Figure 3-57A RUNMYY OPERAT IONS RATE
0 TO 35 OPERATI ONS PER HOIIR


FIGRE $3-5 \pi$ R RUNMY OPERATI ONS RATE 56 to 75 OPERATI ONS PER HORR


FIGURE 3-S7B RUNAY OPERATI ONS RATE
36 to 55 OPERATIONS PER HOUR


FIGUE3-5TD RUNMAY OPERATI ONS RATE 76 TO 95 OPERATI ONS PER HOUR


Figure 3-57. hourly capacity of a taxiway crossing an active runway without arrivals.


[^0]
figure 3-69. Average aircraft delay in an hour.
$\overbrace{0}^{8}$
$\omega$
$\omega$




FIGURE 3-72. DELAY !NDICES FOR RUNWAY-USE DIAGRAM NOS. 2. 32. 33, 67, 72, 73, 87, 88 FOR VFR CONDITIONS.

## ARRIVAL DELAY INDEX $=1.00$



FIGURE 3-73. DELAY INDICES FOR RUNWAY-USE DIAGRAM NO. 3 FOR VFR CONDITIONS.

DEPARTURE DELAY INDEX


FIGURE 3-74. DELAY iNDICES FOR RUNWAY-USE DIAGRAM NOS. 4, 74, 75, 85, 86. 89.
90, 100. 101 FOR VFR CONDITIONS.


DEPARTURE DELAY INDEX $=1.00$

FIGURE 3-75. DELAY INDICES FOR'RUNWAY-USE DIAGRAM NOS. 5, 7, 76, 91 FOR VFR CONDITIONS.

ARRIVAL DELAY INDEX




OEPARTURE DELAY I NDEX


FIGURE 3-76. DELAY INDICES FOR RUNWAY-USE DIAGRAM NOS. 13, 15 FOR VFR CONDITIONS.

ARRIVAL DELAY INDEX


DEPARTURE DELAY INDEX


FIGURE 3-77. DELAY INDICES FOR RUNWAY-USE DIAGRAM NOS. 16, 79,94 FOR VFR CONDITIONS.

ARRIVAL DELAY INDEX




DEPARTURE DELAY INDEX


FIGURE 3-78. DELAY INDICES FOR RUNWAY-USE DIAGRAM NOS. 18, 19, 21, 22. 23, 77, 78, 92,93 FOR VFR CONDITIONS.


## ARRIVAL DELAYINDEX



DE P A R T U R E DELAY INDEX


FIGURE3-81. DELAY INDICES FOR RUNWAY-USE DIAGRAM N O. 29 FOR VFR CONDITIONS.

ARRIVAL DELAY INDEX $=1.00$

DEPARTURE DELAY INDEX


FIGURE 3-82. DELAY INDICES FOR RUNWAY-USE DIAGRAM NOS. 34, 35 FOR VFR CONDITIONS.

ARRIVAL DELAY INDEX

departure delay I Ndex


Figure 3-83, Delaý indces for rumay- use dagram nos: $36-38$ for VFR conatitans.

ARRIVAL DELAY INDEX


DEPARTURE DELAY INDEX


MIX INDEX--PERCENT ( $\mathrm{C}+3 \mathrm{D}$ )

50\% ARRIVALS



ARRIVAL DELAY INDEX


Figure 3-85. delay indices for rumay-use dagram nos.: 43, 49,55,61 for VFR conditions.

## ARRIVAL DELAY INDEX





DEPARTURE DELAY INDEX


FI GURE 3-85. Delay indices for runway-use diagram nos.: 44-46,50-52,50-58,62-64 FOR VFR conditions,


DEPARTURE DELAY INDEX


ARRIVAL DELAY INDEX = 1.00

DEPARTURE DELAY INDEX


Figure 3-89. Delay indices for rumay- use da agam nos. : $83,84,98,99,102$ for VFR cond ti ans.


ARRIVAL DELAY I NDEX



DEPARTURE DELAY INDEX


50\% ARRIVALS




## ARRIVAL DELAY INDEX: 1.00

DEPARTURE DELAY INDEX


FIGURE 3-91. DELAY INDICES FOR RUNWAY-USE DIAGRAM NOS. 2, 3, 5, 9, $32-3537-43,49,55,61-68$, $72-74,76,77,79,80,82-85,87-89,91,92,94,95,97-100,102$ FORer CONDITIONS.

## ARRIVAL icclay INDEX $=1.00$

DEPARTURE DELAY INDEX


FIGURE 3-92. DELAY INDICES FOR RUNWAY-USE DIAGRAM NOS. 4, 75, 90 FOR IFR CONDITIONS.

## ARRIVAL DELAY INDEX $=1.00$

DEPARTURE DELAY INDEX


FIGURE 3-93. DELAY INDICES FOR RUNWAY-USE DIAGRAM NO. 7 FOR IFR CONDITIONS.


ARRIVAL DELAY I NDEX


DEPARTURE 'DELAY INDEX




FIGURE 3-94. DELAY INDICES FOR RUNWAY\&SE DIAGRAM NO. 8 FOR IFR CONDITIONS.

## ARRIVAL DELAY INDEX = 1.00

DEPARTURE DELAY INDEX


FIGURE 3-95. DELAY INDICES FOR RUNWAY-USE DIAGRAM NOS. 11, 21, 29, 70, 71 FOR $\operatorname{lfR}$ CONDITIONS.


## ARRIVAL DELAY INDEX $=1.00$



FIGURE 3-97. DELAY indices FOR RUNWAY-use diagram nos.: 13, 16, 24,27 FOR IFR CONDITIONS


ARRIVAL DELAY INDEX



DEPARTURE DELAY INDEX




FIGURE 3-98. DELAY INDICES FOR RUNWAY-USE DIAGRAM NOS.: 15.28 FOR IFR CONDITIONS

ARRIVAL DELAY INDEX $=1.00$

DEPARTURE DELAY INDE $X$


Figure 3-99, Delay indices for rumay- use da acram nos. : $18,22,26,31,36,44-46,50-52,56-58$ for IFR conditans,

## ARRIVAL DELAY INDEX = $\mathbf{1 . 0 0}$



## ARRIVAL DELAY INDEX $=1.00$

## DEPARTURE DELAY INDEX



Figure 3-101. Delay indices far rimar-Use diagram nos.: $78,81,86,93,96,101$ for IFR conot tons,


ARRIVAL DELAY INOEX



DEPARTURE DELAY INDEX


Figure $j$-102. Delay indices for runnay-use diagram nos.: 4/,48, 39,60 i ur I:R conditions,

## CHAPTER 4. SPECIAL APPLICATIONS

4-1. GENERAL. This chapter provides calculations of runway capacity for situations involvingPVCconditions, the absence of radar coverage and/or ILS, and airports with one runway or a runway restricted to small aircraft. Appendix 3 contains examples of these calculations.

4-2. PVC CONDITIONS. Runway hourly capacity in PVC conditions is reduced by increased in-trail separations of approaches and departures and increased runway occupancy times. Calculate PVC runway comporent hourly capacity as follows:
a. Select the runway-use configuration in figure $4-1$ which best represents the airport and identify the figure number for determining capacity in PVC conditions. To adjust for staggered thresholds, see paragraph 4-6.
b. Determine the percent of class $C$ and $D$ aircraft and calculate the mix index.
c. Determine the percent arrivals.
d. Determine the runway hourly capacity from the figure identified in paragraph b above.

4-3. absence OF RADAR COVErage OR ILS. Except for single runway airports used almost exclusively by class A and B aircraft (which are covered in paragraph 4-5), calculate the hourly capacity of the runway component in the absence of radar coverage or ILS as follows:
a. Select the runway-use configuration in figure $4-1$ which best represents the airport and identify the figure number for determining capacity with an inoperative navaid.
h. Determine whether the radar or the ILS is operative and determine whether a straight-in or a circling approach is authorized.
c. Determine the percent of class $C$ and $D$ aircraft and calculate the mix index.
d Determine the runway hourly capacity from the figure identified in paragraph b above.

4-4. PARALLEL RUNWAY AIRPORTS WITH ONE RUNWAY RESTRICTED TO USE BY SMALL AIRCRAFT. Calculate the hourly capacity of a parallel runway configuration when one of the runways is unable to accomodate class $C$ and $D$ aircraft as follows:
a. Select the runway-use configuration in figure 4-1 which best represents the airport and identify the figure number for determining capacity in restricted runway use. To adjust for staggered thresholds, see paragraph 4-6.
b. Determine the percent of class $C$ and $D$ aircraft and calculate the mix index.
c. Determine the percent arrivals.
e. Determine the runway hourly capacity from the figure identified in paragraph b above.

4-5. SINGLE RUNWAY AIRPORT--SMALL AIRCRAFT ONLY. Calculate the capacity of a small airport used almost exclusively by Class A and B aircraft without radar coverage or ILS as follows:
a. Conditions.
(1) The airport is used almost exclusively by Class A and B aircraft.
(2) The airport does not have radar coverge or an ILS, but it has an approved approach procedure.
(3) Arrivals equal departures.
(4) There are no airspace limitations affecting runway use.

## b. CapacityCalculations.

(1) Select the airport configuration from figure 4-26 that best represents the airport.
(2) Determine the percent of touch-and-go operations.
(3) Read the range of hourly VFR and IFR capacities from figure 4-26.

4-6. THRESHOLD STAGGER. FM ATC procedures permit simultaneous departures and simultaneousdeparture--arrival operations on parallel runways spaced 2,500 feet apart with even thresholds and at lesser/greater separations if the thresholds are staggered. When thresholds are staggered , the equivalent unstaggered separation is calculated increasing or decreasing the actual separation depending upon whetherthe arriving aircraft is approaching the near' or far threshold. 'Stagger adjustments are only applicable when the parallel runway separations that are at least 1000 feet apart and less than 4300 feet apart.
a. Calculation.
(1) If the approaches are to the near threshold and the separation is less than 4299 feet, the equivalent separation is the actual separation increased by 100 feet for each 500 feet of threshold stagger up to a maximum of 4299 feet.
(2) If the approaches are to the far threshold and the separation is greater than 1000 feet, the equivalent separation is the actual separartion decreased by 100 feet for each 500 feet of threshold stagger down to a minimum of 703 feet.
b. Application. Apply the equivalent separation to determine which parallel runway-use configuration to use. Note: the calculation for equivalency need only determine whether the equivalent runway separation is 2500 feet or greater or 2499 feet or less.
c. Examples.
case 1. Staggered thresholds, approaches to near threshold,

(1000/500) $\mathbf{~} \mathbf{2}=200$
Separation for equivalency is increased by 200 feet $2400+200=2600$ feet

Case 2. Staggered thresholds, approaches to far threshold.

( $\mathbf{- 1 0 0 0 / 5 0 0}) \cdot \mathbf{2}=-200$
Separation for equivalency is decreased by 200 feet
2500-200 = 2300 feet

| Runway-use Diagran | Diag. No. | Runway Spacing <br> (S) in feet | Figure No. for Capacity |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{array}{\|c\|} \hline \text { Poor } \\ \text { Visibility } \\ \text { Conditions } \end{array}$ | Inoperative Navaids | Restricted <br> Runway-use |  |
|  |  |  |  |  | VFR | IFR |
| Hr ${ }^{\text {ct }}$ | 1 | NA | 4-2 | 4-15 | - | - |
| $H \underset{m=5}{=} 2 a$ | 700 | to 2499 | 4-3 | 4-16 | - | - |
|  | b | 2500 or more | 4-4 |  |  |  |
| =rit | $3 \quad 70$ | 00 to 2499 | 4-3 | 4-16 | - | - |
| $\square+^{4}$ | 25 | po or more | 4-5 |  |  |  |
|  |  |  | 4-4-36 | 4-16 | - | - |
|  |  |  | 4-7 |  |  |  |
|  |  | or more | 4-8 |  |  |  |
| $\begin{aligned} & \text { at }=\text { st }=1 \\ & \text { at }=h 1 \end{aligned}$ | 9107 | D000 to 2999 | 4-9 | 4-16 | $\begin{aligned} & 4-17 \\ & 4-18 \end{aligned}$ | 4-21 |
|  | 11 | 3000 to 4299 | 4-10 |  |  |  |
|  | 430 | O .-- or more | 4-11 |  |  | 4-22 |
| $H \Rightarrow+$ | 28 | 2500 to 3499 | - | - | 4-19 | 4-23 |
| $\mathrm{S}$ | 29 | 3500 or more |  |  |  | 4-24 |
| $\frac{\mathrm{H}}{\mathrm{~S}} \mathrm{H}$ | 40 | 3500 or more | - | - | 4-20 | 4-25 |
|  |  |  | 4-12 | 4-15 | - |  |
|  | $19$ | 99 to 0 | 4-12 | 4-15 | - | - |
|  | $8!5$ | c20000 ttó 80 | 4-14 |  |  |  |
| $\mathbf{c}=700^{\prime} \boldsymbol{t o} 2499$ | $9^{\prime}$ |  |  |  |  |  |

Figure 4-1. Special applications





FI GURE A3-2A.
HOURLY CAPACITY IN RADAR ENVIRONMENT


MIX INDEX -- PERCENT (C+3D)

FIGUREA3-2B.
HOURLYCAPACITYINMONRADARENVIRONFENT


Figure 4-15. hourly capacity of runmay-use di agram nos. 1, 43-54,

FIGUREA3-3A,
HOURLY CAPAQ TY IN RADARENVIRONMEN $\dagger$


FI GRE A3-3B.
HOURLYCAPACITYINNONRADARENVIROWERT


[^1]Chap 4





LEGEND:


Figure 4-26. Hourly capacity of single runway airports, without radar coverage or ILS, servingsmall aircraft only.

## CHAPTER 5. COMPUTER PROGRAMS FOR AIRPORT CAPACITY AND AIRCRAFT DELAY

5-1. GENERAL. This chapter identifies computer models for determining airport capacity, aircraft delay, and the sensitivity of a proposed physical/operational change to an airport or air traffic procedure.

5-2. SIMULATION MODEL (SIMMOD). SIMMOD is a simulation model used by the FAA, airlines, airports, architects, and engineers to design airport improvements, calculate travel times and flow rates for an airport or an airport component, and/or develop procedural alternatives for domestic and international air traffic management, including the adjacent airspace. Specific applications of the SIMMOD model range from studies of a single runway airport with its network of taxiway and gates, to studies of terminal areas having multiple airports with complex airspace routings.
a. $\quad$ SNMOD both the physical design and procedural aspects of all air traffic operations, allowing decision-makers to determine projected benefits and impacts in terms of airport capacity and in aircraft travel time, delay, and fuel consumption. The model incorporates the FAA's Integrated Noise Model (INM) as a post-processing function, allowing users to determine the impact of aircraft noise in the-planning process. SIMMOD is available in two versions which include magnetic media, manuals, and all required software licenses and libraries. The Summagraphics MG-3648 36"x 48 " or Summagraphics Professional 12"x 18 " dig̣itizer, and CAD/CAM (Autocad) are recommended for data input and optional display.
(1) SIMMOD Version 1.2 for $386 / 25$ IBM compatible microcomputers with 80387 math coprocessors, 4 MB RAM, 80 MB hard disk, 1.2 MB ( $5.25^{\prime \prime}$ ) or 1.44 MB ( $3.5^{\prime \prime}$ ) floppy disk drive, VGA graphics system (board and monitor), Mouse (Microsoft-compatible), and a Epson/HP Laserjet or compatible printer. DOS 3.1 or higher (DOS 4.0 is not recommended) or $\mathrm{OS} / 2$.
(2) SIMMOD Version 2.1 operates on SUN Sparc and HP9000/700 series computers. Parts of this version operate on IBM RS6000 machines having 32 MB RAM and 1.2 GB Hard drives.
b. Model Source. The SIMMOD model and information on the model may be obtained from:

FAA, Program Analysis and Operations Research (ASD-400)
800 Independence Avenue SW
Washington, D.C. 20591.
Telephone number (202) 358-5225
Internet Address: http://www .orlab. faa.gov/homepage.html
5-3. AIRPORT MODEL This model is a general purpose airport simulation that can be used for any airport. It requires a DOS platform and-can produce animated graphic output. The input data include physical airfield layout, ATC rules and procedures, and aircraft performance characteristics. The input can also be modified in a user interface mode. Either actual or randomly-generated flight schedules can be used to drive the model. Among the unique features of the Airport Machine are detailed landing deceleration modeling, deceleration and exit selection, spacing of arrivals to allow runway crossing, controlled departure queuing, and user interface to allow optimization of outcomes. Information on this model may be obtained from:

FAA Technical Center, Atm: Mr. John Vander Veer
Aviation System Analysis and Modeling Branch (ACT-520A)
Atlantic City International Airport, N. J. 08405
Telephone number (609) 485-5645
5-4. AIRFIELD DELAY SIMULATION MODEL (ADSIM). ADSIM is a discrete-event simulation model that calculates travel time, delay and flow rate. It may also be used to analyze the components of an airport, airport operations, and operations in the adjacent airspace. The model implements the Monte Carlo sampling techniques. The procedural logic and physical network are used to simulate traffic using a series of probabilistic parameters such as gate service time, arrival runway separation time and may others. The output enables users to generate performance data based on hourly
flow rates, delays encountered on different routes, travei time, and others.
5- 5. AIRFIELD CAPACITY MODEL. This upgraded FAA Airfield Capacity Model is a computer program which analytically calculates the maximum operational capacity of a runway system under a wide range of conditions. The mode1 user has considerable freedom to vary the parameters of the computation, such as number and usage of runways, aircraft mix and speeds, and the characteristics of the ATC system.

5-6. MODEL AVAILABILITY.Tanes of the ADSIM and Airfield Capacity model are available from the National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield, Virginia 22161. The NTIS accession code number for ADSIM (Model Simulation) is PB84-171560, for ADSIM User's Guide is PB84-171552. The NTIS accession code number for Upgrade FAA Airfield Capacity Model Supplemental User's Guide is AD-A104 154/0. Telephone orders (703) 487-4650 ( TDD for the hearing impaired (703) 487-4639), or FAX orders (703) 321-8547.

5-7. AIRPORT DESIGN COMPUTER MODEL. This computer model requires minimal input and provides output which can be computed as specified in chapter 2. Refer to AC 150/5300-13, Airport Design, Appendix 14, Computer Program, for details on this computer model.
a. Computer Requirements. Airport Design runs on the IBM PC family of computers and all true IBM compatibles. It requires DOS of 3.1 or higher and at least 640 K of RAM.
b. Softpoare Soprcign is available for downioading from the Office of Airport Safety and Standards Electronic Bulletin Board System.

Telephone number: (202) 267-5205
Data bits:
Parity:
8
Stop bits:
Baud rate:
(N)one

300/1200/2400/9600/14400
5-8. PROPRIETARY MODELS. Consultants doing airport engineering and planning as well as individual airport engineering/planning departments have developed or purchased proprietary models to carry out airport capacity and delay studies. Information on computer requirements and licensing costs for a proprietary model must be obtained from the respective model owner.

## APPENDIX 1. EXAMPLE APPLYING CHAPTER 2 CALCULATIONS

1. GENERAL. The examples in this appendix illustrate applications of chapter 2 capacity and delay calculations with portions of the appropriate tables and figures of chapter 2 reproduced in the examples. The work sheers provided in appendix 5 are used to record data.
2. EXAMPLES. The following four examples illustrate the progressive calculations of chapter 2.
a. Examples.
(1) Calculate existing runway capacity (figure Al-1).
(2) Identify airport improvements to accommodate demand (figure A1-2).
(3) Determine annual delay (figure Al-3).
(4) Calculate potential savings associated with reduced delay (figure A1-4).
b. Dhat. following data is given for the four examples.
(1) The airport has a single runway with a full length parallel taxiway and entrance-exit taxiways. All required navigational and air traffic aids exists, or will exist, and there are no foreseeable airspace limitations.
(2) The ai rport has a forecast demand of 220,000 annual operations by the year 2000. The demand consists of 41 percent small aircraft (one half of these are single engine), 55 percent large aircraft, and 4 percent heavy aircraft. Air carrier operations predominate and touch-and-go operations are nominal.
reappis 1．Determine whether the runway capacity is adequate to acsomodate the forecasted demand．

## SOLUTION：

1．Aircraft Mix．Enter the mix Of the forecasted demand（41\％small，53\％
large，4\％heavy）in colums 1 through 4 of $t$ he work sheet．
sole 1－1．Mrotaft clanaificaeions

| dicesaft clas | max．Care．8．O． <br> Trighe（DBC） | Muber | Thase smrsolence Cussiflearion |
| :---: | :---: | :---: | :---: |
| $\lambda$ | 22，500 or lese | staqu | 2mil（3） |
| 3 |  | nulet |  |
| c | 22，300－300，000 | neles | Large（2） |
| D | over 300.300 | meles | Mavy（I） |

2．Runway－use．Select the runway－u＊esnfiguratic：Escm figure 2－1 that best represents the airpnrt．Enter the diaǧamnsixz（I）in column 6 and a line sketch of the configuration in colum 7.


3．Mix Index，Calculate the mix index， $55+3(4)=67$ ，and enter in colum 5 ．
4．Eourly Capacity．Enter the bourly VFR and IFR canacities and the ASV， obtained from diagram 1，figure 2－1，in cciumns，9，andi0．

| Aisczaft Mix |  |  |  | $\begin{gathered} \text { Mix } \\ \text { Index } \\ (C+3 p) \end{gathered}$ | Consigusation |  | Capac：＝y <br> （Ops／Hous） |  | $\begin{array}{r} 155 \\ (000) \\ \hline \end{array}$ | Annual Demand$(000)$ | Ansual Demand <br> ASV | Average Delay per Ai＝craft （Minutea） |  | Minutas of Annual Delay （000） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 \lambda$ | 18 | ${ }^{1}$ | 10 |  | Ho， | Skefin | YPR | 128 |  |  |  | Soun | ＋rion | Lew | －196 |
| 2 | 2 | 3 | 4 | 5 | 5 | 7 | 8 | 9 | 10 | 11 | 12 | ：3 | 124 | 15 | 16 |
| 29 | 20 | シミ | 4 | E： | 1 |  | 53 | 56 | 20ミ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

5 ．Conclusion．The ASV of 205,000 operationsis less than the forecasted demand of 220,000 annualo－rations．Unless adeitional capacity is provided，delays will become costly．

Figuse AI－1．Investigate runway capabilivy

EXAMPLR 2. Example 1 concluded that the ASV of 205,000 operations is less than the forecasted 220,000 operational demand. Identify alternative. two-runway configurations that will accommodate the demand,

## SOLUTION:

1. Capacity of Alternatives. Repeat each of the calculations of example 1 for each of the two-runway configurations.

2. Conclusion. The parallel runway-use configuration (4), which meets the separation requirements for simultaneous instrument approaches, provides the best VFR and IFR hourly capacities and ASV. Any of the parallel runway-use configurations as well au the diverging runway-use configuration meet the forecasted demand. The crossing and converging runway-use configurations have less capacity than the forecasteddemand.

Figure Al-2. Identify two-runway configurations

EXAMPLE 3. What annal delay is anticipated for the existing and each of the alternative runway-use configurations?

SOLUTION: The following calculations are for the existing single rummy-use configuration are repeated for each of the alternative rumway-use configurations.

1. Annual Demand. Enter 220,000 (operations) in column 11 .
2. Demand-ASV Ratios. Divide the annual demand by the ASV and enter in column 12.

$$
220 / 205=1.07
$$

3. Average Aircraft Delay. Obtain the high and law average \&lays pet aircraft from figure 2-2 and enter in columns 13 and 14.
4. Annual Delay. Calculate annual delay and entet results in columns $\mathbf{1 5}$ and 16.

$$
\begin{aligned}
& 3.5 \times 220,000=770,000 \text { minutes } \\
& 5.8 \times 220,000=1,276,000 \text { minutes }
\end{aligned}
$$





5. Conclusions. Average delay per aircraft and annual delay with parallel runway-use configurations are significantly less than with any of the other rumayuse configurations.

Figure Al-3. Deternine annual delay

EXAMPLE $\perp$. What savings can be realized from the reduced delay anticipated in example 3 when going from runway-use configuration 1 to 3.

## SOLUTION:

1. Allocate Usage. Distribute aircraft classes used for the capaciry calculations $(21 \% \mathrm{~A}, 20 \% \mathrm{~B}, 55 \% \mathrm{C}$, and 4\% D) among the airport's different types of aircraft and users.
```
For this example the 21% A is distributed as follows:
    6% small aircraft havines 1-3 seats (GA),
    12% small aircraft having 4+ seats (GA), and
    3% small aircraft having 4+ seats (AT)
```

Comparable distributions are made for the other aircraft classifications.
2. Calculare Aversge Cost Per Minute. Using the delay costs provided in figure A5-12, calculate the average delev cost atributed to each type of aircraft.

NOTE: Other delay costs may be used. When other delay costs are used, identify the source of their delay costs or explain the rationale for the costs used.

$$
\begin{aligned}
& \text { Class A } 1-3 \text { seats } \\
& 4+\text { seats }(\mathrm{GA}) 0.06 \times 0.50=0.036 \\
& \\
& 4 \div \text { seats. (AT) } 0.12 \times 1.00=0.120 \\
& 0.03 \times 1.80=0.054
\end{aligned}
$$

NOTE: Similar calculations are made for the other aircraft classes and users.
3. Identifv Time Savings. Subrract projected minures of furure delay from current est imates of delay to establish the potential savings. Use both the low and high range from figure AL3.

| Current Delay (000 Minutes) | 770 | Low | 1,276 | Eigi |
| :--- | :--- | :--- | :--- | ---: | :--- |
| Projected Delay (000 Minutes) | 209 | " | 319 | " |
| Potential Savings (000 Minutes) | 561 | $\mathbf{n}$ | 957 | " |

4. Savings rample, the projected benefit of reduced delay is calculated to range from a low of $\$ 7,610,000$ to a high of $\$ 12,982,000$.

NOTE: Savings in this example do not include purchase or replacement costs of the airplane, airport fees, and other incidental costs incurred by an airline or by an airplane owner. Nor does the example attempt to include the benefits to passengers of reductions in flight delays.

| Aircraft |  | Percent of | Dollars | Average |
| :---: | :---: | :---: | :---: | :---: |
| Class A <br> 12.500 Pounds or less Single Engine | 1-3 Seats | 6 | 0.60 | 0.036 |
|  | 4 + Seats (GA) | 12 | 1.00 | 0.120 |
|  | $4+$ Seats (AT) | 3 | 1.80 | 0.054 |
| $\frac{\text { Class B }}{1.500 \text { Pounds or less }} \begin{aligned} & \text { Multi Engine } \end{aligned}$ | Piston Twin (GA) | 8 | 2.50 | 0.200 |
|  | Piston Twin (AT) | 4 | 3.70 | 0.148 |
|  | Turbine Twin (GA) |  | 5.20 |  |
|  | Turbine Twin (AT) | 8 | 6.80 | 0.544 |
| $\frac{\text { Class C }}{12.500 \text { to }} 300.000 \text { Pounds }$ | Piston Engine (GA) |  | 2.80 | - |
|  | Piston Engine (AT) | 2 | 4.00 | 0.080 |
|  | Piston Engine (AC) |  | 2.90 |  |
|  | Turbine Twin (GA) | 2 | 5.60 | 0.112 |
|  | Turbine Twin (AT) | 5 | 7.30 | 0.365 |
|  | Turbine Twin (AC) | 6 | 6.60 | 0.396 |
|  | Turbine Four (AC) |  | 15.10 |  |
|  | 2 Engine Jet (GA) | - | 13.60 | - |
|  | 2 Engine Jet (AT) | 5 | 16.80 | 0.840 |
|  | 2 Engine Jet (AC) | 20 | 22.00 | 4.400 |
|  | 3 Engine Jet (AC) | 15 | 31.40 | 4.710 |
|  | 4 Engine Jet (AC) | - | 35.50 | - |
| $\frac{\text { Class D }}{\text { Over 300,000Pounds }}$ | 2 Engine Jet (AC) | 4 | 39.00 | 1.560 |
|  | 3 Engine Jet (AC) | - | 57.60 |  |
|  | 4 Engine Jet (AC) |  | 79.30 |  |
| Helicopters | Piston (GA) |  | 1.40 |  |
|  | Piston (AT) |  | 2.30 |  |
|  | Turbine (GA) | - | 3.30 |  |
|  | Turbine (AT) | - | 4.40 | - |
| Totals |  | 100 | $\mathrm{CB}_{\text {cma }}$ | 13.565 |
| (GA) General Aviation (AT) Air Taxi (AC) Air Carrier |  |  |  |  |
|  |  | Low |  |  |
| Current Deiay (000 Minutes) |  |  | 70 | I. 276 |
| Projected Delay (000 Minutes) |  |  | 09 | 319 |
| Potential Savings (000 Minutes) |  |  | 61 | 957 |
| Average Cost Per Minute |  |  |  | 13.565 |
| Projected Benefit Per Year (000 Dollars) |  |  | 10 | 12.982 |

Figure A1-4. Savings associated with reduced delay (cont.)

## APPENDIX 2. EXAYPLES APPLYING CBAPTER 3 CALCULATIONS

1. GENERAL. The examples in this appendix illustrate applications of chapter 3 capacity and delay calculations with portions of the appropriate tables and figures of chapter 3 reproduced in the examples. The work sheets provided in appendix 5 are used to record data.
2. EXAMPLES. Ten examples, figures A2-1 through A2-10, illustrate the progressive calculations of chapter 3.
a. Examples.
(1) Hourly capacity of the runway component (figure A2-1).
(2) Hourly capacity of the taxiway component (figure A2-2).
(3) Hourly capacity of gate group components (figure A2-3).
(4) Airport hourly capacity (figure A2-4).
(5) Annual service volume (figure A2-5).
(6) Hourly delay to aircraft on the runway component (figure A2-6).
(7) Daily de\&y to aircraft an the runway component when the $D / C$ ratio is 1.0 or less for each hour (figure A2-7).
(8) Daily delay to aircraft on the runway component when the D/C ratio is greater than 1.0 for one or more hours (figure A2-8).
(9) Annual delay to aircraft on the rummy component (figure A2-9).
(10) Hourly demand corresponding to a specified level of average hourly delay (figure A2-10).
b. Data. Data necessary to solve each example is provided in the introductory statement. Tb the extent practical, results frow one example are used in subsequent exanples.

Appendix2
EXAMPLE 1. Determine VFR and IFR hourly capacities of the depicted airport. In the typical busy hour, it has 13 single-engine, 10 light twin-engine , 25 'transport type, and two widebody operations. During VFR conditions, arrivals constitute 45 percent of the operations and there are three touch and go's. During IFR conditions, the busy hour count of small aircraft operations drops to two single-engine and five light twin-engine aircraft and arrivals constitute 55 percent of the operations. There are no touch and go's during IFR conditions. The airport typically operates with arrivals on one runway and departures on the other.


SOLUTION: The work sheet on page 5 illustrates one method of recording data.

1. Weather. Enter the weather condition(s) applicable to the capacity determination in column 1.
2. Runway-use. From figure 3-2 (illustrated), the runway-use configuration diagram is No. 43. Enter this diagram number in column 3, and a line sketch of the configuration in column 2.
3. Capacity Figure (s) The appropriate figures for determining capacity are No. 3-27 for VFR conditions'and No. 3-59 for IFR conditions. These VFR and IFR references are entered on the line in column 4 corresponding to the weather condition.


Figure A2-1. Bourly capacity of the runway component
4. Mix Index. This input is calculated using data provided in the example statement. Table 1-1 (illustrated) is used to make the conversion.

Table 1-1. Aircraft classifications

| Aircraft Class | Max. Cert. T.O. Neight (lbs) | Number <br> Engines | Wake Turbulence Classification |
| :---: | :---: | :---: | :---: |
| A | 12,500 or 1ess | single | 8 mal 11 (8) |
| B |  | miti |  |
| C | 12,500-300,000 | Malti | Large (L) |
| D | wet 300,000 | Malti | Heavy (in) |

The computation of aircraft mix is carried out by setting up atable in the following format. The percent of operations by each aircraft class is recorded in columns 5 through 8.

| Aircraft |  | VFR Mix |  | IFR Mix |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Description | Class | No. ops. | $\mathbf{8}$ ops. | No. ops. | \% Ops. |
| Single-engined | A | 13 | 26 | 2 | 6 |
| Light-twins | B | 10 | 20 | 5 | 15 |
| Transport-type | C | $\mathbf{2 5}$ | $\mathbf{5 0}$ | $\mathbf{2 5}$ | $\mathbf{7 3}$ |
| Widebodied | D | $\mathbf{2}$ | $\mathbf{4}$ | $\mathbf{2}$ | $\mathbf{6}$ |
| Totals (No. Ops. \& \& Ops.) |  | $\mathbf{5 0}$ | 100 | $\mathbf{3 4}$ | $\mathbf{1 0 0}$ |

The mix indices are calculated and entered in column 9.
$\mathrm{VFR}=50+3(4)=62$
$\operatorname{IFR}=73+3(6)=91$
5. Percent Arrivals. The percent arrivals is given as 45 for VFR conditions and $\mathbf{5 5}$ for IFR conditions. Enter in column $\mathbf{1 0 .}$
6. Hourly Capacity Base (C*). Obtain C* from figure 3-27 for VFR and 3-59 for IFR, and enter in column 14.
7. Touch and Go Factor (T). The statement specified 3 touch and gos during VFR and none in IFR. Since a touch and go is a landing and a takeoff (2 operations), the percent of touch and go operations in VFR conditions is6/50 or 12 percent. Obtain the touch and go factor $T$ from figure 3-27 for VFR and 3-59 for IFR and enter in column 15.

Figure A2-1. Hourly capacity of the runway canponent (cont.)


Fievae 3-27. Hovar capacity of aumar-use olaceam mos.: 43.49 for VFR comoitions.


Fieune 3-59. Houmer capacity of mumar-use diaczan mos.: 43,49,55 fea IFR comititome.
8. Exit Factor E. A landing aircraft might exit at the runway intersection ( 1600 feet) or at one of the three right-angled exits located 3000,4500 , and 6000 feet from the threshold. From figures 3-27 for VFR and 3-59 for IFR, determine the exit range and the exit factor $E$. In this example, only two exits are within the range between 3500 to 7000 feet. Enter the exit locations in columns 12 and the number of usable exits in column 13. The exit factors $\mathbf{E}$ are entered in column 16.
-9. Calculate Capacity. Compute the hourly capacity of the runway-use configurtion and enter in column 17.

VFR Capacity $=89 \cdot 1.06 \cdot 0.94=88.68$ or 89 operations per hour

IFR capacity $=\mathbf{5 3 \cdot 1 . 0 0 \cdot 0 . 9 7}=51.41$ or 51 operations per hour


Work sheet for rumway hourly capacity.

1. Conclusion. The calculated hourly capacities of the rumway-use configurationof 89 operations per hour in VFR conditions and 51 operations per hour in IFR conditions exceeds the aeronautical demands of 50 VFR operations and 34 IFR operations specified in the statement.

Figure 12-1. Hourly capacity of the rumway component (cont.)

EXAMPLE 2, Determine the VFR and IFR capacity of taxiway crossings (A and B) for the airport of example 1 when operated as shown. Use the traffic data from example 1. NOTE: Runway usage is reversed from that used in example 1 to permit illustation of the crossing effect on both arrivals and departures.


SOLUTION: The work sheet on page 7 illustrates one method of recording data.

1. Weather. Enter type of weather in column 1.
2. Crossing Location. Identify and enter crossing locations in columns 2 and 3. Taxiway crossing (A) is 2300 feet from the arrival threshold ard taxiway crossing (B) is 3000 feet from the departure threshold.
3. Runway Operations Rate. Determine operations rate and enter in column 4. The airport has a VFR demand of 50 operations per hour with 45 percent arrivals, i,e., 23 arrivals and 27 departures. The touch-and-go adjustment reduces the departure demand to 24 operations. In IFR there are 19 arrivals and 15 departures.
4. Mix Index. Calculate the mix index and enter in column 5. VFR mix index is 62 and IFR mix index is 91.
5. Taxiway Crossing Capacities, Obtain crossing capacities from figure 3-66A (illustrated) for the arrival crossing (A) and figure 3-67A (illustrated) for the departure crossing (B) and enter in columns 6 and 7.

Crossing A (arrivals) VFR capacity $=\mathbf{1 0 7}$, and IFR capacity $=\mathbf{9 2}$
Crossing $\mathbf{B}$ (departures) VFR capacity $\mathbf{= 1 2 5}$, and $\mathbf{I F R}$ capacity $=112$

Figure A2-2. Hourly capacity of the taxiway component

Fiare 3-g6A RumMAY OPERATIONS RATE
O TO 35 OPERATIOUS PER HOUR


Figure 3-66 (arrivals).

FIGRE 3-6A RUMMAY OPERATIOHS RATE
O TO 35 OPERATIOUS PER HOUR


Figure 3-67 (departures).

| Weather | Taxiway Crossing | $\begin{aligned} & \text { Distance } \\ & \text { from } \\ & \text { Threshold } \end{aligned}$ | Runway |  | Taxiway Crossing Capacities (Operations per Hour) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Ops. Rate | $\begin{aligned} & \text { Mix } \\ & \text { Index } \end{aligned}$ | Arrivals and Mixed Operation | Departures Plus $\mathbf{T} \& \mathbf{G}$ |
| 1 | $\frac{2}{2}$ | $\frac{3}{3}$ | 4 | - 5 | $\frac{6}{6}$ | Plus 7 |
| VFR | A | 23001 | 24 | 62 | 107 | - |
| " | B | 3000' | 20 | 62 | - | 125 |
| IFR | A | $2300^{\prime}$ | 15 | 91 | 92 | - |
| " | B | 3000' | 19 | 91 | - | 112 |

Work sheet for taxiway crossing capacities.
6. Conclusion. The taxiway crossing capacities for the stipulated operational conditions would not be capacity limiting since the demand is less than one-fourth of the theoretical capacity.

Figure A2-2. Hourly capacity of the ta:nway component (cont.)

EXAMPLE 3. Determine the hourly capacity of the terminal gate complex at the airport of example 1 . It has 10 gates allocated to three airlines $\mathbf{x}, \mathbf{Y}$, and 2. Only the end gates X-3 and Y-3 are capable of accommodating widebodied aircraft. During an hour; airline $\mathbf{x}$ schedules 13 non-widebodies with an average gate time of 45 minutes and two widebodies with an average gate time of 55 minutes. Airline $Y$ schedules eight non-widebodies with an average gate time of 40 minutes and airline $\mathbf{z}$ schedules four non-widebodies with an average gate time of 35 minutes.


SOLUTION: The work sheet on page 9 illustrates one method of recording data.

1. Gates Groups. The gate groups (airlines identification) and type of gates are entered in columns 1, 4, 5, and 13.
2. Gate Mix. Operational demands are entered in columns 2 and 3. The gate mix obtained by dividing the number of non-widebodied operations by the total number of operations is entered in column 6.
3. Gate Percentage. Calculate the percentage 'of widebodied gates in each gate group and enter in column 7.
4. Gate Occupancy Time. Gate times are entered in columns 8 and 9. Since gate times vary by airline and location, it is presumed that the example average gate occupancy times were obtained by on-site surveys.
5. Gate Occupancy Ratio. Gate occupancy ratio (R), entered in column 10, is determined by dividing the average gate occupancy time of the widebodied aircraft by that of the non-widebodied aircraft.

$$
\text { Airline } X, R=\mathbf{5 5} / \mathbf{4 5}=1.22
$$

When no widebodied aircraft are accomodated, $R$ equals 1.00
6. Gate Capacity. Calculate the hourly capacity for each gate group from the equation $G^{*} \cdot S \cdot N$ where $N$ equals the number of gates in the group. Obtain values for G* and S from figure 3-68 (illustrated) and entered in columns 11 and 12. Do not interpolate, use the chart with the lower $R$ value.


Son-widebody (H) Widebody (W)

| Gate <br> Group | Demand |  | No. Gates |  | Gate Mix |  | Average Gate Time (Min.) |  | Gate <br> Occupancy <br> Ratio <br> $\left(T_{w} / T_{n}\right)$ <br> (R) <br> 10 | $\begin{array}{\|c} \hline \text { Hourly } \\ \text { Capac. } \\ \text { Base } \\ \left(G^{*}\right) \\ \hline 11 \\ \hline \end{array}$ |  |  | Bourlyqapacity$\left(\mathrm{G}^{*} \cdot \mathrm{~S} \cdot \mathrm{~N}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (1) | (W) | (H) | (W) | (N) $\text { ( } 8 \text { ) }$ | (w) <br> ( 8 | $\begin{aligned} & (N) \\ & \left(T_{n}\right) \end{aligned}$ | $\begin{aligned} & \text { (W) } \\ & \text { ( } \left.T_{w}\right) \\ & \hline \end{aligned}$ |  |  |  |  |  |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  |  |  |  |  |
| X | 13 | 2 | 4 | 1 | 87 | 20 | 45 | 55 | 1. 22 | 2.6 | . 97 | 5 | 13 |
| Y | 8 | 0 | 2 | 1 | 100 | 33 | 40 | 0 | 1.00 | 3.0 | 1.00 | 3 | 9 |
| 2 | 4 | 0 | 2 | 0 | 100 | 0 | 35 | 0 | 1.00 | 3.4 | 1.00 | 2 | 7 |
| Capacity of the Terminal |  |  |  |  |  |  |  |  |  |  |  |  | 29 |

Work sheet for gate capacity.
7. Conclusion. The gate group capacity of airline $X$ is two operations short of its demand, whereas the calculated gate group capacities of airlines $Y$ and $Z$ exceed their demand sy one and three operations respectively. The terminal capacity exceeds the combined airline demand by two operations per hour.

Figure A2-3. Hourly capacity of gate grour components (cont.)


[^0]:    Figure 3-58. Hourly capacity of gates.

[^1]:    FIGURE 4-IG. HOURLY CAPACITY OF RUNWAY-USE diagram nos. 2a, 2b, 3-12,

