	Plant	160
<i>Umbellularia californica</i> (HOOK. & ARN.) NUTT California Bay	Plant	160
Citrus aurantiifolia (CHRISTM.) SWINGLE Lime	Fruit	120
Citrus limon (L.) BURMAN f Lemon	Essential Oil	120

Species	Part	Quantity (ppm)
Salvia officinalis L Sage	Plant	112
Satureja obovata LAG Iberian Savory, Savory	Leaf	0-215
		0-190
Mentha pulegium L European Pennyroyal	Plant	90
Zingiber officinale ROSCOE Ginger	Rhizome	90
Origanum sipyleum L Bayircayi, Guveyoto	Shoot	0-170
Satureja obovata LAG Iberian Savory, Savory	Leaf	0-170
<i>Cymbopogon nardus</i> (L.) RENDLE Ceylon Citronella, Citronella	Plant	84
Pycnanthemum loomisii NUTT Loomis' Mountain Mint	Shoot	84
Thymus saturejoides Moroccan Savory Thyme	Shoot	0-150
Foeniculum vulgare MILLER Fennel	Fruit	60
Thymus longicaulis C. PRESL Kekik, Tas Kekik	Shoot	0-120
Picea mariana (MILLER) B.S.P Black Spruce	Twig	46
Lepechinia calycina EPLING Epling's Lepechinia	Plant	45
Sideritis mugronensis	Leaf	5-90
Cinnamomum verum J. PRESL Cinnamon	Bark	44
Micromeria teneriffae	Leaf	0-80
Rosmarinus x lavandulaceus DE NOE Lavender Rosemary	Shoot	19-80
Satureja douglasii (BENTH.) BRIQ Douglas' Savory	Plant	39
Abies alba MILLER Silver-Fir	Leaf	38
Petroselinum crispum (MILLER) NYMAN ex A. W. HILL Parsley	Leaf	33
Origanum onites L Oregano, Pot Marjoram	Shoot	0-65
Rosmarinus officinalis L Rosemary	Shoot	19-65
		25-65
Origanum onites L Oregano, Pot Marjoram	Shoot	0-60
<i>Thymus capitatus</i> (L.) HOFFM 'Sicilian' Thyme, Spanish Origanum, Spanish Thyme	Plant	30

Ethnobotanical and Ph	vtochemical Database	Results for Te	ninolene ((Continued)
Etimopotament and 1 m	y countina Database	Incounts for fit	philorene (Commucu)

Species	Part	Quantity (ppm)
Lavandula latifolia MEDIK Aspic, Broad-Leaved Lavender, Spike Lavender	Plant	28
Ocimum tenuiflorum L Anise-Scented Basil	Leaf	0-55
Pimenta dioica (L.) MERR Allspice	Leaf	27
Coriandrum sativum L Coriander	Fruit	26
Rosmarinus officinalis L Rosemary	Shoot	25-50
<i>Cinnamomum camphora</i> (L.) NEES & EBERM Camphor, Ho Leaf	Leaf	24
Hyssopus officinalis subsp. aristatus (GODR.) BRIQ Hyssop	Shoot	0-47.5
Origanum syriacum L Za'Atar	Shoot	0-45
Ocimum basilicum L Basil	Plant	22
Hyssopus officinalis L Hyssop	Leaf	20
Hyssopus officinalis subsp. aristatus (GODR.) BRIQ Hyssop	Shoot	0-40
Mentha longifolia (L.) HUDS Biblical Mint	Shoot	20
<i>Pycnanthemum tenuifolium</i> SCHRAD Slenderleaf Mountain Mint	Shoot	20
Rosmarinus tomentosus HUBER-MORATH & MAIRE Hairy Rosemary	Shoot	16-40
Satureja thymbra L Goat Oregano	Shoot	0-37
Litsea glaucescens var. glaucescens Mexican bay	Shoot	30-35
Origanum sipyleum L Bayircayi, Guveyoto	Shoot	0-35
Rosmarinus eriocalyx JORDAN & FOURR Rosemary	Shoot	11-35
<i>Thymus riatarum</i> HUMBERT & MAIRE Moroccan' Thyme	Shoot	0-35
Rosmarinus x mendizabalii SAGREDO EX ROSUA Mendizabali's Rosemary	Shoot	16-33
Angelica archangelica L Garden Angelica	Root	16
<i>Origanum vulgare</i> L Common Turkish Oregano, Wild Oregano	Plant	16
Monarda didyma L Beebalm, Oswego Tea	Leaf	15

Ethnobotanical and Phytochemical Database Results for Terpinolene (Continued)

ILS Integrated Laboratory Systems

Species	Part	Quantity (ppm)
Thymus broussonettii BOISS Moroccan Thyme	Shoot	0-30
Origanum minutiflorum O. SCHWARZ & P.H. DAVIS Small-Flowered Oregano	Shoot	20-27
Rosmarinus eriocalyx JORDAN & FOURR Rosemary	Shoot	5-26
Thymus cilicicus BOISS. & BAL 'Anatolian' Thyme	Shoot	0-26
Satureja cuneifolia TEN Cuneate Turkish Savory	Shoot	0-25
Satureja montana L Winter Savory	Plant	0.6-25
Salvia sclarea L Clary Sage	Plant	12
Ocimum gratissimum L Agbo, Shrubby Basil	Shoot	0-23
Coridothymus capitatus (L.) REICHB. F Spanish Oregano	Shoot	0-22
Ageratum conyzoides L Mexican ageratum	Shoot	0-20
Citrus aurantium L Petitgrain	Leaf	10
Citrus sinensis (L.) OSBECK Orange	Fruit	10
Daucus carota L Carrot	Seed	10
Lavandula x hybrida BALB. EX GING Hybrid Lavender	Shoot	10-17
Origanum vulgare var. hirtum (LINK) IETSWAART Istanbul Kekigi, Turkish Oregano	Plant	0-15
Micromeria fruticosa subsp. barbata (BOISS. & KY.) P.H. DAVIS Tea Hyssop, Zopha, Zuta	Shoot	0-12
Sideritis germanicolpitana BORNM	Plant	10-11
Micromeria croatica	Leaf	0-10
Micromeria fruticosa subsp. barbata (BOISS. & KY.) P.H. DAVIS Tea Hyssop, Zopha, Zuta	Shoot	0-10
Salvia dorisiana STANDL 'Honduran' Sage	Shoot	8.6-10
Sideritis mugronensis	Flower	5-10
Sideritis pauli PAU El Molinillo Sideritis	Shoot	0-10
Teucrium gnaphalodes L'HER Iberian Germander	Shoot	0-10
Thymus zygis L Spanish Thyme	Shoot	0-10
Hedeoma hispida PURSH Hispid Pennyroyal	Plant	4
Monarda didyma L Beebalm, Oswego Tea	Flower	4

Ethnobotanical and Phytochemical Database Results for Terpinolene (Continued)

ILS Integrated Laboratory Systems

Species	Part	Quantity (ppm)
Thymus funkii COUSS Funk's Thyme	Shoot	0-7
Hyptis suaveolens POIT Wild Hops	Shoot	0-6
Elsholtzia polystachya BENTH Bush Mint	Leaf	0-5.8
<i>Teucrium polium var. valentinum</i> Golden Germander, Iberian Golden Germander	Shoot	0-5
Origanum sipyleum L Bayircayi, Guveyoto	Shoot	0-4
<i>Micromeria congesta</i> BOISS. & HAUSSKN Kaya Yarpuzu	Leaf	0-3
Micromeria thymifolia	Leaf	0-3
Micromeria varia subsp. thymoides Madeiran 'Hyssop'	Shoot	0-3
Thymus longicaulis C. PRESL Kekik, Tas Kekik	Shoot	0-3
Trichostemma dichotomum L Blue Curls	Shoot	0-3
Hyptis suaveolens POIT Wild Hops	Shoot	0-2.5
Leonotis leonurus (L.) R. BR Lion's Ear	Se	0-2
Mentha aquatica L Water Mint	Shoot	0-2
Myrtus communis L Myrtle	Plant	1
Thymus mastichina L Spanish Marjoram	Plant	1
Origanum sipyleum L Bayircayi, Guveyoto	Shoot	0-1.8
Cleonia lusitanica (L.) L Spanish Heal-All	Leaf	0-1
Mentha aquatica L Water Mint	Shoot	0-1
<i>Origanum vulgare</i> L Common Turkish Oregano, Wild Oregano	Plant	0-1
<i>Calamintha nepeta subsp. glandulosa</i> (REQ.) P.W.BALL Turkish Calamint	Shoot	ND
<i>Acinos alpinus var. meridionalis</i> (NYMAN) P.W.BALL Te de Sierra Nevada	Shoot	ND
Citrus mitis BLANCO Calamansi, Calamondin	Fruit Juice	ND
<i>Micromeria myrtifolia</i> BOISS. & HOHEN Dagcayi, Haydarotu, Topukcayi	Shoot	ND
Acorus calamus L Sweetflag	Rhizome	ND
Aloysia triphylla (L'HER.) BRITTON Lemon Verbena	Plant	ND

Ethnobotanical and Phytochemical Database Results for Terpinolene (Continued)

ILS Integrated Laboratory Systems

Species	Part	Quantity (ppm)
Artemisia capillaris THUNB Capillary Wormwood	Essential Oil	ND
Boswellia sacra FLUECK Frankincense, Olibanum	Essential Oil	ND
Capsicum annuum L Bell Pepper	Fruit	ND
<i>Carica papaya</i> L Papaya	Fruit	ND
Carum carvi L Caraway	Fruit	ND
Cinnamomum aromaticum NEES Cassia	Plant	ND
Citrus aurantium L Petitgrain	Pericarp	ND
	Plant	ND
<i>Dictamnus albus</i> L Akgiritotu, Burning Bush, Dittany, Gas Plant, Gazelotu	Shoot	ND
Elsholtzia polystachya BENTH Bush Mint	Leaf	ND
Ferula gummosa BOISS Galbanum	Gum	ND
Juniperus sabina L Sabine	Plant	ND
Juniperus virginiana L Red Cedar	Leaf	ND
Mentha spicata L Hortela da Folha Miuda, Spearmint	Leaf	ND
Mentha x piperita subsp. nothosubsp. piperita Peppermint	Leaf	ND
Micromeria fruticosa Tasnanesi	Leaf	ND
Micromeria varia subsp. thymoides Madeiran 'Hyssop'	Shoot	ND
<i>Ocimum kilimandscharicum</i> GUERKE African Blue Basil, Kenyan Perennial Basil	Plant	ND
Origanum syriacum L Za'Atar	Shoot	ND
Origanum vulgare subsp. hirtum (LINK) IETSWAART Common Turkish Oregano, Greek Oregano, Wild Oregano	Shoot	ND
Origanum vulgare var. gracile (C. KOCH) IETSWAART Slender Turkish Oregano	Plant	ND
<i>Origanum vulgare var. viride</i> (BOISS.) HAYEK Green Turkish Oregano	Plant	ND
Piper nigrum L Black Pepper	Fruit	ND
Prunus armeniaca L Apricot	Essential Oil	ND
Ribes nigrum L Black Currant	Fruit	ND

Ethnobotanical and Phytochemical Database Results for Terpinolene (Continued)

Species	Part	Quantity (ppm)
Salvia canariensis L Canary Island Sage	Leaf	ND
Satureja obovata LAG Iberian Savory, Savory	Leaf	ND
Thymus funkii COUSS Funk's Thyme	Shoot	ND
Thymus longicaulis C. PRESL Kekik, Tas Kekik	Shoot	ND
Thymus orospedanus H. del VILLAR Orosped Thyme	Plant	ND
<i>Valeriana officinalis</i> L Common Valerian, Garden-Heliotrope, Valerian	Root	ND

Ethnobotanical and Phytochemical Database Results for Terpinolene (Continued)

*References may be found at Phytochemical and Ethnobotanical Database site located at http://www.ars-grin.gov/cgi-bin/duke/