12. APPENDIX D

ASSESSMENT OF FISH COMMUNITIES IN JOHN PENNEKAMP CORAL REEF STATE PARK AND KEY LARGO CORAL REEF MARINE SANCTUARY WITH COMMENTS ON THE USE OF A RAPID VISUAL TECHNIQUE

S. P. Bannerot and M. C. Schmale Rosenstiel School of Marine and Atmospheric Science University of Miami Miami, FL

12.1. INTRODUCTION

High species richness, high species diversity and high density of individuals are characteristic of the fish fauna of coral reefs. Coral reef habitat and associated fish fauna are present in only a limited area near the continental United States. The only extensive living coral reef on the continental shelf of the United States is the Florida reef tract, the majority of which extends approximately from Fowey Light off Miami 241 km southwest to Key West (Smith, 1971; Hoffmeister, 1974) (Fig. 1a). The reef tract terminates approximately 65 km west of Key West, although, well-developed living coral reefs surround the Dry Tortugas, 97 km west of Key West.

Public concern over the preservation of coral reefs has led to the establishment of four conservation areas on the tract: John Pennekamp Coral Reef State Park in 1961, Key Largo National Coral Reef Marine Sanctuary in 1975, Biscayne National Park in 1980 (established from Biscayne National Monument which originated in 1968), and the Looe Key National Marine Sanctuary in 1981. Biologists and natural resource managers are recognizing the importance of developing effective, non-destructive methods of obtaining qualitative and quantitative data in order to properly monitor and manage fish communities in these areas.

Much of the early work on fish community assessment involved collection of specimens using ichthyocides (Randall, 1963; Starck, 1968; Wass, 1967; Emery, 1973; Smith, 1973, and others) or explosives (Starck, 1968; Talbot and Goldman, 1973). Visual methods, until recently, consisted of enumeration of fishes over measured areas (transects, quadrats, or other fixed areas). Brock (1954), Ebeling *et al.* (1971), Risk (1972), Key (1973), McCain and Peck (1973), Smith and Tyler (1973), Hobson (1974), Chave and Eckert (1974), Itzkowitz (1974), Jones and Chase (1975), and Alevizon and Brooks (1975) are among those who have either developed or used methods in this category.

Jones and Thompson (1978) pioneered a simple, rapid, visual technique that alleviated most of the equipment and time-consuming measurements required by previous methods. Thompson and Schmidt (1977) and Bohnsack (1979) have used this method for studies on Florida reefs, and it is the method used in this study pursuant to the specifications of NOAA contract no. NA-79-SAC-00813.

Figure 1a. Map showing the main portion of the Florida reef tract extending from Fowey Rocks off Miami 241 km southwest to Key West, and the position of the study area on the tract.

Several authors have demonstrated weaknesses in the species/time technique (STT) of Jones and Thompson (1978) subsequent to the time this contract was written (DeMartini and Roberts 1982, Sanderson and Solonsky 1980). While the STT is superior to other methods for efficient and rapid enumeration of species, the use of species scores to characterize community structure of reef fishes is suspect. Bohnsack and Bannerot (1983) have developed and tested a visual method which produces data more appropriate for analysis of community structure, but is more time consuming than the STT.

The general purpose of this study was to describe and compare the fish fauna at seventeen sites, within the boundaries of John Pennekamp State Park and Key Largo Marine Sanctuary off Key Largo, Florida Keys. The STT provides data on species diversity which is adequate in most cases for this purpose. Sites from a number of habitats representative of the area were selected. The habitats were grouped into four major categories: (1) offshore reefs, (2) intermediate reefs, (3) inshore patch reefs, and (4) turtle grass and hardground sites. Extent and type of usage by the public varied between sties. In addition to the primary objective of describing and comparing fish faunas specified in the contract, we have attempted to qualitatively assess possible differences between sites due to user impact and to point out

Figure 1b. Map showing John Pennekamp State Park and Key Largo National Marine Sanctuary. The number and name for each of the 17 study sites are given at the respective locations.

problems with using species scores from the STT to characterize fish community structure. All data were collected between March and October of 1980 and 1981.

12.2. THE STUDY AREA

Figure 1b shows the area encompassed by Pennekamp Park and Key Largo Marine Sanctuary including the study sites. Table 1 defines habitat types and describes the approximate type and degree of usage at each site. Voss (1983) gives detailed descriptions of each of the sites. Features of these habitats important to the fish censuses are described below.

12.2.1. Offshore Reefs

The offshore reef sites include Carysfort, French, and Molasses Reefs and the Elbow. Jones and Thompson (1978) provide general habitat descriptions of the first three. The latter three are similar in that the major hard coral complexes of the fore-reef slope give way to sandy plateaus in the offshore direction at approximately 10.7 m depth. Among these, Molasses Reef and the Elbow each have fairly similar spur and groove structure on the outer face and extensive back reef rubble zones. The spur and groove at French Reef is less defined; the spurs are dominated by massive *Montastrea annularis* growth and are often interlaced with caves and passages. Carysfort Reef exhibits a typical Caribbean reef zonation (Goreau, 1959), unlike the other offshore sites, although it lacks any extensive shallow spur and groove formation offshore of the *Acropora palmata* stands of the reef crest. The fore-reef slope gives way to a narrow gently sloping octocorallian community that ends abruptly in extensive thickets of *Acropora cervicornis* (at approximately 14 m depth) which are not found on any of the other offshore reef sites.

Table 1. List of study sites by number and name with habitat type, depth range of fish census, and approximate extent and type of usage by visitors. Habitat definitions are (1) offshore reef (OR) - a major aggregation of scleractinian corals occurring on a contour approximately 6 km offshore defined by the outermost lighthouses on the Florida reef tract; (2) intermediate reef (IR) - a scleractinian coral aggregation usually within 1 km of the offshore reef line; (3) inshore patch reef (IPR) - an aggregation or group of various sized aggregations of scleractinian corals usually at least 2 km inshore of the outer reef line; (4) turtle grass (TG) an area dominated by turtle grass, Thalassia testudinum, bottom; (5) hardground (H) - bedrock areas featuring numerous octocorals, various sponges, and encrusting and small head scleractinian corals. The term "diving" includes non-consuming recreational SCUBA and snorkeling, the only consumptive usuage being the taking of lobsters in season. "Fishing" refers only to hook and line fishing, most of which is recreational (spearfishing and fish traps are illegal in both conservation areas). Boat traffic is only considered for turtle grass or hardground sites less than 4.9 m depth where bottom disturbance from wakes and prop turbulence is most noticeable. The extent of the various activities are strictly subjective impressions obtained by one of the authors during 6 years of diving experience in the area and by both authors during the course of the study (no quantitative data such as boat counts were obtained on a regular basis). H = heavy usage, M = moderate usage, L = light usage, 0 = very little or no usage.

Site N	lo. Name	Habitat	Depth Range of Fish Census	Diving	Fishing I	3oat Traffic
1	Molasses Reef	OR	3 1-12 8	Н	м	
2	White Bank Dry Rocks	IR	0.6-7.6	M	1	
3	French Reef	OR	4.0-13.7	Н	M	
4	Mosquito Bank	IPR	0.9-4.6	L	M to L	
5	Grecian Rocks	IR	0.3-9.1	Н	L	
6	Key Largo Dry Rocks	IR	0.6-10.7	Н	L	
7	The Elbow	OR	2.4-9.1	H to M	М	
8	Carysfort Reef	OR	4.6-15.2	М	M to L	
9	Basin Hill Shoals	IPR	0.2-2.4	L	L	
10	Turtle Rocks	IPR	4.6-6.1	L	L	
11	Ocean Reef	TG	3.1-3.7	0	0	М
12	Turtle Harbor	TG	3.7-4.7	0	0	L
13	North Channel	TG/H	2.7-4.3	0	0	М
14	South Channel	TG/H	4.0	0	0	Н
15	Rock Harbor	TG	2.4-3.4	0	0	H to M
16	Point Elizabeth	TG/H	4.0-4.6	0	0	L
17	Angelfish Creek	IPR	3.1-5.8	L	L	

Approx. Extent and Type of Usage

12.2.2. Intermediate Reefs

White Bank Dry Rocks, Grecian Rocks, and Key Largo Dry Rocks are categorized as intermediate reefs based on their structure and distance from the offshore margin of the Florida reef tract. Each of these sites is 2.6 km or less from the 60 ft (18.3 m) contour. The environmental characteristics are intermediate between, those of the offshore reefs and sites further inshore. Visibility, for example, at these sites is often not as good as visibility at offshore locations, but better than the visibility at inshore locations.

Size and complexity of coral formations at the intermediate reef sites are less than that found at offshore reef sites. Key Largo Dry Rocks and Grecian Rocks are the most similar to offshore sites of the group. Grecian Rocks has a back-reef, a well-defined reef crest consisting primarily of densely packed *Acropora palmata*, and a short fore-reef slope ending in a flat, sandy plateau at around 8.2 m depth. Key Largo Dry Rocks lacks a well-defined, reef crest, but does have a back reef-rubble zone area and large scleractinian coral development that approximates spur and groove formation.

White Bank Dry Rocks, unlike Key Largo Dry Rocks and Grecian Rocks, lacks any morphological similarity to offshore reefs. White Bank Dry Rocks, however, is a more consolidated patch reef area than those sites in the next category.

12.2.3. Inshore Patch Reefs

Basin Hill Shoals, Mosquito Bank, Turtle Rocks, and Angelfish Creek are patch reef sites occurring over 2.7 km away from the 60 ft (18.3 m) contour. The former two are large, shallow banks of turtle grass dotted with patches of mixed scleractinian and octocorallian corals. Turtle Rocks is a loose aggregation of patch reefs consisting of a variety of scleractinian coral species separated by turtle grass (*Thalassia testudinum*) beds and sand. Angelfish Creek is an isolated patch reef surrounded by turtle grass.

12.2.4. Turtle Grass and Hardground

Six sites were located within 1.8 km of shore. Site numbers 11, 12, and 15 were on bottom dominated by turtle grass. Site numbers 13, 14, and 16 were in areas of turtle grass mixed with regions termed hardground. Hardground consisted of bedrock featuring numerous octocorals, sponges, and small head corals (primarily genus *Siderastrea*).

These sites are probably more affected by boat traffic than other study sites due to their shallow depth and location near channels and navigation routes. While the purpose of the study was to describe the fish fauna at each of these sites, we believe it is useful to give some idea of possible boating impact on the different areas. It is possible that such impact could be one of several variables responsible for differences in fish communities at these sites.

Each of these six sites represented a unique combination of habitat type and extent of user impact caused by boat traffic. Depth does not exceed 16 ft (4.9 m) at any site, and turbulence from power boat propellers and wakes causes varying degrees of agitation of sediments and disturbance of plant and animal communities depending on the size of the boat.

Site 15 (Rock Harbor) experiences the most boat traffic of the three turtle grass sites (11, 12, 15). The site is just offshore of Port Largo. A large number of private boats, several dive and charter fishing boats, and a number of commercial fishing boats must pass through this vicinity to go offshore.

Site 11 (Ocean Reef) is just off the entrance to an exclusive private resort club (Ocean Reef Club) on northern Key Largo. A number of larger yachts and offshore sport fishing vessels traverse this site as they enter or leave the club. While the average size of the vessels is somewhat larger than at Rock Harbor, the number passing through is smaller.

Site 12 (Turtle Harbor) is not near any main channel or passage route to popular offshore fishing or diving areas. No docks or marinas occur directly inshore of it. As a result it experiences very little boat traffic.

Site 14 (South Channel) is subjected to more boat traffic than the other turtle grass/hardground sites (13, 14, 16), followed by site 13 (North Channel). Most of the traffic from Largo Sound and Pennekamp Park Marina passes through this channel to go to the more popular dive sites such as Molasses Reef, French Reef, and the Benwood Wreck. The traffic includes a large sight-seeing vessel, dive charter boats, private boats, and a fleet of rental boats from park headquarters. The channel is narrow, forcing all traffic through a small area. For these reasons site 14 probably experiences more impact from boats than any other of the six sites near shore.

Site 13 (North Channel) also has considerable traffic. Private, dive charter, and commercial fishing boats from Largo Sound and Garden Cove Marina use this channel. The inshore section of North Channel is nearly as narrow as South Channel, but depths between this section and the most offshore channel marker (red number 2) allows safe passage of boats of most sizes over a wide area, lessening the impact of whatever traffic occurs at this channel.

Site 16 (Point Elizabeth) is not immediately offshore of any development or marina and, like site 12 (Turtle Harbor), has fewer boats passing through.

12.3. METHODS

The STT of Jones and Thompson (1978) was used without modification at all study sites. Jones and Thompson discuss the adaptation of the technique from species-area (Oosting, 1956) and species-time (Beals, 1960) techniques used in other sub-disciplines of ecology. A single STT count consisted of a 50 min SCUBA dive during which the diver actively searched for and recorded as many species as possible. Species were recorded in order of encounter, being listed only once per count. Counts were subdivided into 10 minute intervals. Fish species were then assigned scores based on the first interval in which they were observed within each 50-minute count. Species observed during the first 10 minutes of a count received a score of 5, with second-, third-, fourth- and fifth-interval species receiving scores of 4, 3, 2, and 1, respectively.

We recorded all species with pencil on underwater paper attached to aluminum clipboards. Most species were identified on sight. Species that we could not identify by inspection were collected, usually following the STT count, and brought back to the laboratory for identification.

Jones and Thompson (1978) used the P_k statistic of Gaufin *et al.* (1956) to choose *a priori* the number of samples needed to census 90% or more of the fish species at their offshore reef sites. They chose 8 replicates per site. We used 8 replicates per site during 1980, in which we sampled the 9 odd-numbered sites. We were able to obtain 12 replicates per site during 1981 at which time we sampled the 8 even-numbered sites. We also sampled site 5 (Grecian Rocks) a second time in 1981 in an attempt to get some idea of year to year variability in a fish community as determined by using the STT. A total of 180, 50-minute STT counts were made

during the two year study (9 sites x 8 replicates for 1980 + 9 sites x 12 replicates for 1981), resulting in over 150 man-hours of bottom time.

Data analysis follows the general procedure of Jones and Thompson (1978), as specified by NOAA contract No. NA-79-SAC-00813. Using this procedure also provides a comparison with their first test of the STT. We will, however, discuss some of their assumptions in greater detail.

Fish communities at each of the 18 sites (9 sites in 1980, 8 new sites plus one repeat site in 1981) were compared on the basis of mean number of species and mean scores using one-way analysis of variance (ANOVA). We considered each site to be a unique entity rather than a randomly sampled representative of a certain class; e.g., site 11 (Ocean Reef) is a turtle grass community subjected to a unique level of boat traffic; the structural features and locations of Carysfort, French, and Molasses reefs and the Elbow make each a unique site; and so on for the other sites. The result is that our data approximately conform to the specifications of Model I rather than Model II ANOVA (Eisenhart, 1947; Sokal and Rohlf, 1981). Thus we analyzed the data according to the general model

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij} \tag{1}$$

where i = site number, j = individual STT count number, Y_{ij} = number of species (or total species score) at site i on the STT count j, μ = mean number of species or mean total score over all STT counts at all sites, α_i = the "treatment effects" of being at site i (i.e. the influence that being at site i has on the mean number of species observed or mean total score of species observed) and ε_{ij} = an independent, normally distributed random error term. The variable ε_{ij} represents the stochastic nature of differences in number of species (or total species scores) at different sites due to recruitment, colonization, an extinction of species on a relatively short time horizon. For these comparisons, 1980 and 1981 sample sizes were equalized by randomly selecting 8 of 12 possible counts per species for each of the 1981 sites.

Multiple comparisons to distinguish which means or groups of means are significantly different from others were carried out subsequent to the ANOVA. A number of applicable multiple comparison procedures exist and are discussed by Federer (1955), Harter (1957, 1970), Steel and Torrie (1960), Dunnett (1970), Boardman and Moffit (1971), Carmer and Swanson (1973), Zar (1974) and Kleinbaum and Kupper (1978). Several other procedures are suitable for our data, but the contract specifies Duncan's Multiple Range Test (DMRT), which also provides a comparison with the results of Jones and Thompson (1978).

Further between-site comparisons were made using the Shannon-Weaver diversity function, evenness values of Pielou (1966), and the Bray and Curtis Index (1957). We followed the community ordination procedure adapted from Bray and Curtis (1957) by Beals (1960), as did Jones and Thompson (1978). We computed, the Shannon-Weaver diversity function using base 10 logs and species scores, denoted H' to distinguish these values from the conventional H computed from species abundance. Jones and Thompson (1978) defend the substitution of STT scores for counts of individuals in the Shannon-Weaver diversity function. We believe this substitution is questionable but worth presenting to provide a third tool for between-site comparisons, in addition to the ANOVA-DMRT and Bray and Curtis Index-ordination comparison methods. For all between-site Bray and Curtis Index comparisons, 1980 and 1981 site sample sizes were made equal by randomly selecting 8 of 12 possible counts per species for each of the 1981 sites as for the ANOVA-DMRT.

We prepared a rank order of all species censused over all sites and STT counts during the two year study. We also prepared a ranked list of species censused for each of the four major habitat categories: (1) offshore reefs, (2) intermediate reefs, (3) inshore patch reefs, and (4) turtle grass and hardground based on summed species scores. Scores presented in these tables were rounded to the nearest integer. In calculating these summed species scores, 1981 site scores were adjusted to equalize the number of counts used per site with 1980 scores. Rather than eliminate 4 STT counts for rank order analysis of 1981 sites, which would have entailed loss of some species, we adjusted 1981 data for effort by multiplying individual scores by 8/12 (0.67).

12.4. RESULTS AND DISCUSSION

12.4.1. Descriptive Information on Species Composition

All fish species are listed in taxonomic order following Robins *et al.* (1980). Table 2 lists the fish species censused in 1980, total score per species per site by site number, and total score per species for all sites. The highest possible total score over all sites in 1980 is 360.

Table 3 lists the fish species censused in 1981. Note that site 18 is Grecian Rocks, which is site 5 in 1980. The highest possible total score over all sites in 1981 is 540. No species attained these maximum total scores in either 1980 or 1981. This is not surprising considering the wide variety of habitats censused and the relatively low fish abundance and diversity at some of the sites.

The data in Tables 2 and 3 show that 198 and 202 total species were censused in 1980 and 1981 respectively, compared to 146 species observed off Key Largo by Jones and Thompson (1978). The greater number of species observed in the present study may be due primarily to the larger number of man-hours of bottom time (over 150 compared to 50) and wider variety of habitats sampled. For example, members of family Batrachoididae, Ophichthidae, Gobiesocidae, Syngnathidae, and Dactyioscopidae were censused in habitats not sampled by Jones and Thompson (1978). A number of blenniids, clinids, and gobiids were also recorded from inshore areas. In other cases, our longer list appears to be due to increased bottom time resulting in observations of relatively uncommon offshore reef inhabitants (for example *Apogon robinsi, A. lachneri*, and *Astrapogon stellatus* of family Apogonidae and *Lactophrys polygonia* and *L. trigonus* of family Ostraciidae). Expending 33% more sampling effort in 1981 resulted in only 4 more total species censused than in 1980 although only 174 species were common to both years. Twenty-five were censused only in 1980, while 31 appeared only in the data from 1981.

Table 4 is a list of total species and total species scores observed over the entire two year study. A maximum total score for any given species is 900. The table shows that 228 total species were censused by the STT in this study. This represents 38 to 46 percent of the approximately 500 to 600 species that may be found on or near the Florida reef tract. Starck (1968) found 389 coral-associated species after 9 years of collecting at Alligator Reef, Florida Keys. However some of these collections included the use of ichthyocides and even explosives. Longley and Hildebrand (1941) listed 440 species from the Dry Tortugas, but many were not coral reef species. These results indicate that the STT effectively generates a fairly comprehensive list of the more ubiquitous species in a relatively short time. It did not, however, account for many cryptic species, some of which are abundant in the areas sampled.

	TIME S	CORE	S BY S	PECIE	S - 19	80				
SPECIES					Sit	e num	bers			
	1	3	5	7	9	11	13	15	17	TOTAL
SPHYRNIDAE: Sphyrna tiburo					4					4
DASYATIDAE: Dasyatis americana Urolophus jamaicensis	5	2		8	5		13		10	7 36
MYLIOBATIDAE: Aetobatus narinari			1							1
ELOPIDAE: <i>Megalops atlanticus</i>		5								5
MURAENIDAE: Gymnothorax funebris Gymnothorax moringa Gymnothorax vicinus Muraena miliaris	11	1	8	6	5 10 2		3		4	22 18 2 8
OPHICHTHIDAE: Ahlia egmontis						1				1
CLUPEIDAE: Harengula clupeola Jenkinsia lamprotaenia Jenkinsia sp.			1		5 11					5 1 11
SYNODONTIDAE: Synodus intermedius	5	7		4			4		4	24
BATRACHOIDIDAE: Opsanus beta						3		5		8
EXOCOETIDAE: Hemiramphus brasiliensis					5					5
BELONIDAE: Tylosurus crocodilus	5		20		5					30
ATHERINIDAE: Atherinomorus stipes			2					4		6

SPECIES					Sit	te numl	bers			
	1	3	5	7	9	11	13	15	17	TOTAL
HOLOCENTRIDAE: Holocentrus adscensionis Holocentrus rufus	12 4	24 19		7 9					7	43 39
Holocentrus vexillarius Myripristis jacobus	21 16	35 16		10						66 32
AULOSTOMIDAE: Aulostomus maculatus	36	22	21	36					5	120
SYNGNATHIDAE: Cosmocampus albirostris Hippocampus erectus Hippocampus zosterae						5		3 4		3 5 4
CENTROPOMIDAE: Centropomus undecimalis	3	1								4
SERRANIDAE: Diplectrum formosum Epinephelus adscensionis Epinephelus cruentatus	34	1 32	18	18		23	21	6	11	50 1 113
Epinephelus guttatus Epinephelus itajara Epinephelus morio Epinephelus striatus	1 12	5 4 18	2 13	2 10	3 22		4 3			11 4 6 78
Hypoplectrus aberrans Hypoplectrus gemma Hypoplectrus indigo Hypoplectrus pigricans	2 18	3 29 15		3 4	16				24 9	5 90 13 20
Hypoplectrus nigricans Hypoplectrus puella Hypoplectrus unicolor Liopropoma rubre	5 23 3	10 36 8	1 17 3	10 28 2	25 24				5 33	56 161 16
Mycteroperca bonaci Mycteroperca tigris Serranus baldwini Serranus tabacarius	14 5	4 3 8 13	16 6	10 2 8 2	17				8 10 4	69 5 37 19
Serranus tigrinus	34	37	15	31					23	140
GRAMMISTIDAE: Rypticus saponaceus	7	12		9						28
PRIACANTHIDAE: Priacanthus arenatus	4	7	_							11
Priacantnus cruentatus	20	15	5	30						70

SPECIES					Sit	e numt	oers			
	1	3	5	7	9	11	13	15	17	TOTAL
APOGONIDAE: Apogon binotatus Apogon maculatus Apogon townsendi Astrapogon stellatus	7 7	6 2 5	4 13 3	7	3		1	1 6	5	17 32 15 7
MALACANTHIDAE: Malacanthus plumieri	9	11		18						38
ECHENEIDAE: Echeneis naucrates	6	20	1	11	3				4	45
CARANGIDAE: Caranx bartholomaei Caranx crysos Caranx ruber Oligoplites saurus Seriola dumerili Trachinotus falcatus	31	10	34 3	31 3	12 1 33	9 5	15 2 6	4 5 3	5 17	36 12 172 3 3 3
LUTJANIDAE: Lutjanus analis Lutjanus apodus Lutjanus griseus Lutjanus jocu Lutjanus mahogoni Lutjanus synagris Ocyurus chrysurus	15 23 39 14 35 40	3 24 27 19 29 26 40	33 27 33 8 13 36	17 24 40 10 36 5 40	6 10 33 40	4	6 3 15	3 9 13 8	40	83 108 181 51 113 47 263
GERREIDAE: Gerres cinereus					5					5
HAEMULIDAE: Anisotremus surinamenis Anisotremus virginicus Haemulon album Haemulon aurolineatum Haemulon carbonarium	19 30 12 37	19 33 6 38	15 25 6 31	11 24 40	39	1	1 12	3 10	5 31	70 197 18 17 146
Haemulon chrysargyreum Haemulon flavolineatum Haemulon macrostomum Haemulon melanurum Haemulon parra	39 40 33 1	30 40 34 23	30 39 19 6 23	40 39 29 6 37	39		11 4	28	3 25	142 261 115 16 84
Haemulon plumieri Haemulon sciurus Haemulon sp. 1	31 40	38 34	32 35	30 40	40 35	6	18 5	12 8	40 35 5	247 232 5

SPECIES					Sit	e numl	oers			
	1	3	5	7	9	11	13	15	17	TOTAL
SPARIDAE: Calamus bajonado Calamus calamus Lagodon rhomboides	3 8	22	6 22	3	7 35	2 2	5 9	5 2	36	21 142 4
SCIAENIDAE: Equetus acuminatus Equetus lanceolatus Equetus punctatus Odontoscion dentex	10 3 31	5 7 7 33	9 4	7 12 22	13 10 3		35 2	12	16	107 7 38 89
MULLIDAE: Mulloidichthys martinicus Pseudupeneus maculatus	35 14	29 27	37 10	38 31					16	139 98
PEMPHERIDAE: Pempheris schomburgki	34	39	38	40						151
KYPHOSIDAE: Kyphosus sectatrix	19	34	29	39						121
EPHIPPIDAE: Chaetodipterus faber	3	4			9	4				20
CHAETODONTIDAE: Chaetodon capistratus Chaetodon ocellatus Chaetodon sedentarius Chaetodon striatus	32 33 5 30	39 23 27	6 14 21	29 27 5 10	31 5 5		7 1 4		10 19 21	154 122 40 88
POMACANTHIDAE: Holocanthus bermudensis Holocanthus tricolor Holocanthus ciliaris Pomacanthus arcuatus Pomacanthus paru	9 38 25 20 18	3 40 16 21 13	15 3 31 25 31	25 22 15 12	28 14 27	7	6 4 31 5	3 11 7	34 21 40	95 106 136 197 86
POMACENTRIDAE: Abudefduf saxatilis Chromis cyanea Chromis insolata Chromis multilineata Chromis scotti Microspathodon chrysurus	40 34 4 27 6 30	39 40 25 18 39	39 5 13 40	39 40 37 3 40	39		1		30	227 119 4 102 27 149

SPECIES					Sit	te numb	ers			
	1	3	5	7	9	11	13	15	17	TOTAL
Pomacentrus diencaeus	33	39	38	32	19				2	163
Pomacentrus leucostictus	6	5	22	7	35		15	2	24	116
Pomacentrus partitus	40	40	40	40	39				40	239
Pomacentrus planifrons	39	38	40	40	40				38	235
Pomacentrus variabilis	20	10	29	17	40		21	12	39	188
CIRRHITIDAE:										
Amblycirrhitus pinos	8	10		8						26
LABRIDAE:										
Bodianus rufus	28	36	30	40						134
Clepticus parrae	17	19	1	13						50
Halichoeres bivittatus	26	24	37	32	18	2	5		38	182
Halichoeres garnoti	40	40	25	39	1				5	150
Halichoeres maculipinna	40	40	40	37	3				40	200
Halichoeres poeyi			4		2					6
Halichoeres radiatus	33	17	40	36	8				23	157
Hemipteronotus martinicen	sis								10	10
Hemipteronotus novacula	_	10		6			_			16
Hemipteronotus splendens	5	25	24	25			5			84
Lachnolaimus maximus	8	22	21	37	34		14	5	34	175
Thalassoma bifasciatum	40	40	40	40	39		2		40	241
SCARIDAE:										
Cryptotomus roseus			13			5		10	11	39
Scarus coelestinus	20	23	33	24	29				18	147
Scarus coeruleus	25	32	25	7	38		5		14	146
Scarus croicensis	36	30	40	39	40	1	16	22	40	264
Scarus guacamaia	17	10	13	11	7					58
Scarus taeniopterus	28	26	25	21					14	114
Scarus vetula	35	40	34	35						144
Sparisoma aurofrenatum	40	40	39	38	20				40	217
Sparisoma chrysopterum	35	30	38	35	32	9	25	14	39	257
Sparisoma radians	10	28	16	12	21		8	5	28	128
Sparisoma rubripinne	24	30	39	18	9			-	30	150
Sparisoma viride	40	35	40	40	40		4	8	40	247
SPHYRAENIDAE:										
Sphyraena barracuda	34	16	32	15	31	4	5		18	155
OPISTOGNATHIDAE:										
Opistognathus aurifrons	19	12		12					10	53
Opistognathus maxillosus							14		2	16

SPECIES					Sit	e numb	ers			
	1	3	5	7	9	11	13	15	17	TOTAL
DACTYIOSCOPIDAE: Platygillelus rubrocinctus					3					3
CLINIDAE: Acanthemblemaria sp. 2 Acanthemblemaria sp. 3 Acanthemblemaria sp. 4 Hemiemblemaria simulus Malacoctenus aurolineatus Malacoctenus roseus Malacoctenus sp. 1 Malacoctenus triangulatus Paraclinus sp. 1	4	15	2	1	1 8 6 3	1	5 17	11	9 16 4 7 10 4	11 16 4 26 2 8 21 7 29
BLENNIIDAE: Blenniidae juvenile spp. Blenniidae sp. 1 Ophioblennius atlanticus Parablennius marmoreus Scartella cristata	5		3 16	3	6 19		4 1 6		3 2	4 7 8 6 43
CALLIONYMIDAE: Callionymus bairdi	4	5							3	12
GOBIIDAE: Barbulifer sp. Coryphopterus dicrus Coryphopterus	7 21	14 22	12 18	13 21	16 36		10 25	5 33	23 20	5 95 196
glaucofraenum Coryphopterus personatus Gnatholepis thompsoni Gobionellus saepepallens	11 27	28 34	21	18 28	14 21		1	5	38	71 170 5
Gobiosoma grosvenori Gobiosoma macrodon Gobiosoma oceanops Ioglossus calliurus Microgobius carri	13 12	24 12 15	30 8 5	13 8	8 5 37	19 1	15 34 11 12	9 5	22 15	51 45 150 55 32
Microgobius microlepis		-	-		4	2	16	38		60
ACANTHURIDAE: Acanthurus bahianus Acanthurus chirurgus Acanthurus coeruleus	40 21 40	40 31 40	39 33 40	40 16 40	32 34 36		13 15	3	40 34 38	247 184 234

SPECIES					Sit	e numl	bers			
	1	3	5	7	9	11	13	15	17	TOTAL
SCOMBRIDAE: Scomberomorus regalis	1	15		10	2	2				30
SCORPAENIDAE: Scorpaena plumieri					3					3
BOTHIDAE: <i>Bothus lunatus Bothus</i> sp. 1 <i>Bothus</i> sp. 2							1 4		2	1 2 4
BALISTIDAE: Aluterus schoepfi Aluterus scriptus Balistes capriscus Balistes vetula Cantherhines macrocerus Cantherhines pullus Canthidermis sufflamen Monacanthus ciliatus Monacanthus tuckeri	16 3 23 3 5	9 38	10 12 6 2	16 5 18 20	1	5	3		4 6 13 14	4 58 8 18 3 91 43 13 7
OSTRACIIDAE: Lactophrys bicaudalis Lactophrys polygonia Lactophrys quadricornis Lactophrys trigonus Lactophrys triqueter	3 11	6 3 18	5 9	13 25	5 8		4		5 19	32 5 4 3 90
TETRAODONTIDAE: Canthigaster rostrata Sphoeroides spengleri	35	34	17	33	4		5		19	142 5
DIODONTIDAE: Diodon holocanthus Diodon hystrix	5 5	3	2	5 8	1 4	4			1 2	16 24

SPECIES	Site numbers									
	2	4	6	8	10	12	14	16	18	TOTAL
ORECTOLOBIDAE: Ginglymostoma cirratum		8						1		9
CARCHARHINIDAE: Carcharhinus leucas			4						5	9
DASYATIDAE: Dasyatis americana Urolophus jamaicensis	13	8	2	1	3 16		13	9	4	6 63
MYLIOBATIDAE: Aetobatus narinari			5	1					1	7
MURAENIDAE: Gymnothorax funebris Gymnothorax moringa Muraena miliaris	8 2	5	9 4	2 3	9		4		2	17 24 7
CLUPEIDAE: Harengula clupeola Harengula sp. Jenkinsia lamprotaenia Jenkinsia sp. Sardinella aurita	9	5 7 9	15	4 1			3 1 11		5	8 7 33 2 20
SYNODONTIDAE: Synodus intermedius	9	17	8	5		2	1	3		45
BATRACHOIDIDAE: Opsanus beta								5		5
GOBIESOCIDAE: Gobiesox strumosus						4		2		6
EXOCOETIDAE: Hemiramphus brasiliensis	4									4
BELONIDAE: Strongylura notata Tylosurus crocodilus			5	3			16		23	16 31
ATHERINIDAE: Atherinomorus stipes				5			1			6

SPECIES					Sit	te num	bers			
	2	4	6	8	10	12	14	16	18	TOTAL
HOLOCENTRIDAE. Holocentrus adscensionis Holocentrus rufus Holocentrus vexillarius	1	5	2 8	7 16 6	5				1	9 36 6
AULOSTOMIDAE: Aulostomus maculatus	33	8	34	50	28				46	199
SYNGNATHIDAE: Cosmocampus albirostris Hippocampus erectus						1 8				1 8
SERRANIDAE: Diplectrum formosum Epinephelus afer			1 1		1	43	28	18	3	94 1
Epinephelus cruentatus Epinephelus guttatus Epinephelus morio	25	5	32	48 3	20 2 21		15	21	34	164 5
Epinephelus striatus Hypoplectrus aberrans	9	5	13	13 12	9		15	21	10	59 12
Hypoplectrus chiorurus Hypoplectrus gemma Hypoplectrus guttavarius	10	5	4	51 10	7				5	82 10
Hypoplectrus indigo Hypoplectrus nigricans Hypoplectrus puella	3 33	13 15	14 18 23	12 21 13	4 7				4 12 15	30 71 106
Hypoplectrus unicolor Liopropoma rubre	39	23	34 2	50 6	15		4		23	188 8
Mycteroperca bonaci Mycteroperca tigris Mycteroperca venenosa	13	23	32 3	14	7		2	5	18	114 3 2
Serranus baldwini Serranus tabacarius	2	L	5	8	5				2	13 9
Serranus tigrinus	25		53	47	15				36	176
Rypticus saponaceus	2			4					4	10
PRIACANTHIDAE: Priacanthus cruentatus	14		5	15					14	48

SPECIES					Sit	te num	bers			
	2	4	6	8	10	12	14	16	18	TOTAL
APOGONIDAE: Apogon binotatus			3	18					3	24
Apogon naculatus Apogon maculatus	4	9	5 11 4	12	1				20	5 57
Apogon pseudomaculatus Apogon robinsi			4	10					4	4
Apogon townsendi Astrapogon stellatus				13			16		5	20
MALACANTHIDAE: Malacanthus plumieri			3						3	6
ECHENEIDAE:										
Echeneis naucrates	30		9	10	7	7			36	99
CARANGIDAE:										
Caranx bartholomaei	9	15	7		4		17		9	61
Caranx crysos		10	50	27	24	11	48	26	50	102
Trachinotus falcatus	57	57	56	37 2	34	9	47	18	50	2
LUTJANIDAE:										
Lutjanus analis	26	13	13	18	4		5		30	109
Lutjanus apodus	47	30	41	40	24				53	235
Lutjanus cyanopterus			7							7
Lutjanus griseus	46	58	47	26	10	4	43		40	274
Lutjanus jocu	8		8	2				_	10	28
Lutjanus mahogoni	31	10	34	49		10	10	1	23	158
Lutjanus synagris Ocyurus chrysurus	59	40 49	11 60	7 57	57	3	19	29 4	58	109 348
GERREIDAE:										
<i>Eucinostomus</i> sp. 1						2	1	3	4	10
Eucinostomus sp. 2								10		10
Gerres cinereus		14	2				39		28	83
HAEMULIDAE:										
Anisotremus surinamenis	31			9	8				17	65
Anisotremus virginicus	48	41	41	42	31		21	22	34	280
Haemulon album	4		6						1	11
Haemulon aurolineatum	45	59	34	32	26				59	255
Haemulon carbonarium	45	2	37	47	21				55	207
Haemulon chrysargyreum	45	F 7	38	32	4	-	-		51	170
Haemulon navolineatum Haemulon macrostomum	59 47	57	юU 53	60 46	эð 5	Э	Э		60 51	304 202

SPECIES					Sit	te num	bers			
	2	4	6	8	10	12	14	16	18	TOTAL
Haemulon melanurum Haemulon parra Haemulon plumieri Haemulon sciurus Haemulon sp. 1 Haemulon sp. 2	16 56 56	60 60	23 59 57	1 17 53 55	18 10 60 31	46 2	36 42	55 4 8 7	29 55 54	19 95 480 359 10 7
SPARIDAE: Archosargus probatocephalu Archosargus rhomboides Calamus bajonado Calamus calamus Calamus penna Lagodon rhomboides	<i>us</i> 9 17 1	4 2 9 11	3 2		28 20	5 7 37	10 4 3		4 8	4 17 64 61 1 37
SCIAENIDAE: Equetus acuminatus Equetus lanceolatus Equetus punctatus Odontoscion dentex	28 46	19 4	19 15 3 1	2 8 3 13	34 6		26	33	23 3	184 26 6 70
MULLIDAE: Mulloidichthys martinicus Pseudupeneus maculatus	26 40	17	47 11	44 19	12 40				52 33	181 160
PEMPHERIDAE: Pempheris poeyi Pempheris schomburgki	1 46		27	41					51	1 165
KYPHOSIDAE: <i>Kyphosus sectatrix</i>	42	7	30	30					24	133
CHAETODONTIDAE: Chaetodon capistratus Chaetodon ocellatus Chaetodon sedentarius Chaetodon striatus	25 25 10 9	44 28 8 8	35 26 20 1	52 41 31 15	12 29 39 18		4 5	1 5	26 22 19 13	199 181 127 64
POMACANTHIDAE: Holacanthus bermudensis Holacanthus tricolor Holacanthus ciliaris Pomacanthus arcuatus Pomacanthus paru	3 1 41 46 32	39 9 47	20 14 37 28	4 49 32 36 44	16 9 49 53 37	10	6 14 25	5	13 21 32 29 50	81 100 191 288 191

SPECIES					Sit	e numb	ers			
	2	4	6	8	10	12	14	16	18	TOTAL
ΡΟΜΔΟΕΝΤΡΙΠΔΕ										
Abudefduf saxatilis	55	49	59	56	6		9		60	294
Chromis cyanea	2			50	5					57
Chromis insolata				5						5
Chromis multilineata	13		22	26					15	76
Chromis scotti	6		7	10	_					23
Microspathodon chrysurus	51		60	57	5				59	232
Pomacentrus diencaeus	48	42	48	53	20		21	0	53	244
Pomacentrus leucostictus	30	30	16	20	20		21	8	33	178
Pomacentrus partitus	60 55	31	60 55	22	50 47			Z	60 60	318 225
Pomacentrus planinons	33 17	50 51	53	30	47 20		12	12	44	333 311
FUINACENTIUS VANADINS	47	51	55	52	30		42	12	44	311
LABRIDAE:										
Bodianus rufus	59	9	43	36	11				46	204
Clepticus parrae			3	49					3	55
Halichoeres bivittatus	54	56	50	29	59	3	11	19	60	341
Halichoeres garnoti	37		25	57	41				34	194
Halichoeres maculipinna	56		58	48	60				47	269
Halichoeres poeyi	20	10	50	10	37				2	59
Hallchoeres radiatus	51	10	53	40	49				55	258
Hemipteronotus martinicens	515		1		4				ן כ	2
Hemipteronotus novacula	11	2	1	5	4 1 /		2		10	0 52
Lachnolaimus maximus	28	40	30	12	14		22	5	24	200
Thalassoma hifasciatum	20 60	40	50 60	60	47 60		22	5	50	209
	00	40	00	00	00				50	550
SCARIDAE:										
Cryptotomus roseus	5		3		1	4			1	14
Scarus coelestinus	40	41	37	48	33				24	223
Scarus coeruleus	35	45	19	19	21		_		23	162
Scarus croicensis	50	30	53	55	30		7	11	58	294
Scarus guacamaia	26	15	16	18	32	-			21	128
Scarus taeniopterus	31		47	42	27	5			35	187
Scarus Vetula	44	50	53	58	8	10	22	22	51	214
Sparisoma aurofrenatum	60 21	59	6U 1	59	60	19	23	10	55	417
Spansoma chrysopterum	21	3U 10	10	29 ⊿⊃	5U E 4	<u>۲</u> ۲	28	16	20 1 1	197
Spansoma rubrininna	25	10	ΙŎ ∕/1	42	54 50	4		Э	 57	171
Spansonia Tubripinne Sparisona virida	55 60	50	41 60	50	50			c	57	250
Spansonia vinue	00	29	00	55	20			۷	00	224
SPHYRAENIDAE:										
Sphyraena barracuda	48	2	26	15	18		34		37	180

SPECIES					Sit	e numbe	ers			
	2	4	6	8	10	12	14	16	18	TOTAL
OPISTOGNATHIDAE: Opistognathus aurifrons Opistognathus sp. 1 Opistognathus whitehursti	8		4	3			3 2	2	6	21 3 4
CLINIDAE: Acanthemblemaria chaplini Acanthemblemaria sp. 2 Acanthemblemaria sp. 3 Acanthemblemaria sp. 4 Chaenopsis ocellata Emblemaria pandionis Hemiemblemaria simulus Malacoctenus roseus Malacoctenus sp. 1 Malacoctenus triangulatus Paraclinus sp. 1	9 12 5 2 4 3	11 10 17 4 5 2	7 5 2 4	3 4 3	14 23 2 4 5		6	3	7 12 5	51 62 17 9 10 2 10 2 4 20 8
BLENNIIDAE: Blenniidae sp. 1 Hypleurochilus aequipinnis Hypleurochilus bermudensis Ophioblennius atlanticus Scartella cristata	5 4	1 8	4	4	5		5 11 2		9 7	11 11 2 21 20
CALLIONYMIDAE: Callionymus bairdi Callionymus pauciradiatus	2		1		2			1		5 1
GOBIIDAE: Coryphopterus dicrus Coryphopterus	46 39	44 50	48 30	6 50	16 31	7	5 45	29	24 44	189 325
Glauconaenum Coryphopterus lipernes Coryphopterus personatus Gnatholepis thompsoni Gobionellus saepepallens Gobiosoma grosvenori	5 50	10 46 4	25 37	11 36 46	22	20	1 5 38	11	7 49	11 83 251 5 73
Gobiosoma macrodon Gobiosoma oceanops Ioglossus calliurus Microgobius carri Microgobius microlepis Nes longus	49 32 6	9 48 1 6	49 18 1	32 4	16 19 1	3	37 4 52 32	33 26 6	43 23	82 241 96 9 78 44

SPECIES					Sit	te numt	pers			
	2	4	6	8	10	12	14	16	18	TOTAL
ACANTHURIDAE: Acanthurus bahianus Acanthurus chirurgus Acanthurus coeruleus	55 27 60	33 47 47	59 20 59	60 9 52	45 30 60		8 30	13 17	60 30 60	333 210 338
SCOMBRIDAE: Scomberomorus regalis	12		8	19	9				7	55
SCORPAENIDAE: Scorpaena plumieri		5								5
BALISTIDAE: Aluterus scriptus Balistes vetula Cantherhines macrocerus Cantherhines pullus Canthidermis sufflamen Monacanthus ciliatus Monacanthus tuckeri	4 19 4		4 14 5 5	10 32 22 5	8 5 5 5 2	28		21	2 29 1 2	24 5 4 99 33 49 18
OSTRACIIDAE: Lactophrys bicaudalis Lactophrys polygonia Lactophrys quadricornis Lactophrys trigonus Lactophrys triqueter	5 4 10	7	2 5 12	15 5 25	5 16		5	5	13 5 14	35 10 19 5 84
TETRAODONTIDAE: Canthigaster rostrata Sphoeroides spengleri	42	3 3	53	54	37	16	2	4	41	230 25
DIODONTIDAE: Diodon holocanthus Diodon hystrix	9	7 6	4 4	3	1	2	4		14	26 28

Table 4. List of fish species of sites.	ensuse	l ni b	ooth	years	com	oined,	tota	scol	e be	r spe	cies	by sit	nu e	mber,	and	total	score	e per s	pecies f	or all
				TIME	sco	DRES	BΥS	PECI	- ES	1980	& 19	81								
SPECIES								Site	numt	Ders										
	-	N	e	4	S	9	7	œ	6	10		12	13	14	15	16	17	18	TOT	AL
ORECTOLOBIDAE: Ginglymostoma cirratum				00												-			0	
CARCHARHINIDAE: Carcharhinus leucas						4												Ŋ	0	
SPHYRNIDAE: Sphyrna tiburo									4										4	
DASYATIDAE: Dasyatis americana Urolophus jamaicensis	ŝ	13	2	Ø		0	00	-	21	3 16			- 100	- 100		D	10	4	13 99	
MYLIOBATIDAE: Aetobatus narinari						2J		-										-	8	
ELOPIDAE: Megalops atlanticus			CJ																Q	
MURAENIDAE: <i>Gymnothorax funebris</i> <i>Gymnothorax moringa</i>	=	00	-	2		04	9	N	10	6			n	4			4		39 42	
Gymnothorax vicinus Muraena miliaris		N			œ			С	N									N	15	

Table 4. List of fish species ce sites (cont.).	ensuse	d in t	poth y	/ears	com	pined	, tota	scol	e be	r spe	cies	by sit	e nu	nber,	and	total	score	e per s	pecies for	all
4				TIME	sco	RES	BYS	PEC	- ES	1980	& 19	81								-
SPECIES								Site	numk	oers										
	-	N	ю	4	S	9	4	00	0	10	:	12	10	14	15	16	17	18	TOTAL	
OPHICHTHIDAE: Ahlia egmontis								· · · · · ·											-	
CLUPEIDAE: Harannila chinaola			Ľ					ų						c						
Harengula sp. Jenkinsia lamprotaenia Jenkinsia sp.		0	2 2	-	15		4 -	- -						o -				2J	34 13 13 13	
Sardinella aurita			0											÷					50	
SYNODONTIDAE: Synodus intermedius	5	0	~	17		00	4	2J				N	4	-		со	4		69	
BATRACHOIDIDAE: Opsanus beta											co				Ω.	Ω.			13	
GOBIESOCIDAE: Gobiesox strumosus												4				N			9	
EXOCOETIDAE: Hemiramphus brasiliensis		4							Ω.										0	
BELONIDAE: Strongylura notata Tylosurus crocodilus	Ω.				20	Ω.		0	Ω.					16				5	16 61	

Table 4. List of fish species c sites (cont.).	ensuse	ui be	both	years	COL	bined	, tota	al sco	re p	er sp	ecies	by s	te nu	Imbei	, anc	l tota	sco	re per	species	for all
				TIM	SO	ORES	BY	SPEC	ES	198(0 & 1	981								
SPECIES								Site	num	bers										
	-	N	ю	4	2 2	9	4	8	0	10	÷	12	13	14	15	16	17	18	TO	TAL
ATHERINIDAE: Atherinomorus stipes					^N			Ω.						-	4				-	2
HOLOCENTRIDAE: Holocentrus	12		24			CN	~	2											Q	N
adscensionis Holocentrus rufus Holocentrus vexillarius Myripristis jacobus	2 1 2 1 6 1 6	-	19 35 16	Q		8	6 10	16		Ω.								-	N N 0	5 0 0
AULOSTOMIDAE. Aulostomus maculatus	36	33	22	00	21	34	36	50		28							Q	46	31	o
SYNGNATHIDAE: Cosmocampus albirostris												-			3					4
Hippocampus erectus Hippocampus zosterae											Ŋ	8			4				-	დ 4
CENTROPOMIDAE: <i>Centropomus</i> <i>undecimalis</i>	0		-																	4

				TIN	E SC	ORES	BY	SPEC	ES -	1980	& 198	-							
SPECIES								Site	numl	oers									
	-	N	ю	4	Q	9	~	00	Ø	10	÷	2	3	4	15	16	17	18	TOTAL
SERRANIDAE:																			
Diplectrum formosum						-				-	8	6	T N	8	9	8		e	144
Epinephelus			-																-
adscensionis																			
Epinephelus afer						-													-
Epinephelus cruentatus	34	25	32	ß	18	32	18	48		20							÷	34	277
Epinephelus guttatus	-		ß				N	က	ო	2									16
Epinephelus itajara			4																4
Epinephelus morio					N	2				21			4	15		51			65
Epinephelus striatus	12	6	18	ß	13	13 13	10	13 13	22	0			ო					10	137
Hypoplectrus aberrans	N		ო					12											17
Hypoplectrus chlorurus								2											Q
Hypoplectrus gemma	18	10	29	ß		4	ო	51	16	7							24	2	172
Hypoplectrus								10											10
guttavarius																			
Hypoplectrus indigo						14	4	42									6	4	43
Hypoplectrus nigricans		ო	15	ς Γ		18	œ	21	ო	4							ო	12	100
Hypoplectrus puella	2 2	33	10	15	-	23	10	1 3	25	7							ß	15	162
Hypoplectrus unicolor	23	39	36	23	17	34	28	50	24	15				4			33	23	349
Liopropoma rubre	ო		œ		ო	N	N	9											24
Mycteroperca bonaci	14	- 13	4	23	16	32	10	14	17	7				2		S	00	18	183
Mycteroperca tigris			ო			c	N												œ
Mycteroperca venenosa				N															CI
Serranus baldwini	5		00		9		œ	00		2							10		50
Serranus tabacarius		N	13			ß	N										4	0	28
Serranus tigrinus	34	25	37		15	53	ы 1	47		15							03	36	316

Table 4. List of fish species cosites (cont.).	ensuse	in di	both	years	com	oined	, tot	al sco	re pe	r spe	acies	by si	te nu	mber	and	total	scor	e per sp	becies for a	=
				TIME	SCC	DRES	BY	SPEC	- SEI	1980	& 10	81								
SPECIES								Site	num	oers										
	-	2	e	4	2J	9	4	œ	6	10	÷	12	13	14	15	16	17	18	TOTAL	
GRAMMISTIDAE:																				
Rypticus saponaceus	2	2	12				0	4										4	38	
PRIACANTHIDAE:																				
Priacanthus arenatus	4		7																11	
Priacanthus cruentatus	20	14	15		Ŋ	Ð	30	15										14	118	
APOGONIDAE:																				
Apogon binotatus			9		4	с	2	18										e	41	
Apogon lachneri						Q													2	
Apogon maculatus Apogon	2	4	N	თ	13			10	ო	-			-		-		Ω	20	89	
pseudomaculatus						r													4	
Apogon robinsi																		4	4	
Apogon townsendi	7		ß		ო			13										Q	33	
Astrapogon stellatus								4						16	9		-		27	
MALACANTHIDAE:																				
Malacanthus plumieri	თ		-			3	80											ო	44	
ECHENEIDAE: <i>Echeneis naucrates</i>	9	30	20			Ø	11	10	ო	~		2					4	36	144	

Table 4. List of fish species c sites (cont.).	ensuse	ni bë	both	years	COM	bined	, tota	sco	re pe	r spe	cies	by sit	e nui	nber,	and	total	score	e per sp	ecies for al	=
				TIMI	SC	DRES	BY S	SPEC	- ES	1980	& 19	81								1
SPECIES								Site	hum	oers										
	-	N	e	4	5	9	7	œ	6	10	÷	12	13	14	15	16	17	18	TOTAL	
CARANGIDAE:																				
Caranx bartholomaei		6		15		2			12	4			15	17	4		2	6	97	
Caranx crysos				10					-	~	ი		N	48		26			114	
Caranx ruber	а1	57	10	57	34	56	31	37	33	34	ß	6	9	47	ß	10	17	50	537	
Oligoplites saurus															ო				ო	
Seriola dumerili					ო														e	
Trachinotus falcatus							ი	CN											Ŋ	
LUTJANIDAE:																				
Lutjanus analis	15	26	ო	13	33	13	17	18	9	4			9	ß	ო			30	192	
Lutjanus apodus	23	47	24	30	27	41	24	40	10	24								53	343	
Lutjanus cyanopterus						~													7	
Lutjanus griseus	39	46	27	58	ອ	47	40	26	33	10		4		43	ი			40	455	
Lutjanus jocu	14	8	19		00	œ	10	2										10	79	
Lutjanus mahogoni	35	а1 С	29	10	- 13	34	36	49				10				-		23	271	
Lutjanus synagris			26	40			S	~				ო	ო	19	13	29			156	
Ocyurus chrysurus	40	59	40	49	36	60	40	57	40	57	4		15	4	00	4	40	58	611	
GERREIDAE:																				
Eucinostomus sp. 1												2		-		e		4	10	
Eucinostomus sp. 2																10			10	
Gerres cinereus				14		2			ŝ					39				28	88	

				TIME	sco	RES	BΥS	PECI	ŝ	1980	& 19	.							
SPECIES								Site	numb	ers)									
	-	0	3	4	Ŋ	0	\sim	00	0	10		12	- (1)	14	2	16	17	10	TOTAL
HAEMULIDAE:																			
Anisotremus surinamenis	19	0 1	6		Ω			6		00			-				ŝ	17	135
Anisotremus virginicus	30	48	33	41	25	41	24	42	39	31			42	21	3	22	31	34	477
Haemulon album	12	4	9			9													29
Haemulon aurolineatum		45		59	9	34		35		26	-				10			59	272
Haemulon carbonarium	37	45	00 00	N	ი 1	37	40	47		21								55	353
Haemulon	39	45	30		30	38	40	32		4							က	51	312
chrysargyreum																			
Haemulon flavolineatum	40	59	40	57	39	60	39	60	39	58		ß		ŝ	00 V		25	60	625
Haemulon macrostomum	300	47	34		6	53	29	46		2								51	317
Haemulon melanurum					9		9			18			4						35
Haemulon parra	-	9	300		300	53	37	17		10								29	179
Haemulon plumieri	с,	56	00 (*)	60	32	59	30	53	40	09	9	46	00	36	2	55	40	55	727
Haemulon sciurus	40	56	34	60	35	57	40	55	35	31			IJ	42	8	4	35	54	591
Haemulon sp. 1												0				00	IJ		15
Haemulon sp. 2																\sim			2
SPARIDAE:																			
Archosargus probatocepha	snj			4															4
Archosargus rhomboides				N								ŝ		10					17
Calamus bajonado	c	Ø		Ø	9	co			\sim	28		~	IJ	4				4	85
Calamus calamus	8	- 1	20		20	0	ო		35	20	0		O	က	IJ		36	00	203
Calamus penna		-																	-
Lagodon rhomboides											N	37			N				41

:CIES AENIDAE:																			
CIES AENIDAE:			F	IME	SCOF	ES B	Y SPI	ECIE	5 - 19	80 &	1981								
AENIDAE:							S	ite nu	Imbel	Ś									
AENIDAE:	-	N	e	4	S	G	~	8	-	-	-	-	14	15	16	17	18	TO	TAL
Equation animation																			
Equeius acuminatus	0	8	د	0	9	ດ		5	e e	4		ŝ	26	12	33	16	23	29	-
Equetus lanceolatus			2		-	ß		8									ო	co	0
Equetus punctatus	e		2		4	3	N	3	0			CI						4	4
Odontoscion dentex 3	-	9	33	4		1	4	e	~	(0)								15	6
LLIDAE:																			
Mulloidichthys 3	2	9	6	က	7	7 3	8	4	-	01							52	32	0
martinicus Pseudupeneus maculatus	4	01	2	7 1	0	- 3	-	0	4	0						16	33	25	œ
Pempheris poeyi		-																	-
Pempheris schomburgki 3	4	9	6	က	8	7 4	0	-									51	31	9
HOSIDAE:																			
Kyphosus sectatrix 1	6	N	4	7	റെ	3	с С	0									24	25	4
IIPPIDAE:																			
Chaetodipterus faber	ო		4					0,		7	-							N	0
AETODONTIDAE:															,				
Chaetodon capistratus		in u	500	4 0	0 v	2 Cl Cl	1 0	ຕີ N T	- 0				4 1		- L		200	35	ი ი
Chaetodon sedentarius	0 LC	0 0	0	- ς ο α	4 r		- u 4 c					- <	n		O	2		00+	10
Chaetodon striatus 3	, 0	20	7	2 00 I	-			- LO	- 6			r				21	13	15	- 01
AETODONTIDAE: Chaetodon capistratus Chaetodon ocellatus Chaetodon sedentarius Chaetodon striatus	0000	00000	23 23	8 2 1 8 2 1	04-	- 000	9 2 3 3 4 5 1 3 3 4 5	2 9	1 3 5 1			7 1 4	4 0			- 10	1 10 5 19 21	1 10 26 5 19 22 19 21 13	1 10 26 35 5 19 22 30 19 16 21 13 15

Table 4. List of fish species ce sites (cont.).	ensuse	ni be	both	year	COM	bined	, tota	sco	ed er	r spe	cies by	/ site	nu	ber,	and	total	score	e per si	pecies for al
				TIM	E SC(ORES	BY	SPEC	- ES	1980	& 198 [.]	_							
SPECIES								Site	numt	oers									
	-	~	co	4	ŝ	9	~	8	თ	10	11	CN	ς Ω	4	LC1	16	17	18	TOTAL
POMACANTHIDAE:																			
Holacanthus bermudensis	0	c	3	39	1.51			4	28	16			9	0			94	13	176
Holacanthus tricolor	00	-	40		က	20	22	49		0								21	206
Holacanthus ciliaris	25	41	16	0	- 0	4	20	30	4	49			4	4	c		51	32	327
Pomacanthus arcuatus	20	46	21	47	22	37	LO LO	36	27	53	7 10	,	31	2	-	ŵ	40	29	485
Pomacanthus paru	100	32	- 0		31	8	2	44		37			ß		7			50	277
POMACENTRIDAE:																			
Abudefduf saxatilis	40	55	9 9	49	3 0	59	39	56	30	9			-	6			30	0 9	521
Chromis cyaneus	34	N	40		2		40	20		IJ									176
Chromis insolata	4							IJ											6
Chromis multilineata	27	ი -	10 12		(n)	22	37	26										1.51	178
Chromis scotti	0	9	00			7	ന	10											50
Microspathodon	30	10	9 9		40	60	40	57		ιΩ								59	381
chrysurus																			
Pomacentrus diencaeus	(C) (C)	48	39	42	38	48	32	30	6								N	53	407
Pomacentrus leucostictus	9	30	ŝ	30	20	9-	~	20	35	20		1	10	-	CV	8	24	03	294
Pomacentrus partitus	140	09	40	ω –	40	09	40	55	39	50						2	40	09	557
Pomacentrus planifrons	39	55	30	60	40	55	40	58	40	47							30	09	570
Pomacentrus variabilis	20	47	10	01	29	53	1	32	40	30			-	2	N	2	39	44	499
CIRRHITIDAE: Amblycirrhitus pinos	00		10				0												26

				TIM	ESC	ORES	BΥ	SPEC	ĒS	1980	00 10	81							
SPECIES								Site	num	bers									
		01	3	4	ŝ	0	\sim	00	Ø	10		12	5	14	- 10	16	17	-	TOTAL
LABRIDAE:																			
Bodianus rufus	28	59	36	0	30	43	40	36										46	338
Clepticus parrai	17		19			ന	က —	49										ന	105
Halichoeres bivittatus	26	54	24	56	37	50	32	29	-0	59	01	ന	ſŊ			6 	8 8 8	6 0	523
Halichoeres garnoti	40	37	40		50	25	6 C	57	-	41							ß	34	344
Halichoeres maculipinna	40	56	40		40	51	37	48	c	60							40	47	469
Halichoeres poeyi		20			4				C)	37								0	6.5
Halichoeres radiatus	33	51	17	10	40	53	36	40	œ	49							23	55	415
Hemipteronotus						-											10	-	CJ
martinicensis																			
Hemipteronotus novacula			10			-	9			4								c	24
Hemipteronotus	Ω	14	22	01	24	4	25	Ŋ		4			Ω	c				10	136
splendens																			
Lachnolaimus maximus	00	00 [7]	2	40	5	30	37	n T	9 4	47			4	22	IJ	ιΩ	34	24	384
Thalassoma bifasciatum	40	60	40	46	40	60	40	60	39	60			2				40	20	577
SCARIDAE:																			
Cryptotomus roseus		ιΩ			- 10	က				-	ſ	4			10			-	53
Scarus coelestinus	20	40	300	41	က က	37	24	4	29	(C) (C)							00	24	370
Scarus coeruleus	25	35	32	45	25	19	2	19	38	21			ŝ				4	23	308
Scarus croicensis	36	50	30	30	40	53	39	55	40	30	-		10	$ \succ $	22	-	40	58	558
Scarus guacamaia	17	26	10	15	ი -	16		00	~	32								21	186
Scarus taeniopterus	28	0 1	26		25	47	21	42		27		ß					4	35	301
Scarus vetula	35	44	40		34	53	35	58		00								51	358

Table 4. List of fish species ce sites (cont.).	IISUSE	u p	both	TIME	comt	Dined	bY S	PECI	e per	spec	sies b	by site	Linu	ber,	and t	otal	score	ber sp	ecies for a
SPECIES) 	Site	numb	ers	5								
	-	2	n	4	Ŋ	9	~	∞ .	6	0		2	3	4	ŝ	9	17	18	TOTAL
Sparisoma chrysopterum Sparisoma radians Sparisoma rubripinne Sparisoma virida	35 24 24	2 5 1 3 5 1 3 5 1	2080 3080	30 110 110	38 39 39		35 18 18	7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	2 1 3 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	22 4	10 m 1	00	4 10 0	0 20 0	0 8 0 9	20	454 299 380
SPHYRAENIDAE: Sphyraena barracuda	6 4 5 4	4 8	1 0	0	0 0	0 0	12	2 0		0 00	4		t 10	4	0	4	00	37	335
OPISTOGNATHIDAE: Opistognathus aurifrons Opistognathus maxillosus Opistognathus sp. 1 Opistognathus whitehursti	10	œ				4	2	0				+-	4	3 3			0 0	ω	ν 4 0 0 4
DACTYIOSCOPIDAE: Gillellus rubrocinctus									3										0
CLINIDAE: Acanthemblemaria		σ		Ţ.		~		3		14								7	51
Acanthemblemaria sp. 2 Acanthemblemaria sp. 3 Acanthemblemaria sp. 4 Chaenopsis ocellata Emblemaria pandionis		10 Q1 10		10 17 5		Q			-	5 N						0	0 9 7	12	133 133 10

Table 4. List of fish species celsites (cont.).	ususe	ni be	both	year	s con	lbinec	l, tota	al scc	ore pe	er spe	scies	by s	te nu	mber	, and	total	scor	e per sp	becies for all	_
				MIT	E SC	ORES	βY	SPEC	IES -	1980	& 10	981								L
SPECIES								Site	num	bers										
	-	2	3	4	Ω	9	7	8	0	10		12	13	14	15	16	17	18	TOTAL	
Hemiemblemaria simulus	4		15			N		4		4							~		36	1
Malacoctenus aurolineatus Malacoctenus roseus				0	N				0										0	
Malacoctenus sp. 1		4		V					0 0				ŝ				10		25	
Malacoctenus triangulatus Paraclinus sp. 1		ო				4		က	со	ŝ	-		17	9	÷-	2	4	ß	37	
BLENNIIDAE:																				
Blenniidae juv. spp Blenniidae sn 1		Ľ							G					4 -	ų				4 0	
Hypleurochilus		0		-					D					_	° -				11	
aequipinnis Hunlaurochilus harmudanai															•				. (
Ophioblennius atlanticus	ی م	4				4	co	4							N			0	0 0	
Parablennius marmoreus					e												ო)	9	
Scartella cristata				00	16				19	2				9			CN	7	63	
CALLIONYMIDAE:																				
Callionymus bairdi	4	N	Q			-				N							co		17	
Callionymus pauciradiatus																-			-	
GOBIIDAE:																				
Components of Second	ľ	0		4	0	0		¢	0	0			0	1	2		(5	
Coryphopterus aicrus Coryphopterus	21	39 040	2 2	504	0 1	30 ¢	5 - 2	50	36 36	31		~	25	5 4 5	0 0 0	29	23	24 44	284 521	
glaucofraenum Coryphopterus lipernes								+											÷	

Table 4. List of fish species ce sites (cont.).	ensuse	ц Ц	both	years	COM	bined	, tota	sco	le pe	r spe	cies	oy sit	e nur	nber,	and	total	score	e per s	pecies for	all
				TIME	SCC	DRES	BY S	PEC	ES -	1980	& 19	81								
SPECIES								Site	numt	oers										
	-	N	С	4	5	9	~	8	Ø	10	11	12	13	4	15	16	17	18	TOTAL	
Coryphopterus	÷	2J	58	10		25	18	36 1	4									2	154	
Gnatholepis thompsoni	27	50	34	46	21	37	20	46	21	22			-	-			38	49	421	
Gobionellus saepepallens													1	ى 2	ы С				10	
Gobiosoma grosvenori Gobiosoma macrodon				4 σ							р -	0 0	15	2 0	ם ע	11			124	
Gobiosoma oceanops	13	49	24	, 4 8	30	49	1 0	32	37	16	-	D	t -	4	2	0	22	43	391	
loglossus calliurus	12	32	12		œ	18	00	4		19							15	23	151	
Microgobius carri		9	15	-	Q	-				-			42						41	
Microgobius microlepis									4		N		16	52	38	26			138	
Nes longus				9										32		9			44	
ACANTHURIDAE:																				
Acanthurus bahianus	40	55	40	e S	3.9	59	40	60	32	45			10	ø	ო	13	40	60	580	
Acanthurus chirurgus	21	27	3 1	47	33	20	16	0	34	30			15	30		17	34	30	394	
Acanthurus coeruleus	40	60	40	47	40	59	40	52	36	60							38	60	572	
SCOMBRIDAE: Scomberomorus regalis	-	10	15			. 00	10	1 9	0	0	0							~	50	
)			1)	I)	
SCORPAENIDAE: Scorpaena plumieri				ŝ					0										00	
))	
BOTHIDAE: Bothus lunatus													-						Ŧ	
Bothus sp. 1																	2		- 01	
Bothus sp. 2													4						4	

ARE: Sile numbers	ES Site numbers Site numbers TIDAE: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 T1 TIDAE: uterus schoepfi 16 9 10 4 16 10 1 8 9 10 11 12 13 14 15 16 17 18 T1 Uterus schoepfi 16 9 10 4 16 10 4 5 5 3 13 13 13 14 1 14 1 1 13 28 21 14 1 29 14 1 29 14 1 29 13 29 21 14 1 14 1 16 5					INALT	Co u		20			0001	0	5								
AE: I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 TOTAL AE: aschoepfi us schoepfi us schoepfi 4 2 4 5	AE: AE: 1 2 3 4 5 6 7 8 9 10 11 12 13 16 17 16 13 16 17 16 13 16 11 12 13 16 17 16 13 16 13 16 13 13 13 16 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Site</td> <td></td> <td>bers</td> <td>2 2</td> <td>201</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									Site		bers	2 2	201								
AE: A	AE: A		-	2	e	4	ŝ	9	7	00	6	10	÷	12	13	14	15	16	17	18	TOTA	_
rus schoepfi 4 6 2 8 4 4 rus schoepfi 10 4 16 10 4 16 10 1 8 5 3 4 8	rus schoepfi 4 rus schoepfi 16 9 10 4 16 10 1 8 5 3 4 rus scriptus 3 4 5 5 5 5 3 13 6 29 1 herhines macrocerus 3 4 8 12 14 18 32 5 5 13 28 29 1 14 1 14 1 14 1 16 16 16 16 13 28 21 29 1 16 29 1 14 1 1 14 1 1 14 1 1 14 1 1 14 1 1 29 14 1 1 29 14 1 1 29 14 1 1 29 14 1 1 29 14 1 1 29 14 1 29 14 1 29 14 1 29 14 1 29 13 10 14)AE:																				
state scriptus 16 9 10 4 16 10 1 8 5 3 4 8 7	intersections 16 9 10 4 16 10 1 8 5 3 4 13 ites caprisous 3 4 5 5 5 5 3 13 13 ites caprisous 3 4 5 5 5 5 5 13 13 herthines pullus 23 19 38 12 14 18 32 5 5 14 1 14 1 14 1 14 1 14 1 14 1 14 1 12 14 18 32 5 5 13 28 14 1 14 1 14 1 14 1 14 1 14 1 14 1 14 1 15 5	erus schoepfi																	4		4	
ites capriscus 5 3 4 5 5 3 13 23 13 23 23 13 23 13 23 13 23 13 23 13 23 13 23 14 1 7	tes capriscus5553tes vetula34555513herhines macrocerus34231938121418325herhines sufflamen3652022551328291acanthus clinatus5425552132821141acanthus clinatus5425552132821141acanthus tuckeri5425552132821141acanthus tuckeri54255652132821141acanthus tuckeri54555816521411acanthus tuckeri3565213155511411acanthus tuckeri1110187912252581619141acanthus tuckeri3542317533354433161413acanthus tuckeri110187912252524191413aphyry trigouus362 <t< td=""><td>erus scriptus</td><td>16</td><td></td><td>6</td><td></td><td>10</td><td>4</td><td>16</td><td>10</td><td>-</td><td>œ</td><td></td><td></td><td></td><td></td><td></td><td></td><td>9</td><td>N</td><td>82</td><td></td></t<>	erus scriptus	16		6		10	4	16	10	-	œ							9	N	82	
ites vetula 5 5 5 5 5 5 13 23 13 23 13 23 13 23 13 23 14 1 7 9 100 100 100 100 <td>ites vetula 5 5 5 13 13 13 13 13 13 13 13 13 13 14 1 29 11 14 1 29 14 1 29 14 1 29 14 1 29 14 1 29 14 1 29 14 1 29 14 1 29 14 1 29 14 1 29 14 1 29 14 1 29 14 1 29 14 1 29 14 1 20 40 20 20 40 20 14 11 20 12 20 2 2 2</td> <td>tes capriscus</td> <td></td> <td>ß</td> <td></td> <td>ო</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>80</td> <td></td>	ites vetula 5 5 5 13 13 13 13 13 13 13 13 13 13 14 1 29 11 14 1 29 14 1 29 14 1 29 14 1 29 14 1 29 14 1 29 14 1 29 14 1 29 14 1 29 14 1 29 14 1 29 14 1 29 14 1 29 14 1 29 14 1 20 40 20 20 40 20 14 11 20 12 20 2 2 2	tes capriscus											ß		ო						80	
herhines macrocerus 3 4 7 herhines pulus 23 19 38 12 14 18 32 5 14 1 76 herhines pulus 23 19 38 12 14 18 32 5 5 13 28 21 14 1 76 acanthus tuckeri 5 4 2 5 5 2 3 5	Therhines macrocerus 3 4 4 2 14 18 32 5 4 23 19 38 12 14 18 32 5 5 14 1 14 11 14 11 14 11 14 11 29 14 11 14 11 29 14 11 11 11 10 18 7 9 12 25 25 8 16 16 25 2 14 1 29 14 11 29 14 11 12 29 14 11 12 29 14 11 12 25 24 11 12 21 12 25 24 11 12 21 14 2	stes vetula							S			Ŋ							1 0		23	
herhines pullus 23 19 38 12 14 18 32 5 5 14 1 76 acanthus cultatus 3 6 5 20 22 5 5 2 21 21 2 25 acanthus tuckeri 5 4 2 5 5 2 2 5 2 2 2 5 2	<i>interthines pullus</i> 2319381214183255 <i>indermis sufflamen</i> 36520225132821141 <i>acanthus cliatus</i> 542552131552132821141 <i>acanthus tuckeri</i> 5425552131552213155 <i>acanthus tuckeri</i> 3565213155213155 <i>aphrys bicaudalis</i> 35652131554513 <i>aphrys trigonus</i> 455213155455141 <i>aphrys trigueter</i> 1110187912252581619141 <i>Aphrys trigueter</i> 1110187912252581619141 <i>Aphrys trigueter</i> 354233544331652419141 <i>Aphrys trigueter</i> 354533544331652419141 <i>Aphrys trigueter</i> 3545335443316141 <i>Aphrys trigue</i>	therhines macrocerus	ო	4																	7	
hidermis suffamen365202254176acanthus cliatus542555213282162acanthus tuckeri542555222525aphrys bicaudalis356521315522225aphrys bicaudalis356521315545213aphrys bicaudalis356521315545215aphrys polygouid3565213155451367aphrys triqueter111018791225258161914174Dontribati3542335443716524174Dontribati3542335443716524174Dontribati354233544524174174Dontribati3542335445241914174Dontribati354545241730Dontribati5354545430	thidermis sufflamen3652022541141acanthus ciliatus5425552132821242acanthus tuckeri542555521315522acanthus tuckeri5425513155721328212acanthus tuckeri3565213155721328aphrys bicaudalis3565213155745513aphrys trigonus437912252581619141aphrys trigonus1110187912252581619141Donribat:3542343175333544371652419141Donribati35423175333544371652419141Donribati3545335543319141Donribati59745745241141Donribativ <td>therhines pullus</td> <td>23</td> <td>19</td> <td>38</td> <td></td> <td>12</td> <td>14</td> <td>100</td> <td>32</td> <td></td> <td>ß</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>29</td> <td>190</td> <td></td>	therhines pullus	23	19	38		12	14	1 00	32		ß								29	190	
acanthus ciliatus 13 28 21 62 acanthus tuckeri 5 4 2 5 5 25 25 Dhris tuckeri 5 4 5 2 13 28 21 25 25 Phris tuckeri 5 5 5 13 15 5 2 25 25 Phris tuckeri 3 5 5 13 15 5 5 15 23 Phris tuckeri 3 5 2 13 15 5 4 5 5 5 15 Phris trigonus 3 5 2 13 15 5 4 5 5 5 5 23 33 Phrys trigonus 35 42 3 16 5 4 5 5 5 5 5 5 33 5 4 3 7 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	acanthus cliatus 13 28 21 2 3 21 2 21 2 3 3 5 4 2 5 5 2 13 28 21 2 2 2 3 2 2 2 5<	thidermis sufflamen	ო				9	Ω	20	22		2							14	Ţ	76	
acanthus tuckeri 5 4 2 5 5 2 2 25 25 25 25 25 25 25 25 25 25 25 23 24 3 17 174	acanthus tuckeri 5 4 2 5 5 5 2 13 2 13 iIDAE: ophrys bicaudalis 3 5 6 5 2 13 15 5 5 13 13 13 ophrys bicaudalis 3 5 6 5 2 13 15 5	acanthus ciliatus											1 3	28				21			62	
IDAE: 3 5 6 5 2 13 15 5 5 5 5 5 5 5 15 5 5 15 5 5 15 5 5 15 5 5 15 5 5 15 5 5 15 5 5 15 5	IIDAE: 113 15 5 5 13 15 14 <t< td=""><td>acanthus tuckeri</td><td>Q</td><td>4</td><td></td><td></td><td>N</td><td>Ŋ</td><td></td><td>S</td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>N</td><td>25</td><td></td></t<>	acanthus tuckeri	Q	4			N	Ŋ		S		2								N	25	
phrys bicaudalis 3 5 6 5 13 15 5	phrys bicaudalis 3 5 6 5 13 15 1 5 1 5	IIDAE:																				
ph/tys polygonia 5 5 5 5 5 5 5 23 ph/tys quadricornis 4 5 5 5 5 23 23 ph/tys trigonus 3 5 5 8 16 19 14 174 ophrys trigonus 3 7 9 12 25 25 8 16 19 14 174 OONTIDAE: 11 10 18 7 9 12 25 25 8 16 5 2 4 174 174 OONTIDAE: 11 10 18 7 9 12 25 25 8 16 5 2 4 174 OONTIDAE: 35 42 37 16 5 2 4 174 372 DONTIDAE: 35 42 4 37 16 5 2 4 30 ONTIDAE: 35 42 4 37 16 5 2 4 4 30	ph/tys polygonia 5 7 9 12 25 25 8 16 5 5 7 19 14 1 OONTIDAE: 11 10 18 7 9 12 25 25 8 16 7 19 14 1 3 OONTIDAE: 35 42 3 17 53 33 54 4 37 16 5 2 4 1 3 16 14 1 3 16 5 2 4 1 3 10 14 1 3 10 14 1 3 16 14 1 3 10 14 1 3 10 14 1 3 10 14 1 3 10 14 1	ophrys bicaudalis	ო	S	9		ŝ	N	- 10	15	2									13	67	
phrys quadricornis 4 5 5 23 phrys trigonus 3 5 5 5 19 14 174 phrys trigonus 3 5 5 8 16 19 14 174 phrys trigonus 3 5 25 8 16 19 14 174 DONTIDAE: 11 10 18 7 9 12 25 25 8 16 174 174 DONTIDAE: 11 10 18 7 9 12 25 25 8 16 1 174 174 DONTIDAE: 16 5 2 4 37 16 5 2 4 372 higaster rostrata 35 42 33 54 4 37 16 5 2 4 30 Iblaes 1 4 5 1 4 2 4 1 42 42 IDAE: 5 3 4 1 4 2 4 <td>2phrys quadricornis4545555<math>2phrys trigonus355581619141<math>2phrys trigonus1110187912252581619141<math>2phrys trigonus1110187912252581619141$2onnTDAE:$3542343175333544371652413<math>nigaster rostrata3542343175333544371652413<math>noides spengleri37453544371652413<math>noides spengleri59745142413<math>n holocanthus5974834142141$n hystrix53624834142141$</math></math></math></math></math></math></math></td> <td>phrys polygonia</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ß</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td>ß</td> <td>15</td> <td></td>	2phrys quadricornis4545555 $2phrys trigonus3555816191412phrys trigonus11101879122525816191412phrys trigonus11101879122525816191412onnTDAE:3542343175333544371652413nigaster rostrata3542343175333544371652413noides spengleri37453544371652413noides spengleri59745142413n holocanthus5974834142141n hystrix53624834142141$	phrys polygonia										ß							2	ß	15	
phrys trigonus 3 5 8 phrys trigonus 11 10 18 7 9 12 25 25 8 16 19 14 174 phrys trigueter 11 10 18 7 9 12 25 25 8 16 19 14 174 DONTIDAE: 11 10 18 7 9 12 25 25 8 16 174 DONTIDAE: 10 18 7 9 12 25 24 4 372 higaster rostrata 35 42 33 54 4 37 16 5 2 4 30 noides spengleri 3 3 54 4 37 16 5 2 4 30 IDAE: 5 9 7 4 5 1 4 2 4 1 42 n holocanthus 5 9 7 4 5 4 1 42	phrys trigonus 3 5 5 16 19 14 1 pphrys trigueter 11 10 18 7 9 12 25 25 8 16 19 14 1 DONTIDAE: 11 10 18 7 9 12 25 25 8 16 19 41 3 DONTIDAE: 35 42 3 17 53 33 54 4 37 16 5 2 4 1 3 16 67 4 3 16 5 2 4 1 3 16 1 18 1 19 41 3 10 14 1 3 10 14 1 3 10 14 1 3 10 14 1 3 10 14 1 3 10 14 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ophrys quadricornis		4				S						4	ß			S			23	
ophrys triqueter 11 10 18 7 9 12 25 25 8 16 19 14 174 DONTIDAE: DONTIDAE: 10 18 7 9 12 25 25 8 16 19 14 174 DONTIDAE: 17 16 5 2 4 372 higaster rostrata 35 42 3 17 53 33 54 4 37 higaster rostrata 35 42 3 17 53 33 54 4 37 higaster rostrata 35 42 33 54 4 37 16 5 2 4 30 IDAE: 5 9 7 4 5 1 4 2 4 42 n holocanthus 5 9 7 4 5 4 1 42	ophrys triqueter 11 10 18 7 9 12 25 25 8 16 19 14 1 DONTIDAE: higaster rostrata 35 42 34 3 17 53 33 54 4 37 16 5 2 4 1 3 higaster rostrata 35 42 34 3 17 53 33 54 4 37 16 5 2 4 3 1 3 16 1 3 16 16 5 2 4 3 3 16 1 4 1 4 1 3 1 1 4 1 4 1 3 16 1 4 1 3 1 1 4 1 1 4 1 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 4 1 4 1 1 1 4 </td <td>ophrys trigonus</td> <td></td> <td></td> <td>ო</td> <td></td> <td></td> <td></td> <td></td> <td>S</td> <td></td> <td>8</td> <td></td>	ophrys trigonus			ო					S											8	
NONTIDAE: NONTIDAE: 19 41 372 higaster rostrata 35 42 34 3 17 53 33 54 4 37 19 41 372 higaster rostrata 35 42 34 3 17 53 33 54 4 37 19 41 372 reroides spengleri 3 3 5 2 4 30 30 IDAE: 5 9 7 4 5 2 4 1 42 on holocanthus 5 9 7 4 5 4 1 42	DONTIDAE: 19 41 3 higaster rostrata 35 42 34 3 17 53 33 54 4 37 16 5 2 4 19 41 3 neroides spengleri 3 17 53 33 54 4 37 16 5 2 4 4 1 3 IDAE: 5 9 7 4 5 1 4 1 4 2 4 1 4 2 4 1 1 4 2 4 1 1 1 on hystrix 5 3 6 2 4 8 3 4 1 4 1 2 4 2 4 1 2 14 1	ophrys triqueter		10	18	~	ŋ	40	25	25	œ	16							19	14	174	
higaster rostrata 35 42 34 3 54 4 37 19 41 372 heroides spengleri 3 3 54 4 37 16 5 2 4 30 TIDAE: 3 3 5 4 5 3 5 4 30 on holocanthus 5 9 7 4 5 4 42 on hostrix 5 3 6 2 4 42 4 52	thigaster rostrata 35 42 34 3 17 53 33 54 4 37 19 41 3 peroides spengleri 3 3 54 4 37 16 5 2 4 3 rIDAE: 3 6 7 4 5 1 4 2 4 1 on holocanthus 5 9 7 4 5 1 4 2 4 1 on hystrix 5 3 6 2 4 8 3 4 1 2 14 2 14	DONTIDAE:					ļ															
TDAE: 10 2 4 30 IDAE: 5 9 7 4 5 1 4 2 4 30 on holocanthus 5 9 7 4 5 1 4 2 4 1 42 on hostrix 5 3 6 2 4 8 3 4 1 5	TIDAE: 10 2 4 noiceanthus 5 9 7 4 5 1 4 2 4 on hystrix 5 3 6 2 4 8 3 4 1 2 14	thigaster rostrata Dernides snenderi	35	42	34	ი ი	17	53	33	54	4	37		4	ц	c			19	41	372	
IDAE: IDAE: on holocanthus 5 9 7 4 5 1 4 2 4 on hostrix 5 3 6 2 4 8 3 4 1 42	TIDAE: IDAE: 00 holocanthus 5 9 7 4 5 1 4 2 4 1 on hystrix 5 3 6 2 4 8 3 4 1 2 14	iaininas spainliai				o								0	n	N		4			30	
on hustrix 5 3 6 2 4 8 3 4 1 5 2 1 5	on hystrix 5 3 6 2 4 8 3 4 1 2 14 2 14	TIDAE: on holocanthus	2J	0		2		4	LC.		-		4	~		4			-		4.2	
		on hvstrix) LC)	¢.		0	. 4	0	¢		Ŧ	1	1		ŀ			- 0	V F	1 0	

12.4.2. Species Identification and Nomenclature

Several problems arose with regard to species identification on the STT counts. First, during the present study, Robertson and Allen (1981) reported that the honey damselfish, *Pomacentrus mellis*, is actually the juvenile form of a different species, the longfin damselfish, *P. diencaeus*. Thus, scores for *P. mellis* actually represented counts of juvenile *P. diencaeus*. In addition, adult *P. diencaeus* are often difficult to distinguish from adult dusky damselfish, *P. dorsopunicans*, in the field. Therefore, scores for juvenile and adult *P. dorsopunicans* were combined with an unknown proportion of adult *P. diencaeus* (as well as *P. mellis*) and listed as *P. diencaeus*.

Other systematic difficulties exist with *Coryphopterus personatus* and *C. hyalinus*. These two species are difficult to distinguish in the field. Because *C. hyalinus* normally occurs deeper than 30 m, we should have observed mostly *C. personatus* in this survey. The scores for *C. personatus* may, however, include some *C. hyalinus*.

Robins *et al.* (1980) no longer recognize two other gobies, *loglossus calliurus* and *l. helenae*, as separate species. Therefore, our counts for the two *loglossus* species were combined and listed as *l. calliurus*.

We had problems in 1980 counts with misidentifying *Sparisoma aurofrenatum* as *S. chrysopterum* on offshore reefs where *S. chrysopterum* is quite rare. This problem was corrected in 1981 by using the somewhat more blunt head morphology and difference in nasal cirri in *S. chrysopterum* as key characters. The result of this error was erroneously high scores for *S. chrysopterum* in 1980 on offshore reef sites. Jones and Thompson (1978) appear to have made the same error. On our last dive at Turtle Rocks we also noted another species of parrotfish, *S. atomarium*, mixed in with individuals we had been identifying as all *S. radians*. Thus the scores for *S. radians* at this site may include an occasional *S. atomarium* observation.

Several other species were identified only to genus in the field, such as some *Acanthemblemaria* species. We felt that taking the time to collect such individuals during the 50 min. STT count was an unacceptable expenditure of time that would bias the results. These fish were not identified to species level in cases where we could not relocate and collect the individual after the count. In at least two instances, rare species were fleetingly observed in caves. They could not be identified with confidence to the family level and were omitted from the data. However, we believe that these very cryptic or completely nocturnal species cannot be reasonably sampled with this type of visual technique.

12.4.3. Analysis of Fish Community Composition

Table 5 is a data summary for all study sites. Note that odd-numbered sites were censused in 1980, even-numbered sites in 1981, and that Grecian Rocks was site 5 in 1980 and site 18 in 1981. The mean number of species per SST count per site was 48.0 for 1980, 45.8 for 1981, and 46.1 for both years. Mean number of species per STT count at Grecian Rocks was 65.8 and 67.8 in 1980 and 1981 respectively, showing little difference between years despite a total species number of 108 in 1980 and 126 in 1981. Shannon-Weaver diversity index (H') and equitability of distribution (J') values were similar to, but slightly higher than, the values obtained by Jones and Thompson (1978) for Molasses, French, and Carysfort reefs. We censused more species than they did at each of these three sites (123 vs. 120, 126 vs. 118, 134 vs. 104 respectively). The greater number of replicates at Carysfort Reef in our study (12 vs. 8) probably explains most of the greater number of total species counted at that site. We had the same number of replicates (8) as Jones and Thompson (1978) at Molasses and

Table 5. Data summary for all study sites. Odd numbers correspond to 1980 sites, even numbers to 1981 sites, and site 5 (1980) = site 18 (1981) = Grecian Rocks. Shannon-Weaver indices (H') were computed using base 10 logs and species scores, rather than absolute species abundance.

SITE NO.	NAME	TOTAL SPECIES	TOTAL SCORES	SHANNON- WEAVER INDEX (H')	EQUITABILITY OF DISTRIBUTION (J')
1	Molasses Reef	123	2384	4.55	0.95
2	White Bank Dry Rocks	121	3232	4.48	0.94
3	French Reef	126	2672	4.63	0.96
4	Mosquito Bank	98	2169	4.20	0.92
5	Grecian Rocks (1980)	108	2137	4.43	0.95
6	Key Largo Dry Rocks	134	3040	4.48	0.92
7	The Elbow	118	2409	4.53	0.95
8	Carysfort Reef	131	3342	4.54	0.93
9	Basin Hill Shoals	91	1549	4.16	0.92
10	Turtle Rocks	109	2356	4.34	0.93
11	Ocean Reef	26	140	2.87	0.88
12	Turtle Harbor	31	349	2.98	0.87
13	North Channel	64	598	3.82	0.92
14	South Channel	65	1036	3.75	0.90
15	Rock Harbor	42	362	3.42	0.91
16	Point Elizabeth	48	570	3.47	0.90
17	Angelfish Creek	90	1629	4.21	0.93
18	Grecian Rocks (1981)	126	3233	4.50	0.93

French reefs. Our total species score at Molasses Reef was less (2384 vs. 2627) and at French Reef greater (2672 vs. 2640) than Jones and Thompson (1978). French Reef had the highest H' in our study, whereas Molasses Reef was the highest H' in their study. Our H' values indicated that species diversity is highest on offshore reefs, and generally decreases in proportion to the distance between these sites and the shore. The turtle grass sites (Ocean Reef, Turtle Harbor, and Rock Harbor) were the least diverse in terms of fish species.

Tables 6, 7, 8, 9 and 10 rank species according to total score over all STT counts in the twoyear study (after weighting 1981 data for effort) for offshore reefs, intermediate reefs, inshore patch reefs, turtle grass/hardground, and total for all habitats respectively. Jones and Thompson (1978) give a similar table and refer to the species with higher total scores as "dominant." We do not interpret the species with highest rank according to STT scores as necessarily ecologically dominant components of the censused communities. DeMartini and Roberts (1982) demonstrated that STT scores tend to overemphasize the importance of widespread, rare species and under emphasize patchy, abundant species. They did, however, find a high correlation between STT scores and frequency of occurrence. Thus Tables 6- 9 provide, with some exceptions, a rough characterization of the readily visible component of fish communities within major habitat types. Several examples of these exceptions (anomalous rankings) are discussed below. In most of these cases, the rankings are based on what a diver is more likely to see first as he gets in the water rather than ecological dominance of a species. Table 6. Rank order of offshore sites by species time score (with 1981 data adjusted for effort).

Relative Species Abundances Ranked by Species Scores

Offshore Reef Sites

Rank	Score	Species	Rank	Score	Species
1	160	Acanthurus bahianus	44	100	Cantherhines pullus
2	160	Thalassoma bifasciatum	45	99	Scarus coelestinus
3	159	Haemulon flavolineatum	46	98	Lutjanus apodus
4	158	Ocyurus chrysurus	47	97	Caranx ruber
5	157	Pomacentrus partitus	48	97	Coryphopterus glaucofraenum
6	157	Halichoeres garnoti	49	96	Sparisoma rubripinne
7	157	Sparisoma aurofrenatum	50	95	Odontoscion dentex
8	156	Pomacentrus planifrons	51	85	Pseudupeneus maculatus
9	155	Abudefduf saxatilis	52	84	Holacanthus ciliaris
10	155	Acanthurus coeruleus	53	84	Hypoplectrus gemma
11	152	Sparisoma viride	54	82	Clepticus parrae
12	151	Haemulon sciurus	55	81	Coryphopterus personatus
13	149	Halichoeres maculipinna	56	80	Pomacanthus arcuatus
14	149	Scarus vetula	57	78	Sparisoma radians
15	147	Chromis cyanea	58	77	Scarus coeruleus
16	147	Microspathodon chrysurus	59	77	Chaetodon striatus
17	146	Haemulon carbonarium	60	76	Lachnolaimus maximus
18	142	Scarus croicensis	61	75	Sphyraena barracuda
19	140	Pempheris schomburgki	62	75	Priacanthus cruentatus
20	139	Pomacentrus diencaeus	63	74	Acanthurus chirurgus
21	138	Canthigaster rostrata	64	72	Pomacanthus paru
22	136	Holacanthus tricolor	65	72	Haemulon parra
23	135	Chaetodon capistratus	66	71	Gobiosoma oceanops
24	134	Haemulon plumieri	67	71	Lactophrys triqueter
25	133	Lutjanus mahogoni	68	70	Holocentrus vexillarius
26	133	Serranus tigrinus	69	68	Pomacentrus variabilis
27	131	Mulloidichthys martinicus	70	58	Hemipteronotus splendens
28	130	Haemulon chrysargyreum	71	55	Anisotremus surinamenis
29	128	Bodianus rufus	72	50	Scarus guacamaia
30	127	Haemulon macrostomum	73	49	Epinephelus striatus
31	127	Aulostomus maculatus	74	48	Holocentrus adscensionis
32	123	Lutjanus griseus	75	48	Aluterus scriptus
33	120	Hypoplectrus unicolor	76	47	Lutjanus analis
34	120	Gnatholepis thompsoni	77	45	Opistognathus aurifrons
35	119	Sparisoma chrysopterum	78	44	Lutjanus jocu
36	116	Epinephelus cruentatus	79	44	Echeneis naucrates
37	115	Anisotremus virginicus	80	43	Holocentrus rufus
38	113	Halichoeres radiatus	81	39	Scomberomorus regalis
39	112	Kyphosus sectatrix	82	38	Canthidermis sufflamen
40	110	Chaetodon ocellatus	83	38	Coryphopterus dicrus
41	106	Chromis multilineata	84	38	Malacanthus plumieri
42	103	Scarus taeniopterus	85	37	Hypoplectrus nigricans
43	101	Halichoeres bivittatus			

Table 6. Rank order of species on offshore reef sites by species time score (with 1981 data adjusted for effort) (cont.).

Relative Species Abundances Ranked by Species Scores

Offshore Reef Sites

Rank	Score	Species	Rank	Score	Species
86	37	Mycteroperca bonaci	120	11	Priacanthus arenatus
87	36	Lutjanus synagris	121	11	Ophioblennius atlanticus
88	35	loglossus calliurus	122	10	Diodon holocanthus
89	34	Chromis scotti	123	10	Epinephelus guttatus
90	34	Hypoplectrus puella	124	9	Callionymus bairdi
91	33	Calamus calamus	125	8	Monacanthus tuckeri
92	32	Myripristis jacobus	126	7	Hypoplectrus guttavarius
93	32	Lactophrys bicaudalis	127	7	Tylosurus crocodilus
94	31	Rypticus saponaceus	128	7	Haemulon melanurum
95	31	Pomacentrus leucostictus	129	7	Chaetodipterus faber
96	31	Chaetodon sedentarius	130	7	Chromis insolata
97	29	Inermia vittata	131	7	Coryphopterus lipernes
98	26	Serranus baldwini	132	6	Lactophrys trigonus
99	26	Amblycirrhitus pinos	133	5	Balistes vetula
100	25	Apogon binotatus	134	5	Mycteroperca tigris
101	24	Equetus punctatus	135	5	Megalops atlanticus
102	23	Equetus acuminatus	136	4	Epinephelus itajara
103	22	Hemiemblemaria simulus	137	4	Centropomus undecimalis
104	21	Haemulon aurolineatum	138	4	Trachinotus falcatus
105	21	Apogon townsendi	139	3	Calamus bajonado
106	19	Synodus intermedius	140	3	Atherinomorus stipes
107	18	Haemulon album	141	3	Jenkinsia lamprotaenia
108	18	Diodon hystrix	142	3	Astrapogon stellatus
109	17	Gymnothorax funebris	143	3	Cantherhines macrocerus
110	17	Apogon maculatus	144	3	Dasyatis americana
111	17	Liopropoma rubre	145	2	Malacoctenus triangulatus
112	16	Hemipteronotus novacula	146	2	Acanthemblemaria chaplini
113	15	Microgobius carri	147	2	Gymnothorax moringa
114	15	Serranus tabacarius	148	2	Muraena miliaris
115	15	Holacanthus bermudensis	149	1	<i>Jenkinsia</i> sp.
116	13	Hypoplectrus aberrans	150	1	Epinephelus adscensionis
117	13	Urolophus jamaicensis	151	1	Hypoplectrus chlorurus
118	12	Hypoplectrus indigo	152	1	Acanthemblemaria sp. 2
119	12	Equetus lanceolatus	153	1	Aetobatus narinari

Table 7. Rank order of species on intermediate reef sites by species time score (with 1981 data adjusted for effort).

Relative Species Abundances Ranked by Species Scores

Intermediate Reef Sites

Rank	Score	Species	Rank	Score	Species
1	160	Sparisoma viride	43	93	Coryphopterus glaucofraenum
2	160	Pomacentrus partitus	44	91	Coryphopterus dicrus
3	159	Acanthurus coeruleus	45	91	Serranus tigrinus
4	158	Haemulon flavolineatum	46	90	Halichoeres garnoti
5	156	Sparisoma aurofrenatum	47	88	Holacanthus ciliaris
6	155	Acanthurus bahianus	48	84	Acanthurus chirurgus
7	155	Abudefduf saxatilis	49	81	Hypoplectrus unicolor
8	154	Pomacentrus planifrons	50	79	Epinephelus cruentatus
9	154	Ocyurus chrysurus	51	79	Lutjanus analis
10	153	Microspathodon chrysurus	52	76	Lachnolaimus maximus
11	153	Thalassoma bifasciatum	53	76	Scarus coeruleus
12	147	Scarus croicensis	54	75	Pomacentrus leucostictus
13	147	Halichoeres maculipinna	55	72	Lutjanus mahogoni
14	146	Halichoeres radiatus	56	68	Haemulon parra
15	146	Halichoeres bivittatus	57	66	Pseudupeneus maculatus
16	146	Haemulon sciurus	58	66	Sparisoma chrysopterum
17	145	Haemulon plumieri	59	63	Chaetodon ocellatus
18	142	Caranx ruber	60	63	Chaetodon capistratus
19	137	Pomacentrus diencaeus	61	58	Mycteroperca bonaci
20	132	Scarus vetula	62	56	Equetus acuminatus
21	129	Bodianus rufus	63	56	loglossus calliurus
22	127	Sparisoma rubripinne	64	55	Scarus guacamaia
23	125	Gobiosoma oceanops	65	54	Chaetodon sedentarius
24	124	Pomacentrus variabilis	66	53	Sparisoma radians
25	123	Haemulon carbonarium	67	53	Cantherhines pullus
26	122	Lutjanus griseus	68	51	Echeneis naucrates
27	121	Pempheris schomburgki	69	48	Hypoplectrus puella
28	120	Mulloidichthys martinicus	70	47	Chromis multilineata
29	120	Lutjanus apodus	71	47	Anisotremus surinamensis
30	119	Haemulon chrysargyreum	72	43	Hemipteronotus splendens
31	119	Haemulon macrostomum	73	39	Calamus calamus
32	112	Gnatholepis thompsoni	74	38	Tylosurus crocodilus
33	107	Canthigaster rostrata	75	36	Apogon maculatus
34	107	Anisotremus virginicus	76	35	Epinephelus striatus
35	106	Sphyraena barracuda	77	33	Lactophrys triqueter
36	104	Pomacanthus paru	78	32	Odontoscion dentex
37	101	Scarus coelestinus	79	31	Holacanthus tricolor
38	100	Scarus taeniopterus	80	26	Holacanthus bermudensis
39	100	Pomacanthus arcuatus	81	26	Priacanthus cruentatus
40	98	Haemulon aurolineatum	82	25	Lutjanus jocu
41	97	Aulostomus maculatus	83	25	Coryphopterus personatus
42	93	Kyphosus sectatrix	84	22	Hypoplectrus nigricans

Table 7. Rank order of species on intermediate reef sites by species time score (with 1981 data adjusted for effort) (cont.).

Relative Species Abundances Ranked by Species Scores

Intermediate Reef Sites

Rank	Score	Species	Rank	Score	Species
85	21	Scartella cristata	123	6	Lactophrys quadricornis
86	20	Jenkinsia lamprotaenia	124	6	Carcharhinus leucas
87	20	Gerres cinereus	125	5	Aetobatus narinari
88	19	Cryptotomus roseus	126	5	Serranus tabacarius
89	19	Acanthemblemaria sp. 2	127	5	Clepticus parrae
90	18	Halichoeres poeyi	128	5	Lutjanus cyanopterus
91	18	Lactophrys bicaudalis	129	4	Rypticus saponaceus
92	18	Scomberomorus regalis	130	4	Liopropoma rubre
93	17	Calamus bajonado	131	4	Malacanthus plumieri
94	17	Caranx bartholomaei	132	3	Apogon pseudomaculatus
95	16	Chaetodon striatus	133	3	Apogon lachneri
96	16	Acanthemblemaria chaplini	134	3	Apogon robinsi
97	14	Aluterus scriptus	135	3	Seriola dumerili
98	14	Diodon hystrix	136	3	Diplectrum formosum
99	13	Hypoplectrus gemma	137	3	Epinephelus morio
100	12	Hypoplectrus indigo	138	3	Gymnothorax moringa
101	12	Equetus lanceolatus	139	3	Hemiramphus brasiliensis
102	12	Opistognathus aurifrons	140	3	<i>Eucinostomus</i> sp.
103	12	Ophioblennius atlanticus	141	3	Lactophrys polygonia
104	12	Urolophus jamaicensis	142	3	Cantherhines macrocerus
105	11	Gymnothorax funebris	143	3	<i>Malacoctenus</i> sp. 1
106	11	Synodus intermedius	144	3	<i>Blenniidae</i> sp. 1
107	10	Muraena miliaris	145	3	Parablennius marmoreus
108	10	Microgobius carri	146	3	Acanthemblemaria sp. 4
109	10	Canthidermis sufflamen	147	3	Hemipteronotus novacula
110	9	Diodon holocanthus	148	2	Hemipteronotus martinicensis
111	9	Monacanthus tuckeri	149	2	Malacoctenus aurolineatus
112	9	Chromis scotti	150	2	Callionymus bairdi
113	8	Haemulon album	151	2	Atherinomorus stipes
114	8	Apogon binotatus	152	2	Inermia vittata
115	8	Malacoctenus triangulatus	153	2	Mycteroperca tigris
116	7	Holocentrus rufus	154	1	Epinephelus afer
117	7	Lutjanus synagris	155	1	Holocentrus adscensionis
118	6	Haemulon melanurum	156	1	Pempheris poeyi
119	6	Chromis cyanea	157	1	Emblemaria pandionis
120	6	Equetus punctatus	158	1	Hemiemblemaria simulus
121	6	Apogon townsendi	159	1	Calamus penna
122	6	Serranus baldwini	160	1	Dasyatis americana

Table 8. Rank order of species on inshore patch reef sites by species time score (with 1981 data adjusted for effort).

Relative Species Abundances Ranked by Species Scores

Inshore Patch Reef Sites

Rank	Score	Species	Rank	Score	Species
1	160	Haemulon plumieri	43	54	Pseudupeneus maculatus
2	158	Sparisoma viride	44	50	Canthigaster rostrata
3	151	Ocyurus chrysurus	45	49	Pomacentrus diencaeus
4	150	Thalassoma bifasciatum	46	48	Hypoplectrus gemma
5	149	Pomacentrus planifrons	47	46	Lutjanus apodus
6	145	Acanthurus coeruleus	48	45	Hypoplectrus puella
7	141	Haemulon flavolineatum	49	45	Mycteroperca bonaci
8	139	Sparisoma aurofrenatum	50	43	Lactophrys triqueter
9	133	Pomacentrus variabilis	51	38	Scarus guacamaia
10	133	Pomacentrus partitus	52	38	Chaetodon striatus
11	133	Pomacanthus arcuatus	53	36	Chaetodon sedentarius
12	132	Halichoeres bivittatus	54	33	Serranus tigrinus
13	131	Haemulon sciurus	55	33	Halichoeres garnoti
14	126	Lachnolaimus maximus	56	32	Scarus taeniopterus
15	124	Acanthurus bahianus	57	32	Acanthemblemaria sp. 2
16	120	Scarus croicensis	58	32	Calamus bajonado
17	119	Acanthurus chirurgus	59	31	Epinephelus striatus
18	118	Anisotremus virginicus	60	30	Caranx bartholomaei
19	111	Caranx ruber	61	29	Aulostomus maculatus
20	111	Sparisoma chrysopterum	62	29	Scartella cristata
21	110	Coryphopterus	63	28	loglossus calliurus
		glaucofraenum	64	27	Acanthemblemaria sp. 3
22	106	Abudefduf saxatilis	65	27	Halichoeres poeyi
23	105	Gnatholepis thompsoni	66	27	Epinephelus cruentatus
24	102	Gobiosoma oceanops	67	27	Lutjanus synagris
25	99	Holacanthus bermudensis	68	26	Urolophus jamaicensis
26	96	Scarus coeruleus	69	25	Pomacanthus paru
27	96	Scarus coelestinus	70	23	Gymnothorax moringa
28	92	Sparisoma radians	71	21	Coryphopterus personatus
29	92	Pomacentrus leucostictus	72	18	Hypoplectrus nigricans
30	91	Calamus calamus	73	18	Lutjanus analis
31	83	Halichoeres maculipinna	74	17	Canthidermis sufflamen
32	82	Hypoplectrus unicolor	75	16	Balistes vetula
33	79	Lutjanus griseus	76	16	<i>Malacoctenus</i> sp. 1
34	79	Sparisoma rubripinne	77	16	Acanthemblemaria chaplini
35	79	Coryphopterus dicrus	78	15	Haemulon carbonarium
36	78	Chaetodon capistratus	79	15	Apogon maculatus
37	74	Holacanthus ciliaris	80	15	Synodus intermedius
38	71	Halichoeres radiatus	81	14	Epinephelus morio
39	65	Equetus acuminatus	82	14	Gerres cinereus
40	62	Chaetodon ocellatus	83	13	Bodianus rufus
41	62	Sphyraena barracuda	84	13	Holocentrus rufus
42	56	Haemulon aurolineatum	85	13	Caranx crysos

Table 8. Rank order of species on inshore patch reef sites by species time score (with 1981 data adjusted for effort) (cont.).

Relative Species Abundances Ranked by Species Scores

Inshore Patch Reef Sites

Rank	Score	Species	Rank	Score	Species
86	13	Serranus baldwini	121	5	Scarus vetula
87	12	Echeneis naucrates	122	5	Kyphosus sectatrix
88	12	Haemulon melanurum	123	5	Haemulon sp. 1
89	12	Cryptotomus roseus	124	5	Harengula sp.
90	12	Aluterus scriptus	125	5	Gymnothorax funebris
91	11	Diodon hystrix	126	5	Hemiramphus brasiliensis
92	11	Gobiosoma macrodon	127	5	Tylosurus crocodilus
93	11	Gobiosoma grosvenori	128	5	Ginglymostoma cirratum
94	11	<i>Jenkinsia</i> sp.	129	4	Sphyrna tiburo
95	10	Anisotremus surinamenis	130	4	Epinephelus guttatus
96	10	Odontoscion dentex	131	4	Serranus tabacarius
97	10	Equetus punctatus	132	4	Callionymus bairdi
98	10	Malacoctenus triangulatus	133	4	Chaenopsis ocellata
99	10	Hemipteronotus splendens	134	4	Microgobius microlepis
100	10	Hemipteronotus	135	4	Nes longus
		martinicensis	136	4	Aluterus schoepfi
101	10	Hemiemblemaria simulus	137	3	Cantherhines pullus
102	10	Opistognathus aurifrons	138	3	Archosargus probatocephalus
103	9	Malacoctenus roseus	139	3	Platygillelus rubrocinctus
104	9	Chaetodipterus faber	140	3	Parablennius marmoreus
105	9	Hypoplectrus indigo	141	3	Hemipteronotus novacula
106	8	Harengula clupeola	142	3	Inermia vittata
107	8	Mulloidichthys martinicus	143	3	Haemulon macrostomum
108	8	Scomberomorus regalis	144	3	Chromis cyanea
109	8	Lactophrys polygonia	145	3	Microspathodon chrysurus
110	7	Diodon holocanthus	146	2	Gymnothorax vicinus
111	7	<i>Blenniidae</i> sp. 1	147	2	Opistognathus maxillosus
112	7	<i>Acanthemblemaria</i> sp. 4	148	2	Microgobius carri
113	7	Lutjanus mahogoni	149	2	Sphoeroides spengleri
114	7	Haemulon parra	150	2	Bothus sp. 1
115	7	Dasyatis americana	151	1	Diplectrum formosum
116	6	Haemulon chrysargyreum	152	1	Astrapogon stellatus
117	6	Holacanthus tricolor	153	1	Monacanthus tuckeri
118	6	Sardinella aurita	154	1	Mycteroperca venenosa
119	6	Scorpaena plumieri	155	1	Archosargus rhomboides
120	5	Lactophrys bicaudalis			

Table 9. Rank order of species on turtle grass and hardground sites by species time score (with 1981 data adjusted for effort).

Relative Species Abundances Ranked by Species Scores

Turtle Grass and Hardground Sites

Rank	Score	Species	Rank	Score	Species
1	128	Haemulon plumieri	43	13	Coryphopterus dicrus
2	112	Coryphopterus	44	13	Sparisoma viride
		glaucofraenum	45	13	Calamus bajonado
3	110	Diplectrum formosum	46	12	Lutjanus analis
4	108	Microgobius microlepis	47	12	Pomacanthus paru
5	93	Sparisoma chrysopterum	48	12	Microgobius carri
6	89	Gobiosoma macrodon	49	11	Opsanus beta
7	88	Gobiosoma grosvenori	50	11	Strongylura notata
8	86	Equetus acuminatus	51	11	Chaetodon capistratus
9	76	Pomacanthus arcuatus	52	11	Haemulon aurolineatum
10	69	Pomaoentrus variabilis	53	10	Archosargus rhomboides
11	67	Caranx crysos	54	10	Holacanthus bermudensis
12	65	Caranx ruber	55	10	Hippocampus erectus
13	51	Scarus croicensis	56	10	Lactophrys quadricornis
14	50	Lutjanus synagris	57	8	Balistes capriscus
15	46	Acanthurus chirurgus	58	8	Gobionellus saepepallens
16	46	Monacanthus ciliatus	59	8	Diodon holocanthus
17	45	Haemulon flavolineatum	60	8	Synodus intermedius
18	44	Haemulon sciurus	61	8	Lutjanus mahogoni
19	44	Anisotremus virginicus	62	7	<i>Eucinostomus</i> sp.
20	43	Sparisoma aurofrenatum	63	7	Chaetodon ocellatus
21	41	Lutjanus griseus	64	7	Abudefduf saxatilis
22	37	Lachnolaimus maximus	65	7	Sardinella aurita
23	36	Pomacentrus leucostictus	66	7	Hypleurochilus aequipinnis
24	34	<i>Paraclinus</i> sp. 1	67	7	Hemipteronotus splendens
25	33	Ocyurus chrysurus	68	6	Scartella cristata
26	32	Sphyraena barracuda	69	6	Haemulon sp. 1
27	30	Acanthurus bahianus	70	6	Gymnothorax moringa
28	30	Caranx bartholomaei	71	5	Atherinomorus stipes
29	29	Lagodon rhomboides	72	5	Echeneis naucrates
30	29	Halichoeres bivittatus	73	5	Haemulon sp. 2
31	28	Epinephelus morio	74	5	Malacoctenus sp. 1
32	28	Urolophus jamaicensis	75	5	Barbulifer sp.
33	26	Gerres cinereus	76	5	Scarus coeruleus
34	25	Nes longus	77	4	Gobiesox strumosum
35	20	Sphoeroides spengleri	78	4	Blenniidae sp. 1
36	19	Sparisoma radians	79	4	Blenniidae juv. sp.
37	18	Cryptotomus roseus	80	4	Bothus sp. 2
38	18	Calamus calamus	81	4	Haemulon melanurum
39	17	Astrapogon stellatus	82	4	<i>Eucinostomus</i> sp. 1
40	16	Holacanthus ciliaris	83	4	Chaetodon sedentarius
41	14	Opistognathus maxillosus	84	4	Chaetodipterus faber
42	14	Gobiosoma oceanops	85	4	Mycteroperca bonaci

Table 9. Rank order of species on turtle grass and hardground sites by species time score (with 1981 data adjusted for effort) (cont.).

Relative Species Abundances Ranked by Species Scores

Turtle Grass and Hardground Sites

Rank	Score	Species	Rank	Score	Species
86	4	Cosmocampus albirostris	98	2	Apogon maculatus
87	4	Hippocampus zosterae	99	2	Harengula clupeola
88	3	Epinephelus striatus	100	2	Equetus punctatus
89	3	Hypoplectrus unicolor	101	1	Pomacentrus partitus
90	3	Oligoplites saurus	102	1	Anisotremus surinamenis
91	3	Scarus taeniopterus	103	1	Ahlia egmontis
92	2	Thalassoma bifasciatum	104	1	<i>Jenkinsia</i> sp.
93	2	<i>Opistognathus</i> sp. 1	105	1	Bothus lunatus
94	2	Opistognathus whitehursti	106	1	Callionymus pauciradiatus
95	2	Chaenopsis ocellata	107	1	Hypleurochilus bermudensis
96	2	Gnatholepis thompsoni	108	1	Ginglymostoma cirratum
97	2	Scomberomorus regalis			

Table 10. Rank order of species for all sites surveyed by species time score (with 1981 data adjusted for effort).

Relative Species Abundances Ranked by Species Scores

Total for All Sites

Rank	Score	Species	Rank	Score	Species
1	567	Haemulon plumieri	43	259	Mulloidichthys martinicus
2	503	Haemulon flavolineatum	44	257	Serranus tigrinus
3	496	Ocyurus chrysurus	45	255	Haemulon chrysargyreum
4	495	Sparisoma aurofrenatum	46	254	Scarus coeruleus
5	483	Sparisoma viride	47	253	Aulostomus maculatus
6	472	Haemulon sciurus	48	249	Haemulon macrostomum
7	469	Acanthurus bahianus	49	242	Chaetodon ocellatus
8	465	Thalassoma bifasciatum	50	242	Sparisoma radians
9	460	Scarus croicensis	51	238	Scarus taeniopterus
10	459	Acanthurus coeruleus	52	234	Pomacentrus leucostictus
11	459	Pomacentrus planifrons	53	230	Equetus acuminatus
12	451	Pomacentrus partitus	54	222	Epinephelus cruentatus
13	423	Abudefduf saxatilis	55	221	Coryphopterus dicrus
14	415	Caranx ruber	56	220	Lutjanus mahogoni
15	412	Coryphopterus	57	213	Pomacanthus paru
		glaucofraenum	58	210	Kyphosus sectatrix
16	408	Halichoeres bivittatus	59	205	Pseudupeneus maculatus
17	394	Pomacentrus variabilis	60	186	Haemulon aurolineatum
18	389	Pomacanthus arcuatus	61	181	Calamus calamus
19	389	Sparisoma chrysopterum	62	173	Holacanthus tricolor
20	384	Anisotremus virginicus	63	156	Chromis cyanea
21	379	Halichoeres maculipinna	64	156	Lutjanus analis
22	365	Lutjanus griseus	65	156	Cantherhines pullus
23	339	Gnatholepis thompsoni	66	153	Chromis multilineata
24	330	Halichoeres radiatus	67	150	Holacanthus bermudensis
25	325	Pomacentrus diencaeus	68	147	Haemulon parra
26	323	Acanthurus chirurgus	69	147	Lactophrys triqueter
27	315	Lachnolaimus maximus	70	145	Hypoplectrus gemma
28	312	Gobiosoma oceanops	71	144	Mycteroperca bonaci
29	303	Microspathodon chrysurus	72	143	Scarus guacamaia
30	302	Sparisoma rubripinne	73	137	Odontoscion dentex
31	296	Scarus coelestinus	74	131	Chaetodon striatus
32	295	Canthigaster rostrata	75	127	Hypoplectrus puella
33	287	Chaetodon capistratus	76	127	Coryphopterus personatus
34	286	Hypoplectrus unicolor	77	125	Chaetodon sedentarius
35	286	Scarus vetula	78	120	Lutjanus synagris
36	284	Haemulon carbonarium	79	119	loglossus calliurus
37	280	Halichoeres garnoti	80	118	Hemipteronotus splendens
38	275	Sphyraena barracuda	81	118	Epinephelus striatus
39	270	Bodianus rutus	82	114	Diplectrum formosum
40	264	Lutjanus apodus	83	113	Anisotremus surinamenis
41	262	Holacanthus ciliaris	84	112	Echeneis naucrates
42	261	Pempheris schomburgki	85	112	Microgobius microlepis

Table 10. Rank order of species for all sites surveyed by species time score (with 1981 data adjusted for effort) (cont.).

Relative Species Abundances Ranked by Species Scores

Total for All Sites

Rank	Score	Species	Rank	Score	Species
86	101	Priacanthus cruentatus	129	33	Hypoplectrus indigo
87	100	Gobiosoma macrodon	130	32	Myripristis jacobus
88	99	Gobiosoma grosvenori	131	29	Lagodon rhomboides
89	87	Clepticus parrae	132	29	Haemulon melanurum
90	80	Caranx crysos	133	29	Nes longus
91	79	Urolophus ⁻ jamaicensis	134	27	Acanthemblemaria sp. 3
92	77	Caranx bartholomaei	135	27	Apogon townsendi
93	77	Hypoplectrus nigricans	136	26	Haemulon album
94	74	Aluterus scriptus	137	26	Amblycirrhitus pinos
95	70	Apogon maculatus	138	24	Equetus lanceolatus
96	70	Holocentrus vexillarius	139	24	Serranus tabacarius
97	69	Lutjanus jocu	140	24	<i>Malacoctenus</i> sp. 1
98	67	Scomberomorus regalis	141	23	Ophioblennius atlanticus
99	67	Opistognathus aurifrons	142	23	Jenkinsia lamprotaenia
100	65	Canthidermis sufflamen	143	22	Hemipteronotus novacula
101	65	Calamus bajonado	144	22	Sphoeroides spengleri
102	63	Holocentrus rufus	145	21	Balistes vetula
103	60	Gerres cinereus	146	21	Liopropoma rubre
104	56	Scartella cristata	147	21	Astrapogon stellatus
105	55	Lactophrys bicaudalis	148	20	Chaetodipterus faber
106	53	Synodus intermedius	149	20	Malacoctenus triangulatus
107	52	Acanthemblemaria sp. 2	150	18	Monacanthus tuckeri
108	50	Tylosurus crocodilus	151	16	Opistognathus maxillosus
109	49	Holocentrus adscensionis	152	16	Lactophrys quadricornis
110	49	Cryptotomus roseus	153	15	Callionymus bairdi
111	46	Monacanthus ciliatus	154	14	<i>Blenniidae</i> sp.
112	45	Halichoeres poeyi	155	14	Epinephelus guttatus
113	45	Epinephelus morio	156	13	Hypoplectrus aberrans
114	45	Serranus baldwini	157	13	<i>Jenkinsia</i> sp.
115	43	Chromis scotti	158	13	Sardinella aurita
116	43	Diodon hystrix	159	12	Hemipteronotus
117	42	Equetus punctatus			martinicensis
118	42	Malacanthus plumieri	160	12	Muraena miliaris
119	39	Microgobius carri	161	11	Priacanthus arenatus
120	35	Rypticus saponaceus	162	11	Archosargus rhomboides
121	34	Inermia vittata	163	11	<i>Haemulon</i> sp. 1
122	34	Gymnothorax moringa	164	11	Strongylura notata
123	34	<i>Paraclinus</i> sp. 1	165	11	Opsanus beta
124	34	Acanthemblemaria chaplini	166	11	Lactophrys polygonia
125	34	Diodon holocanthus	167	11	Dasyatis americana
126	33	Hemiemblemaria simulus	168	10	Acanthemblemaria sp. 4
127	33	Gymnothorax funebris	169	10	Harengula clupeola
128	33	Apogon binotatus			

Table 10. Rank order of species for all sites surveyed by species time score (with 1981 data adjusted for effort) (cont.).

Relative Species Abundances Ranked by Species Scores

Total for All Sites

Rank	Score	Species	Rank	Score	Species
170	10	Hippocampus erectus	200	4	Trachinotus falcatus
171	10	Atherinomorus stipes	201	4	Blenniidae juv. sp.
172	9	Malacoctenus roseus	202	4	Gobiesox strumosum
173	8	Balistes capriscus	203	4	Aluterus schoepfi
174	8	Gobionellus saepepallens	204	4	Bothus sp. 2
175	8	Hemiramphus brasiliensis	205	4	Sphyrna tiburo
176	7	Mycteroperca tigris	206	3	Archosargus probatocephalus
177	7	Hypoplectrus guttavarius	207	3	Platygillelus rubrocinctus
178	7	<i>Eucinostomus</i> sp. 2	208	3	Apogon robinsi
179	7	<i>Eucinostomus</i> sp. 1	209	3	Seriola dumerili
180	7	Chromis insolata	210	3	Oligoplites saurus
181	7	Hypleurochilus aequipinnis	211	3	Apogon pseudomaculatus
182	7	Coryphopterus lipernes	212	3	Apogon lachneri
183	6	Chaenopsis ocellata	213	2	Gymnothorax vicinus
184	6	Parablennius marmoreus	214	2	Bothus sp. 1
185	6	Lactophrys trigonus	215	2	<i>Opistognathus</i> sp. 1
186	6	Scorpaena plumieri	216	2	Opistognathus whitehursti
187	6	Cantherhines macrocerus	217	2	Malacoctenus aurolineatus
188	6	Aetobatus narinari	218	1	Emblemaria pandionis
189	6	Carcharhinus leucas	219	1	Callionymus pauciradiatus
190	6	Ginglymostoma cirratum	220	1	Hypleurochilus bermudensis
191	5	Megalops atlanticus	221	1	Bothus lunatus
192	5	<i>Barbulifer</i> sp.	222	1	Calamus penna
193	5	Lutjanus cyanopterus	223	1	Ahlia egmontis
194	5	<i>Haemulon</i> sp. 2	224	1	Epinephelus adscensionis
195	5	<i>Harengula</i> sp.	225	1	Hypoplectrus chlorurus
196	4	Cosmocampus albirostris	226	1	Epinephelus afer
197	4	Hippocampus zosterae	227	1	Mycteroperca venenosa
198	4	Centropomus undecimalis	228	1	Pempheris poeyi
199	4	Epinephelus itajara			

The maximum possible score for species listed in Table 6 was 160, attained only by *Thalassoma bifasciatum* and *Acanthurus bahianus*. Of the 155 species censused at the four offshore sites, the 43 that attained scores of 100 or greater are relatively widespread and easily seen due to their size, color, and/or behavior. Below this arbitrary cutoff, less ubiquitous, less colorful or more secretive species begin to appear. For example, apogonids are extremely numerous at these sites but hide in deep caves and crevices during the day and as a result did not receive substantial species scores. Conversely, *Holacanthus ciliaris* is relatively rare but colorful and widely distributed. This species attained a score of 84, compared to a score of only 12 for *Acanthemblemaria chaplini*, a more abundant but patchily distributed, cryptic species.

Species censused at intermediate reef sites are ranked in Table 7. Acanthurids, pomacentrids, labrids, haemulids, and lutjanids dominate these rankings as they did those from offshore reefs, although several species such as *Caranx ruber*, *Pomacentrus variabilis* and *Gobiosoma oceanops* attained considerably higher ranks at intermediate compared to offshore sites.

The same families that dominated offshore and intermediate sites in terms of species scores also topped the rankings at inshore patch reefs (Table 8). However, the proportion of the 156 species recorded at inshore patch reefs which received high scores relative to the maximum possible score of 120 was less than in the preceding two habitat categories. Smaller, more cryptic species, such as members of the genus *Acanthemblemaria*, attained relatively higher ranks on inshore patch reefs. This may have been due to divers requiring less time to record the readily visible species (which were less numerous than those that dominated rankings in Tables 6 and 7). As a result, divers may have allocated more time earlier in each dive to searching for cryptic, secretive species, producing higher scores for these species. Other species, such as *Scartella cristata* and *Microgobius microlepis*, made their first appearance at inshore patch reefs.

Divers were able to spend virtually the entire time of the STT counts searching carefully for cryptic, small or rare species at turtle grass/hardground sites due to the general lack of abundance of readily visible species. The maximum possible score for these six sites was 240, yet the highest score attained in Table 9 was only 128 (*Haemulon plumieri*). Thus no species was particularly dominant at these sites, and families that were relatively rare elsewhere attained much higher rankings. For example, four of the first ten species listed in Table 9 are gobiids. A number of species and families were unique to these habitats, including several gobies, clinids, *Callionymus pauciradiatus*, and the families Batrachoididae (*Opsanus beta*), Gobiesocidae (*Gobiesox strumosus*), Ophichthidae (*Ahlia egmontis*), and *Cosmocampus albirostris*, *Hippocampus erectus*, and *Hippocampus zosterae* of family Syngnathidae.

12.4.4. Between-Community Comparisons

In addition to computation of Shannon-Weaver diversity indicies (H') and equitability of distribution (J') for each site, different sites were compared using one-way ANOVA with multiple comparisons (Duncan's Multiple Range Test) and also by community ordination. ANOVA-DMRT on all sites combined was not possible due to presence of excessive heteroscedasticity (p < 0.05 for Cochran's C, p < 0.001 for Bartlett-Box F). This violation of the assumptions underlying ANOVA was eliminated or mitigated by doing one-way ANOVA separately on each of the four major categories of habitat. Tables 11 through 18 give the results of ANOVA-DMRT for mean species and mean scores for offshore reefs, intermediate reefs, inshore patch reefs, and turtle grass/hardground sites respectively. Tables 11, 13, 15, and 17, ANOVA-DMRT of mean numbers of species per site, are of primary interest. The ecological significance and statistical validity of utilizing species scores from the STT for ANOVA-DMRT are suspect. Thus, Tables 12, 14, 16, and 18 are included to fulfill the contract and to

		ANOVA		
Source of Variation	on df	SS	MS	F *
Between groups Within groups Total	3 28 31	2.2796 4.5478 6.8275	0.7599 0.1624	4.678
(* P < 0.01)				
		DMRT		
Site No.	Name	Mean Score		Square Root of Mean Score
8 7 1 3	Carysfort Reef The Elbow Molasses Reef French Reef	69.6 73.3 75.5 82.5		8.34 8.55 8.68 9.07

Table 11. ANOVA-DMRT of mean species on offshore reefs. Sites grouped by bars show no significant differences among means; all others show significant difference at α = 0.05.

Table 12. ANOVA-DMRT of mean species scores on offshore reefs. Sites grouped by bars show no significant differences among means; all others show significant difference at $\alpha = 0.05$.

		ANOVA		
Source of Variati	on df	SS	MS	F*
Between groups Within groups Total	3 28 31	12.7097 19.2670 31.9767	4.2366 0.6881	6.157
(* P < 0.01)				
		DMRT		
Site No.	Name	Mean Score	S	Square Root of Mean Score
8 7 1 3	Carysfort Reef The Elbow Molasses Reef Erench Reef	272 301 298 334		8.34 8.55 8.68
5		551		0.01

Table 13.	ANOVA-DMRT	of mean r	number of	species	on interm	nediate	reefs.	Sites	grouped	l by
bars show	no significant	differences	s among r	means; all	others sh	now sign	ificant	differe	ence at	α =
0.05.										

		ANOVA		
Source of Variation	on df	SS	MS	F *
Between groups Within groups Total	3 28 31	0.2045 4.1107 4.3152	0.0682 0.1468	0.464
(* P < 0.10)				
		DMRT		
Site No.	Name	Mean Score	S	Square Root of Mean Score
5	Grecian Rocks (1980)	65.8		8.09
18	Grecian Rocks (1981)	66.1		8.13
6	Key Largo Dry Rocks	67.9		8.24
2	White Bank Dry Rocks	68.8		8.29

Table 14. ANOVA-DMRT of mean species scores on intermediate reefs. Sites grouped by bars show no significant differences among means; all others show significant difference at $\alpha = 0.05$.

		ANOVA		
Source of Variat	ion df	SS	MS	F *
Between groups Within groups Total	3 28 31	0.4553 16.3641 16.8195	0.1518 0.5844	0.260
(* P > 0.10)				
		DMRT		
Site No.	Name	Mean Score	:	Square Root of Mean Score
5	Grecian Rocks (1980)	267		16.30
18	Grecian Rocks (1981)	260		16.11
6	Key Largo Dry Rocks	256		16.00
2	White Bank Dry Rocks	264		16.25

Table 15.	ANOVA-DMRT	of mean nu	imber of	f species o	on inshor	e patch	reefs.	Sites	grouped	d by
bars show	no significant	differences	among	means; all	others s	how sigr	nificant	differe	ence at	$\alpha =$
0.05.										

		ANOVA		
Source of Variati	on df	SS	MS	F *
Between groups Within groups Total	3 28 31	0.0078 0.0404 0.0482	0.0026 0.0014	1.798
(* P > 0.10)				
		DMRT		
Site No.	Name	Mean Score	:	Square Root of Mean Score
9 4 10 17	Basin Hill Shoals Mosquito Bank Turtle Rocks Angelfish Creek	46.3 46.6 46.8 50.8		1.67 1.68 1.68 1.71

Table 16. ANOVA-DMRT of mean species scores on inshore patch reefs. Sites grouped by bars show no significant differences among means; all others show significant difference at $\alpha = 0.05$.

		ANOVA			
Source of Varia	tion df	SS	MS	F *	
Between groups Within groups Total (* P > 0.10)	3 28 31	0.0076 0.0347 0.0423	0.0025 0.0012	2.037	
(DMRT			
Site No.	Name	Mean Scores	Log	Base 10 of Mean	Scores
9 4 10 17	Basin Hill Shoals Mosquito Bank Turtle Rocks Angelfish Creek	194 184 190 204		2.29 2.27 2.28 2.30	

		ANOVA		
Source of Varia	tion df	SS	MS	F *
Between groups Within groups Total	5 42 47	1.7346 0.6678 2.4024	0.3469 0.0159	21.818
(* P < 0.001)				
		DMRT		
Site No.	Name	Mean Score	L	og Base 10 of Mean Score
11 12 15 16 13 14	Ocean Reef Turtle Harbor Rock Harbor Point Elizabeth North Channel South Channel	5.8 9.0 12.1 12.9 19.9 23.5		0.81 0.99 1.09 1.13 1.30 1.39

Table 17. ANOVA-DMRT of mean number of species on turtle grass/hardground sites. Sites grouped by bars show no significant differences among means; all others show significant difference at α = 0.05.

Table 18. ANOVA-DMRT of mean species scores on turtle grass/hardground sites. Sites grouped by bars show no significant differences among means; all others show significant difference at $\alpha = 0.05$.

		ANOVA			
Source of Variation	on df	SS	MS	F *	
Between groups Within groups Total	5 42 47	1.7346 0.7882 3.1220	0.4668 0.0188	24.870	
(^ P < 0.001)					
		DMINT	••••••		•••
Site No.	Name	Mean Scores	Lo	g Base 10 of Mean Score	S
11	Ocean Reef	18		1.25	
12	Turtle Harbor	34		1.55	
15	Rock Harbor	45		1.63	
16	Point Elizabeth	51		1.71	
13	North Channel	75		1.84	
14	South Channel	84		1.93	

provide a comparison between groupings produced from number of species and from species scores.

Square root transformation of both mean number of species and mean species scores achieved homogeneity of variances for offshore reefs (p > 0.05 for both Cochran's C and Bartlett-Box F). The results of one-way ANOVA show a significant difference (p < 0.01) between one or more of the four offshore reefs on the basis of both mean species (Table 11) and mean scores (Table 12). Duncan's Multiple Range Test (DMRT) grouped reefs on the basis of no significant difference between means at p < 0.05 according to mean species (Table 11) and mean scores (Table 12).

Carysfort Reef, the Elbow, and Molasses Reef comprised one group and Molasses and French reefs another by the mean species criterion. ANOVA-DMRT of mean scores separated French Reef from the other three sites.

Jones and Thompson (1978) grouped Molasses and French reefs and separated Carysfort Reef from these two by both mean species and mean scores using ANOVA-DMRT. Both studies, in addition to distinguishing Carysfort from the other two, recorded higher mean species at French Reef than any other study site. This result is consistent with our observation of the reef structure at this site. French Reef shares most of the basic physical attributes (back-reef, rubble zone, and approximate spur and groove fore-reef structure) with Molasses and Carysfort reefs. It has a much more extensive network of tunnels and caves (such as under huge *M. annularis* heads) than either of the other sites. While Carysfort Reef has an extensive *A. palmata* crest, *A. cervicornis* thickets, and steep drop-off, it was our impression that the cave system and extension of major scleractinian heads further seaward on French Reef were more amenable to increased numbers of species than the unique features of Carysfort Reef. This contention was supported by some exceptionally high individual STT counts at French Reef not obtained in any other area (over 100 species in several instances, including one count of 109 species).

Tables 13 and 14 indicate that intermediate reefs were indistinguishable on the basis of both mean species and mean scores. Square root transforms of both species and scores reduced but did not eliminate heteroscedasticity problems (p = 0.01 and 0.005 for Cochran's C and Bartlett-Box F respectively). Scheffé (1959), however, demonstrated that one-way ANOVA is fairly robust with a small number of groups and equal sample sizes. Furthermore, the confidence intervals around each mean overlap one another. Thus, we believe that there is no significant difference between intermediate reef sites by either the mean species or mean scores criterion. Intermediate reefs were less diverse than offshore reefs.

Tables 15 and 16 indicate a lack of significant differences between inshore patch reef sites by either the mean species or mean scores criterion. Common logarithmic transform (base 10) of both kinds of data achieved homogeneity of variance (p > 0.05 for both Cochran's C and Bartlett-Box F). While inshore patch reefs were indistinguishable from offshore reefs in terms of number of species, as were intermediate reefs, they were less diverse as a group than either intermediate or offshore reefs.

Logarithmic transformation of data on both number of species and species scores successfully eliminated hateroscedasticity (p > 0.05 for both Cochran's C and Bartlett-Box F) among the inshore sites. Tables 17 and 18 group turtle grass/hardground sites similarly based on mean species and mean scores. Ocean Reef, which is predominantly turtle grass, is significantly different from all other sites in this category. The mean species criterion groups Turtle Harbor and Rock Harbor, the two other turtle grass sites (Table 1), and North and South Channels, the two turtle grass/hardground sites. Point Elizabeth, a site consisting of part turtle grass and part hardground, is grouped with Rock Harbor.

Bottom habitat appears to be a stronger influence on number of species at given sites than does boat traffic. Ocean Reef and North Channel experience similar levels of boat traffic, yet have significantly different numbers of species (Tables 1 and 17). Similarly, while intensity of boat traffic at Rock Harbor and South Channel is comparable, number of species is significantly less at the former site. Sites with hardground tended generally to harbor more species than sites with only turtle grass habitat.

Hardground habitats contained a number of different features amenable to habitation by fishes that were not found in turtle grass, including small head corals, various sponges, patches of octocorals, and small ledges of bedrock. In addition to greater proportions of hardground, North and South Channel each feature a navigation marker around which various fish species congregate. South Channel had the highest mean number of species of this group, due at least in part to fish inhabiting a large pile of discarded batteries around the marker at the mouth of the channel.

Most user impacts, including recreational diving, hook and line fishing, and boat traffic, do not appear to affect species diversity at sites where activity levels are high relative to sites where user activity is lower.

The DMRT analysis indicated that the habitat at a given site has the largest influence on fish species diversity. In terms of Equation 1, α_i appears to be a stronger Influence than ϵ_{ij} on Y_{ij} . It is evident that Jones and Thompson (1978) also believed this to be the case in their study, because they explained their DMRT in terms of structural similarities between study areas. Species diversity was highly related to structural complexity and location of the study site. Thus, offshore reefs were the most diverse and near-shore turtle grass sites the least. Species diversity at study sites was generally inversely related to distance from offshore reefs. French Reef had higher fish diversity than any other site.

Two between-site analyses have been presented thus far: (1) Shannon-Weaver diversity functions - evenness of distribution indices (Table 5) and (2) ANOVA-DMRT (Tables 11 - 18). Jones and Thompson (1978) point out a potential weakness in both approaches. Although mean number of species may be statistically the same for two or more sites, they may be comprised of completely different species. Neither approach considers degree of overlap in species between sites. For this reason we compared sites using the ordination procedure of Beals (1960), based on the Bray and Curtis (1957) Index, in order to complement the other two analytical approaches.

The Bray and Curtis Index (C) was computed for each of the 153 possible pairwise combinations of the 18 sites (17 different sites, site 18 being the 1981 Grecian Rocks replicate). These similarity coefficients were placed below and to the left of the blank diagonal elements of a matrix of similarity and dissimilarity coefficients between pairs of sites (Table 17). Dissimilarity coefficients, computed as the maximum value of the similarity coefficient minus the observed value for each pair of sites, were placed above and to the right of the blank diagonal elements of the matrix. The maximum theoretical value of the similarity coefficient was 1.00. Both Beals (1960) and Jones and Thompson (1978) used maximum values less than 1.00. We saw no reason to lower the dissimilarity coefficient values and therefore used a maximum value of 1.00.

Table 19 shows high similarity of fish communities between similar habitats. Similarity coefficient values are generally proportional to structural similarity and location of sites. For example, values of the similarity coefficient were 0.892 for French and Molasses reefs, 0.888 for the Elbow and Molasses Reef, 0.846 for Carysfort and Molasses reefs, 0.844 between

Dissimilarity									
Site/ Similarity	1	2	3	4	5	6	7	8	9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	+ 0.82 0.89 0.60 0.80 0.81 0.89 0.85 0.64 0.71 0.16 0.18 0.45 0.35 0.28 0.26 0.65 0.83	0.18 + 0.77 0.69 0.78 0.82 0.82 0.80 0.66 0.77 0.19 0.50 0.39 0.34 0.22 0.69 0.85	0.11 0.23 + 0.59 0.77 0.81 0.87 0.84 0.61 0.71 0.14 0.17 0.44 0.34 0.29 0.26 0.64 0.79	0.40 0.31 0.41 + 0.60 0.60 0.61 0.62 0.72 0.69 0.22 0.24 0.61 0.57 0.41 0.64 0.67	0.20 0.21 0.23 0.40 + 0.79 0.79 0.78 0.62 0.76 0.16 0.17 0.51 0.37 0.35 0.29 0.64 0.84	0.19 0.19 0.40 0.21 + 0.83 0.80 0.64 0.70 0.18 0.19 0.48 0.37 0.33 0.29 0.64 0.83	0.11 0.18 0.39 0.21 0.18 + 0.86 0.62 0.73 0.15 0.20 0.45 0.34 0.29 0.28 0.67 0.83	0.15 0.20 0.16 0.39 0.22 0.20 0.14 + 0.60 0.71 0.15 0.18 0.43 0.32 0.29 0.26 0.65 0.82	$\begin{array}{c} 0.36\\ 0.34\\ 0.39\\ 0.28\\ 0.38\\ 0.36\\ 0.38\\ 0.40\\ +\\ 0.69\\ 0.27\\ 0.21\\ 0.59\\ 0.51\\ 0.39\\ 0.36\\ 0.65\\ 0.65\\ 0.65\end{array}$
Site/ Similarity	10	11	12	13	14	15	16	17	18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.29 0.23 0.29 0.31 0.24 0.30 0.27 0.29 0.31 + 0.22 0.19 0.55 0.44 0.35 0.34 0.70 0.77	0.84 0.81 0.85 0.78 0.84 0.82 0.85 0.85 0.73 0.73 0.78 + 0.41 0.36 0.39 0.47 0.48 0.19 0.17	0.82 0.81 0.83 0.76 0.83 0.81 0.80 0.82 0.79 0.81 0.59 + 0.30 0.33 0.34 0.43 0.21 0.16	0.55 0.50 0.56 0.39 0.49 0.52 0.55 0.57 0.41 0.45 0.64 0.70 + 0.65 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.64 0.70 + 0.65 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.64 0.70 + 0.65 0.55 0.55 0.55 0.55 0.55 0.55 0.64 0.70 + 0.65 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.64 0.70 + 0.65 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.52 0.48	0.65 0.62 0.63 0.63 0.63 0.63 0.63 0.68 0.49 0.56 0.60 0.67 0.35 + 0.54 0.60 0.44 0.63	0.72 0.66 0.71 0.59 0.65 0.67 0.71 0.71 0.61 0.65 0.46 0.45 0.46 + 0.51 0.35 0.34	0.74 0.72 0.74 0.59 0.71 0.72 0.74 0.64 0.66 0.52 0.57 0.45 0.40 0.49 + 0.33 0.28	0.35 0.31 0.36 0.36 0.36 0.35 0.35 0.35 0.35 0.30 0.81 0.79 0.48 0.56 0.65 0.67 + 0.70	0.17 0.15 0.22 0.33 0.15 0.17 0.17 0.18 0.35 0.23 0.83 0.83 0.84 0.52 0.62 0.66 0.72 0.30 +

Table 19. Similarity and dissimilarity coefficients based on the Bray and Curtis Index.

Carysfort and French reefs, 0.869 between the Elbow and French Reef, and so on. Similarity coefficients were not as high between less diverse habitats, but were still generally proportional to the similarity between the pair of sites. This low diversity, low similarity relationship may be due largely to the lower effectiveness of the STT in lower-diversity habitats for enumerating the species in a given area. A large proportion of the species at turtle grass sites, for example, were cryptic. Observations of many of these species during counts were chance sightings as an individual fish made a fast move or otherwise exposed itself from the cover of the turtle grass. This was the case for most gobiids, clinids, *Opsanus beta*, and syngnathids.

Two other factors contributing to lower similarities among less diverse sites were (1) the influence of random encounters with transient, non-resident species passing through the area (carangids, lutjanids, and haemulids) and (2) chance encounters with isolated structures, such as abandoned lobster traps or other artificial habitats, in otherwise monotonous environments. During the Rock Harbor census, divers found two 55-gallon steel drums and two abandoned lobster traps during the course of eight counts at this turtle grass site. No such oasis for fish fauna were found at Ocean Reef, and only one lobster trap was found at Turtle Harbor. Because juvenile pomacanthids, haemulids, carangids, lutjanids, and other fishes tended to congregate around these structures, the sites containing them were made more diverse for reasons beyond natural habitat. We contend, for example, that if we had found such structures at Ocean Reef, species numbers and scores here would likely have been more similar to other turtle grass sites. North and South channels were less similar to Point Elizabeth because a number of species were added due to the presence of a navigation marker at those two sites around which fish congregated. Also, species composition at South Channel was influenced considerably by a pile of discarded batteries (not present at North Channel or Point Elizabeth).

In general, less diverse sites were less similar than those with higher diversity because of the relatively larger influence of three factors on species composition in the less diverse areas: uneven distribution of rare, species-rich habitats, chance encounters with isolated groups of transient species, and the relative inefficiency of the STT for censusing cryptic species. An alternative sampling method should be used to replace or complement visual census techniques in future surveys at turtle grass/hardground sites. Small-mesh fish traps or isolated rotenone stations might serve this purpose. Otter trawls would effectively sample those areas, but might be too destructive for use in an underwater preserve.

Grecian Rocks had a similarity coefficient of 0.845 between years, indicating a high consistency in sampling by the STT. A number of offshore reef pairs had slightly higher similarity coefficients than did Grecian Rocks between years. However, the absolute differences between 0.845 and those values is probably negligible.

Figure 2 is the result of applying the community ordination procedure devised by Beals (1960) on the basis of the Bray and Curtis Index. Distance between communities on the two dimensional plot is proportional to dissimilarity between communities. The numbers near each point correspond to the 18 study site numbers. Study sites are positioned approximately by major habitat type, with less distance between higher-diversity locations than those with fewer species. The plot generally reflects the previously discussed lack of similarity between low-diversity sites. For example, the turtle grass sites (11, 12, and 15) are well separated from other habitat types but considerable dissimilarity is evident between the three. As discussed previously, this is probably an artifact of the sampling procedure.

Figure 2. Two-dimensional ordination of communities based on the Bray and Curtis Index. Numbers correspond to study sites 1 through 17, with number 18 corresponding to the second (1981) census of Grecian Rocks. Numbers are enclosed by a symbol corresponding to classification of the site into one of the four major habitat types: O = offshore reef; Δ = intermediate reef; ∇ = inshore patch reef; \Box = turtle grass/hardground.

12.4.5. Comments on the STT

Jones and Thompson (1978) label the STT a "random" count. However, it is not random, because the divers choose their course throughout the 50-minute counting period. We also noted that the course chosen had a large influence on which species received higher scores. For example, whether or not a count began on the back-reef or the fore-reef slope largely affected the scores assigned to the species more common to one or the other habitat. We attempted to resolve this problem by starting counts at different reef zones as equitably as possible.

Another non-random influence on individual counts is the technique used by the diver to count species. One can either swim over various habitats and zones and record species as they present themselves, or attempt to maximize time usage by developing specific search images and swimming to habitats or reef zones actively searching for species groups that have not yet been recorded. We felt that the latter approach consistently yielded higher counts than the former. This approach is relatively more demanding of diver knowledge of the systematics and life history of the fish fauna of an area, because of the increased degree of freedom of action during the STT compared to more restricted techniques such as transects.

The STT is an effective tool for rapidly enumerating species and drawing limited general conclusions about differences in species diversity between high diversity fish communities associated with coral reefs. The technique is not environmentally destructive. The technique is not as effective in low diversity environments such as turtle grass, nor is it effective for cryptic species. Also, ranking of species according to STT scores does not provide an accurate quantification of fish community structure.

We recommend that NOAA complement the STT fish survey in future monitoring studies with a more truly random and more quantitative technique in order to accurately quantify reef fish community structure at the different study sites. Species diversity at different sites is not as important as accurate quantification of the relative abundance of different species and how this relative abundance of species dominance varies over time and with user impact. We refer NOAA to a study nearing completion by James A. Bohnsack of the Cooperative Institute for Marine and Atmospheric Studies, 4600 Rickenbacker Causeway, Miami, FL 33149 (who recently accepted a position as Fishery Biologist in charge of reef fish research, National Marine Fisheries Service, Southeast Fisheries Center, Miami Laboratory). He has used a technique developed and tested by Bohnsack and Bannerot (1983) to quantify reef fish community structure using a random visual approach to study the effects of predator removal by spearfishing in several non-spearfished reefs in the Key Largo National Marine Sanctuary, Looe Key National Marine Sanctuary, and Carrie Bow Cay, Belize. We feel strongly that this technique or one similar to it would provide NOAA with data more relevant to management of the fish fauna of John Pennekamp Coral Reef State Park and Key Largo National Marine Sanctuary than techniques that sample only species diversity.

12.5. Literature Cited

Alevizon, W. S., and M. G. Brooks. 1975. The comparative structure of two western Atlantic reef-fish assemblages. <u>Bull. Mar. Sci.</u>, 25:482-490.

- Beals, E. 1960. Forest bird communities in the Apostle Islands of Wisconsin. <u>Wilson Bull.</u>, 72:156-181.
- Boardman, T. J., and D. R. Moffit. 1971. Graphical Monte Carlo type error I rates for multiple comparison procedures. <u>Biometrics</u>, 27:738-744.

- Bohnsack, J. A. 1979. The ecology of reef fishes on isolated coral heads: An experimental approach with emphasis on island biogeographic theory. Doctoral Dissertation, University of Miami, Coral Gables, FL. 270 pp.
- Bohnsack, J. A., and S. P. Bannerot. 1983. A random point technique for visually assessing coral reef fishes. In Barans, C.A. and S.A. Bortone (eds). The visual assessment of fish populations in the southeastern United States: 1982 Workshop Sea Grant Publication SC-SG-TR-01-83.
- Bohnsack, J. A., and S. P. Bannerot. (1986). A stationary visual technique for quantitatively assessing community structure of coral reef fishes. NOAA Tech. Rep. NMFS 41. NOAA/NMFS/SEFSC, Miami, FL. 15 pp.
- Bray, J. R., and J. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. <u>Ecol. Monog</u>., 27:325-349.
- Brock, V. 1954. A preliminary report on a method of estimating reef fish populations. <u>J. Wildl.</u> <u>Mgmt.</u>, 18:297-308
- Carmer, S. G., and M. R. Swanson. 1973. An evaluation of ten pairwise multiple comparison procedures by Monte Carlo methods. J. Amer. Statist. Assoc., 68:66-74.
- Chave, E. H., and D. B. Eckert. 1974. Ecological aspects of the distributions of fishes at Fanning Island. <u>Pacif. Sci.</u>, 28:297-317.
- DeMartini, E. E., and D. Roberts. 1982. An empirical test of biases in the rapid visual technique for species-time censuses of reef fish assemblages. <u>Mar. Biol.</u>, 70:129-134.

Dunnet, C. W. 1970. Multiple comparison tests. Biometrics, 26:139-141.

- Ebeling, A. W., Jr., R. Larson, W. S. Alevizon, and F. DeWitt, Jr. 1971. Fishes of the Santa Barbara kelp forest. Abstr. Coastal Shallow Water Res. Conf., No. 3:61.
- Eisenhart, C. 1947. The assumptions underlying the analysis of variance. <u>Biometrics</u>, 3:1-21.
- Emery, A. R. 1973. Comparative ecology and functional osteology of fourteen species of damselfish (Pisces: Pomacentridae) at Alligator Reef, Florida Keys. <u>Bull. Mar. Sci.</u>, 23:649-770.
- Federer, W. T. 1955. Experimental Design. The MacMillan Company, New York, NY. 591 pp.
- Gaufin, A. R., E. K. Harris, and H. J. Walter. 1956. A statistical evaluation of stream bottom sampling data obtained from three standard samplers. <u>Ecology</u>, 37:643-648.
- Goreau, T. F. 1959. The ecology of Jamaican coral reefs 1. Species composition and zonation. <u>Ecology</u>, 40:67-90.
- Harter, H. L. 1957. Error rates and sample sizes for range tests in multiple comparisons. <u>Biometrics</u>, 13:511-536.

- Harter, H. L. 1970. Order Statistics and Their Use in Testing and Estimation, Vol. 1. Tests Based on Range and Studentized Range of Samples from a Normal Population. U.S. Government Printing Office, Washington, D.C. 761 pp.
- Hobson, E. S. 1974. Feeding relationships of teleostean fishes on coral reefs in Kona, Hawaii. <u>Fish. Bull.</u>, 72:915-1031.
- Hoffmeister, J. E. 1974. Land From The Sea: The Geologic Story of South Florida. Univ. of Miami Press, Coral Gables, FL. 143 pp.
- Itzkowitz, M. 1974. A behavioural reconnaissance of some Jamaican reef fishes. <u>Zool. J. Linn.</u> <u>Soc.</u>, 55:87-118.
- Jones, R. S., and J. A. Chase. 1975. Community structure and distribution of fishes in an enclosed high island lagoon in Guam. <u>Micronesica</u>, 11:127-148.
- Jones, R. S., and M. J. Thompson. 1978. Comparison of Florida reef fish assemblages using a rapid visual technique. <u>Bull. Mar. Sci.</u>, 28(1):159-172.
- Key, G. S. 1973. Reef fishes in Kaneohe Bay, Hawaii. Pages 51-66 in S.V. Smith, K.E. Chavet and D.T.O. Kam, eds. Atlas of Kaneohe Bay: A reef ecosystem under stress. Univ. of Hawaii Sea Grant Tech. Rept. 128 pp.
- Kleinbaum, D. G., and L. L. Kupper. 1978. Applied Regression Analysis and Other Multivariable Methods. Duxbury Press, North Scituate, MA. 556 pp.
- Longley, W. H. and S. F. Hildebrand. 1941. Systematic catalogue of the fishes of Tortugas, Florida with observations on color, habits and local distributions. <u>Pap. Tortugas Lab.</u>, 34.
- McCain, J. C., and J. M. Peck, Jr. 1973. The effects of a Hawaiian power plant on the distribution and abundance of reef fishes. Sea Grant Advisory Report UNIHI-SEAGRANT AR-73-03. 11 pp.
- Oosting, H. J. 1956. Plant Communities. W. H. Freeman and Co., San Francisco. 40 pp.
- Pielou, E. C. 1966. The measurement of diversity in different types of biological collections. <u>J.</u> <u>Theoret. Biol.</u>, 13:131-144.
- Randall, J. E. 1963. An analysis of the fish populations of artificial and natural reefs in the Virgin Islands. <u>Carib. J. Sci.</u>, 3:1-16.
- Risk, M. J. 1972. Fish diversity on a coral reef in the Virgin Islands. Atoll Res. Bull., 193:1-6.
- Robertson, D. R., and G. R. Allen. 1981. *Stegastes mellis* (Emery et Burgess, 1974) le juvenile de la demoiselle caraibe *Stegastes diencaeus* (Jordan et Rutter, 1898). <u>Res. fr. Aquariol.</u>, 7(4):109-112.
- Robins, C. R., R. M. Bailey, C. E. Bond, J. R. Brocker, E. A. Lachner, R. N. Lea, and W. B. Scott. 1980. A List of Common and Scientific Names of Fishes from the United States and Canada. Amer. Fish. Soc. Spec. Publ. No. 12. 174 pp.

- Sanderson, S.L. and A.C. Solonsky. 1980. A comparison of two visual survey techniques for fish populations. <u>Pacif. Sci.</u>, 34(3):337.
- Scheffé, H. A. 1959. The Analysis of Variance. John Wiley and Sons, New York, NY.
- Shinn, E. A. 1963. Spur and groove formation on the Florida reef tract. <u>J. Sed. Pal.</u>, 33:291-303.
- Smith, C. L. 1973. Small rotenone stations: A tool for studying coral reef fish communities. <u>Am. Mus. Novit.</u>, 2412:1-21.
- Smith, C. L., and J. C. Tyler. 1973a. Direct observations of resource sharing in coral reef fish. <u>Helgalender wiss. Meersunters.</u>, 24:264-273.
- Smith, C. L., and J. C. Tyler. 1973b. Population ecology of a Bahamian suprabenthic shore fish assemblage. <u>Am. Mus. Novit.</u>, 2528:1-38.
- Smith, F. G. W. 1971. Atlantic Reef Corals. Univ. of Miami Press, Coral Gables, FL. 112 pp.
- Sokal, R. R., and F. J. Rohlf. 1981. Biometry: The Principles and Practice of Statistics in Biological Research. W.H. Freeman and Co., San Francisco, CA. 859 pp.
- Starck, W. A. 1968. A list of fishes of Alligator Reef, Florida with comments on the nature of the Florida reef fish fauna. <u>Undersea Biol.</u>, 1:4-40.
- Steel, R. G. D., and J. H. Torrie. 1960. Principles and Procedures in Statistics. McGraw-Hill, New York, NY. 281 pp.
- Talbot, F. H., and B. Goldman. 1973. A preliminary report on the diversity and feeding relationships of reef fishes of One Tree Island, Great Barrier Reef System. Pages 425-442 in Symposium on corals and coral reefs. Mandoporan Camp India. Mar. Biol. Assoc. India. 591 pp.
- Thompson, M. J., and T. W. Schmidt. 1977. Validation of the species/time random count technique sampling fish assemblages at Dry Tortugas. <u>In</u> Proc., Third International Coral Reef Symposium, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL.
- Voss, G. L. 1983. An environmental assessment of the Key Largo National Marine Sanctuary. Draft final report, NOAA Contract No. NA-79-SAC-00813.
- Wass, R. C. 1967. Removal and repopulation of fishes on an isolated patch coral reef in Kaneohe Bay, Oahu, Hawaii. Master's Thesis, Univ. of Hawaii.

Zar, J. H. 1974. Biostatistical Analysis. Prentice-Hall, Inc., Englewood Cliffs, NJ. 620 pp.