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Abstract

Detection of intrusions with multiple sources and intrusions where incomplete be-
havioral data is available is a di�cult task. We propose a new intrusion detection
architecture combining partial order planning and executable Petri Nets to detect such
attacks. Partial Order State Transition Analysis Technique, or POSTAT, increases the
exibility of the traditional state analysis approach by allowing unordered events in the
signature action sequence.

1 Introduction

Detection of intrusions with multiple sources and intrusions where only partial behavioral data
is available is a di�cult task. We propose a new intrusion detection architecture combining
partial order planning and executable Petri Nets to detect such attacks. This architecture is
embodied in the Partial Order State Transition Analysis Technique, or POSTAT.

Our architecture includes a planning agent, a searching agent, and a site security informing
agent (Figure 1). The planning agent constructs intrusion scenarios using a �rst-order logic
description of the known activities and goals of the intruder to spcify an attack sequence.
The searching agent takes a Petri Net representation of these intrusion scenarios and uses
them to determine whether any of the speci�ed intrusions are in progress. The informing
agent processes �nal information and provides a user interface for the system.

In the remainder of this paper, we describe the POSTAT system and how it di�ers from
traditional state transition analysis in intrusion detection. We provide examples of how our
system may be used for both misuse and anomaly detection. Finally, we explain how our
partial order planner constructions compact intrusion scenarios for the detection process and
explain the role of Petri Nets.
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Figure 1: Organization of POSTAT's intrusion detection components
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Figure 2: State transition diagram of
misuse penetration example

Step Command Comment
1. %cp /bin/csh /usr/spool/mail/root - assumes no root mail �le
2. %chmod 4755 /usr/spool/mail/root - make setuid �le
3. %touch x - create empty �le
4. %mail root < x - mail root empty �le
5. %/usr/spool/mail/root - execute setuid-to-root shell

Figure 3: Penetration scenario to gain root
privilege

2 Partial Order State Transition Analysis

POSTAT uses partial order state transition analysis rather than traditional state transition
analysis. In traditional state transition analysis, attacks are represented as a sequence of
state transitions of the monitored system. States in the attack pattern correspond to system
states and have boolean assertions associated with them that must be satis�ed to transit to
that state. Successive states are connected by arcs that represent the events or conditions
required for changing state. State transition diagrams correspond to the states of an actual
computer system, and these diagrams form the basis of a rule-based expert system for de-
tecting penetrations. Ilgun presents an example of this approach in [IK95]. State transition
considers a penetration to be a sequence of signature actions (SAs) performed by an attacker
that lead from some initial state to a target compromised state [IK95]. The initial state
corresponds to the state of the system just prior to the execution of the penetration, and the
compromised state corresponds to the state of the system resulting from the completion of
the penetration. Between the initial and compromised states lie intermediate state transi-
tions that occur during an attacker's attempt to achieve the compromise. Signature actions
are those that, if omitted from the execution of an attack scenario, would prevent the attack
from completing successfully [IK95]. Figure 2 shows an example of an attack using three
signature actions which can move the system from an initial safe state into a compromised
state. Figure 3 shows the actual attack sequence that once could be used to acquire root
privilege [IK95].

Traditional state transition analysis attack patterns specify a strictly ordered and non-
overlapping sequence of events. To increase the exibility of the state transition analysis
approach, we use a partial ordering of events. A partial order of events speci�es that some
events are ordered with respect to each other while others are unordered. A partial order state
transition analysis allows more than one sequence of events in the state transition diagram.
By using partial ordering rather than total ordering in our state transitions, we are able to
use a single diagram to represent the set of all intrusion attempts which involve the same
signature actions.

Our partial ordered state transition diagrams are generated using partial ordered plan-
ning techniques (Section 4). A partial order plan representation is more powerful than a
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Figure 4: Partial order state transition diagram of the misuse penetration example

total order representation because it allows a planner to postpone or ignore unnecessary or-
dering choices. In state transition analysis, the number of possible ordering choices grows
exponentially as the number of states grows. We restrict this growth using partial order
planning. The construction of partially ordered plans was pioneered by the NOAH planner,
and investigated in Tate's NONLIN system [RN95]. By using partial order notation, one can
take advantage of problem decomposition to deal with complex domains without necessarily
su�ering exponential complexity. Further, one can represent many possible plans with one
canonical form.

A partial order planner searches through the space of plans rather than the space of
situations. It starts with a simple, incomplete plan, which we call a partial plan, which it
expands until it obtains a complete plan that solves the problem. The operators in this
process are operators on plans: adding a step, imposing an ordering that puts one step before
another, instantiating a previously unbound variable, and so on. The solution is the �nal
plan; the steps taken to reach it are irrelevant. The principle of least commitment says that
a planner should avoid making ordering decisions unless they are necessary components of
the plan. Partial ordering constraints and uninstantiated variables allow us to follow a least-
commitment approach. Most partial-order planning algorithms search through the space of
all possible plans to �nd one solution that is guaranteed to succeed [RN95].

The exibility gained from the partially ordered plan representation allows a planning
agent to handle quite complicated domains, which is useful in intrusion detection. A partial
order representation provides a more accurate representation of signature actions than a
total order, since only required dependencies are indicated. For example, in Figure 4, the
only dependency of touch is that it occurs before mail. There is no connection between
touch and cp, or between touch and chmod. The total order of Figure 2 is ambiguous: it
is unclear which state orderings are required by the problem and which are side e�ects of
the representation. Further, Figure 2 is less concise because each possible ordering must be
stated explicitly in a separate diagram. In contrast, Figure 4 clearly indicates which action
sequences are responsible for the compromised state.



The compromised state of Figure 4 can be represented by a �rst order logic statement
including the system changes:

9 /usr/spool/mail/root x
/usr/spool/mail/root 2 x ^
owner(/usr/spool/mail/root) = root ^
setuid(/usr/spool/mail/root) = enable

=) compromised(x) = true

or, alternately, as a sequence of commands:

9 �le1, �le2, �le3, x
owner(�le1) = x ^
cp(�le1, �le2) ^
chmod(�le2, 4755) ^
touch(�le3) ^
mail(root, �le3) ^
cp(�le1, �le2) � chmod(�le2) ^
chmod(�le2) � mail(root, �le3) ^
touch(�le3) � mail(root, �le3) ^

=) attacker(x)

This approach is useful for penetration analysis since for each system compromise the
analyst need only identify a minimal set of signature actions and any required orderings.

Suppose an attacker performs the following steps:

1% ls
2% ln target -x
3% ls
4% -x

The �rst and third steps do not contribute, but were added by the attacker only to
make detection more di�cult. However, in the �rst order statement, it is clear which steps
contribute to the penetration attempt:

9 �le1, �le2, x
owner(�le1) 6= x ^
owner(�le2) = x ^
ln(�le2, �le1) ^
execute(�le2) ^
ln(�le2, �le1) � execute(�le2)

=) attacker(x)



3 Handling Anomaly Detection

In state transition analysis, the fundamental di�erence between anomaly detection and misuse
detection is that we only identify the possibility of intrusion for each anomalous session, since
not all anomalous activities are intrusions. Anomaly detection traditionally assumes that one
can establish normal behavior patterns over time and use these patterns as pro�les of normal
system activity [Lie89]. Pro�le-based anomaly detection uses statistical measures to identify
expected behavior, while rule-based anomaly detection uses sets of rules to represent and
store the usage patterns in audit data. Since POSTAT does not have a learning mechanism,
we cannot fully implement anomaly detection, but can provide similar functionality.

A typical pro�le within a statistical model might include the following components [Amo94]:

< subject, object, action, e pattern, r pattern, t pattern >

Such a pro�le stipulates that, whenever the subject initiates an action on some object, it
is expected that error conditions will be e pattern, resource usage will be r pattern, and time
durations will be t pattern. Suppose the following normal pro�le for user joe is constructed:

< joe, my�le, execute, 0, CPU(00:01-00:04), 2:00-22:00 >

This pro�le indicates that whenever joe executes my�le, no errors are expected, CPU usage
should be within 1 and 4 seconds, and time of execution should be between 2AM and 10PM.
We represent this normal user pro�le thus:

9 my�le
owner(my�le) = joe ^
execute(my�le) ^
e pattern = 0 ^
r pattern = CPU(00:01 - 00:04) ^
t pattern = (2:00 - 22:00)

We use a �rst order logic statement to represent pro�les (above) with three attributes
(e pattern, r pattern, t pattern) to identify the anomalous activities. There is no additional
outside knowledge required to ascertain the agged state. The only signature action that
moves the system from the initial state into the �nal agged state is the anomalous execu-
tion of my�le which deviates from its normal pro�le (Figure 5). Any execution of my�le
which causes the deviation from its normal pro�le would move the system from the initial
requirement state to the agged state.

Similar pro�les can be constructed for other security relevant activities:

< joe, login, execute, 3, CPU(00:01-00:04), PERIOD(00:01-00:30)>

This login pro�le for user joe indicates that, whenever joe executes the login command,
at most 3 errors are expected within the time period 30 seconds, CPU usage should be within
1 and 4 seconds. This pro�le is represented as:
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Figure 5: State transition diagram of anomalous transaction example
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Figure 6: State transition diagram of anomalous login transaction

9 login
execute(login) ^
e pattern = 3 ^
r pattern = CPU(00:01 - 00:04) ^
t pattern = PERIOD(00:01 - 00:30)

To use this pro�le as the basis for intrusion detection, audit records on computer usage
taken by this individual must be available. If there is an attempt to break into the joe account
using password guessing, the e pattern will increase and r pattern and t pattern should remain
normal. In the state transition diagram, each failed login which might lead the system from
one state (initial or intermediate) into another state is recorded (Figure 6).

3.1 Multiple Attackers, Network Attacks, and Incomplete Scenar-

ios

One useful feature of this representation is its suitability for describing many types of attacks.
Multiple attackers can be represented by specifying the behavior of each attacker separately,
and requiring that they all occur prior to the achievement of the goal. In our initial example,
the touch of S4 could have been performed by an attacker other than the one issuing the
cp of S1. Use of partial ordering is a powerful way to handle the asynchronous branches of



coordinated attacks. Network attacks can be handled as well, although it will be necessary
to collect the relevant data in one location.

Incomplete scenarios can also be represented. An incomplete scenario is one in which
some details of an attack are unknown. For example, when the Internet Worm �rst was
detected, not all details of that attack were identi�ed immediately. Using our technique, this
would not be an issue, since it is only necessary to identify the known transitions that occur
as part of the attack. However, one danger of using incomplete scenarios is an increase in the
number of false positives.

4 Intrusion Scenario Construction

An intrusion scenario is de�ned by Heady [HLMS90] as \any set of actions that attempt
to compromise the integrity, con�dentiality, or availability of a resource." We use a simple
planning agent to construct plans that achieve goals which describe situations that are de-
sirable for an intruder. The planning agent consists of goals, states and actions. In order to
decide what to do in its plan, the agent combines the current state of the environment with
information about the results of possible actions.

In state transition analysis, a penetration is viewed as a sequence of signature actions
performed by an attacker that leads from some initial states on a system to a target com-
promised state. Before describing planning techniques in detail, we need to formulate state
transition analysis as a planning problem:

� Initial state: An arbitrary logical sentence about a situation of the system.

� Goal state: A logical statement for certain situations of the system.

� Signature actions: Critical actions causing the state transition in the system.

A plan is formally de�ned as [RN95]:

1. A set of plan steps; each step is one of the operators for the problem;

2. A set of ordering constraints; each ordering constraint is of the form Si � Sj, which is
read as \Si before Sj" and means that step Si must occur sometime before step Sj;

3. A set of variable binding constraints; each variable constraint is of the form � = x,
where � is a variable in some step, and x is either a constant or another variable;

4. A set of causal links; a causal link is written as Si
c
! Sj and is read as \Si achieves

c for Sj", where c is a necessary precondition for Sj. Causal links serve to record the
purpose(s) of steps in the plan, i.e., a purpose of Si is to achieve the precondition c of
Sj.



There are preconditions associated with each signature that indicate what must be true
before the signature action can be applied, and postconditions indicating e�ects of a signature
action. The task of our planner is to �nd a sequence of actions that allows a problem solver
to accomplish some speci�c task, here an intrusion. The POSTAT planner is used to �nd a
sequence of signature actions and their dependence, producing a penetration scenario. This
information is used to search the intrusion scenarios.

A partial order planner is one that can represent plans in which some steps are ordered
with respect to each other and other steps are unordered. Since some of the signature actions
for intrusions are required to be ordered, partial order planning is appropriate. A general
planning agent consists of a knowledge base and a planning engine. A knowledge base contains
information (logical assertions) about every signature action of the system, including �rst
order logic representation of the pre- and post-conditions of these actions. A planning engine
will generate one set of the signature actions and its dependency for each pair of initial state
and compromised state.

The planning agent's knowledge base also contains the dependency of state assertions for
each signature action. It is used by the planner to de�ne a partial ordering among signature
actions. The advantage of this kind of representation is that it is more exible and uses less
space. For example, the precondition of a signature action consists of k assertions. We use a
set of symbols: PS1, PS2, ..., PSk, to represent each state assertion. The data structure in
the knowledge base for the logical assertions of a SA is:

fPS1; PS2; :::; PSkg ^ fPSj � PSkg ^ ::: ^ fPSl � PSmg

A partial order planning algorithm starts with a minimal partial plan, and on each step
extends the plan by achieving a precondition of a step. This is done by selecting a signature
action that achieves some unful�lled precondition of a step in the plan. The causal link for
the newly achieved precondition of each signature action is also recorded. It is important to
track causal links for the purpose of partial ordering. When there is no ordering requirement
in the causal links in some steps, we can neglect their dependency in the output. The result
is now represented by a set of signature actions and the dependency between these signature
actions. Assuming an intrusion scenario is composed of n signature actions, i.e., SA1, SA2,
..., SAn, the data structure of scenario is speci�ed as

fSA1; SA2; :::; SAkg ^ fSAi � SAjg ^ ::: ^ fSAl � SAmg

The �rst component of this statement, fSA1; SA2; :::; SAkg, is the set of signature ac-
tions. The additional components of this statement de�ne the ordering constraints between
signature action pairs. The scenario for the penetration example in Figure 4 is speci�ed as:

fcp; chmod; touch;mailg ^ fcp � chmodg ^ fchmod � mailg ^ ftouch � mailg

Each statement represents a variation of signature action sets which would lead to the same
compromised state. It is unnecessary to consider the di�erent combinations of signature
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actions, reducing space requirements. Furthermore, when the initial state is changed, there
might be more than one set of signature actions, and again, several combinations of them.

If the planner is applied in a real-time system, it needs to observe the initial state of
the system, and take input from activity patterns or activity pro�les, which represent known
compromise scenarios, to generate the planning steps. Another advantage of this partial order
planning approach is that the amount of time passed between two signature actions has no
e�ect on the analysis, as long as we continue recording system data and state changes.

5 The Role of Petri Nets

A simple Petri Net is based on events and conditions. Events are actions which take place in
the system, and their occurrence is controlled by the states of the system. Each system state
corresponds to a set of conditions and their values. We represent these as a set of �rst order
logic statements indicating whether a given condition holds or does not hold. Some actions
may only occur under certain conditions, and thus we may say that the state descriptions
are preconditions for such events. When an event actually does occur, it may cause some
preconditions to cease to hold and may cause other conditions to become true.

Each intrusion scenario is represented as a Petri Net. The places of the Petri Net corre-
spond to existing states, or to the preconditions and postconditions of actions. The transitions
of the Petri Net correspond to signature actions. We execute our Petri Nets by matching
incoming events (our audit trail records) to the intrusion scenario Petri nets. Initial states
correspond to initial system states, whereas �nal states correspond to a state in which an
intrusion has apparently occurred.

We have successfully used Petri Nets to model sample scenarios [Ho97] from each of
Kumar's �ve violation categories [KS94]:

� Existence - the fact that something that exists is a violation of security policy,



� Sequence - the fact that several things happen in strict sequence is su�cient to detect
the intrusion attempt,

� Partial order - several events de�ned in a partial order are necessary to conduct the
intrusion,

� Duration - this requires that something existed or happened for no more than or not
less than a certain interval of time, and

� Interval - things happened an exact interval apart; speci�ed by the conditions that an
event occur no earlier and no later than some units of time after another event.

In an existence pattern \something" can be a single �le or action. Simple existence of
a �le can often be found by static scanning of the �le system. This situation can be trivially
modeled by a Petri net with a single marking place, as in Figure 8.

In the second category of Petri Nets, the sequence net, we can perform an approximate
matching, rather than an exact matching. The �ring rule is the same as for the condition-
event nets. When a transition is enabled at M, it needs to wait for the occurrence of the
action in order to �re the transition. Thus, it is not an automatic �ring as in other nets. In a
sequence net, only one initial place is marked. Figure 9 shows a Sequence Net for an intruder
who exploits a aw in the shell mechanism. The activities represented in the Petri Net are
composed of a sequence of the actions and states. S1 is the initial state with marked token,
and S3 is the �nal state. After the action of ln, the state of S2 is reached and action �le2 can
be �red to reach the �nal state S3.

The third category, duration net, requires knowing that something existed or happened
for no more than or no less than a certain interval time. Again, \something" can be a single
�le or action; we are primarily interested in the existence of signature actions. The �ring rule
is more complicated than with the condition-event nets, since when a transition is enabled,
it must wait for the occurrence of the signature action and to checks the satisfaction of the
optional expression in order to �re the transition. Suppose that it is a violation of security
policy for a user to have three failed login attempts within a one minute time interval.
In Figure 10, the existence of three ogin is described by three transitions with optional
expressions specifying the time restrictions for these three signature actions. When the last
transition is �red, the net reaches its �nal state S4.

The fourth category is the partial order net. In a partial order pattern, de�ning several
events in a partially ordered set is necessary to specify the intrusion. This can be considered
as more than one sequence. The merger of these sequences is very important because there is
only one terminal state in the �nal result. In a partial order net, there may be more than one
initial place being marked. The attack scenario in Figure 3 can be speci�ed by the Petri Net
model [KS94] in Figure 11. S1 and S4 are the initial states with marked token, and S6 is the
�nal state. A token is placed in each initial state. After the action of cp, chmod and touch,
the states of S3 and S5 are reached and action mail can be �red to reach the �nal state S6.
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6 Conclusion

Preliminary tests of a representative set of penetration scenario (de�ned in the scenario base)
resulted in detection by POSTAT. Some basic features of POSTAT were also tested in these
experiments, such as the variations of the penetration scenarios constructed by the planning
agent and sensitivity to the order of signature actions. The most challenging task in this
state transition approach is how to give a complete de�nition of the state assertions for all
known compromised states and how to de�ne all the signature actions. As with other similar
approaches, POSTAT is only capable of detecting attacks if they have a known form, if some
aspect of their behavior is known, or if they involve a predetermined undesirable behavior or
state change.
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