CHAPTER FOUR **SPACE SCIENCE**

CHAPTER FOUR SPACE SCIENCE

Introduction

NASA's Space Science and Applications program was responsible for planning, directing, executing, and evaluating NASA projects focused on using the unique characteristics of the space environment for scientific study of the universe, solving practical problems on Earth, and providing the scientific research foundation for expanding human presence into the solar system. The space science part of these responsibilities (the subject of this chapter) aimed to increase scientific understanding through observing the distant universe, exploring the near universe, and understanding Earth's space environment.

The Office of Space Science (OSS) and the Office of Space Science and Applications (OSSA) formed the interface among the scientific community, the president, and Congress. These offices evaluated ideas for new science of sources and pursued those thought most appropriate for conceptual study.1 They represented the aspirations of the scientific community, proposed and defended programs before the Office of Management and Budget and Congress, and conducted the programs that Congress authorized and funded. NASA's science missions went through definable phases. In the early stages of a scientific mission, the project scientist, study scientist, or principal investigator would take the lead in specifying the science that the proposed mission intended to achieve and determined its feasibility. Once the mission was approved and preparations were under way, the mission element requirements, such as schedule and cost, took priority. However, once the mission was launched and the data began to be transmitted, received, and analyzed, science again became dominant. From 1979 to 1988, NASA had science missions that

¹The ideas for new science came from a variety of sources, among them the various divisions within the science offices, the NASA field installations, the National Academy of Sciences, industry and academia, other U.S. government agencies, international organizations, NASA advisory committees, and the demand caused by shifting national priorities.

were in each of these stages—some in the early conceptual and mission analysis stages, others in the definition, development, and execution stages, and still others in the operational stage, with the data being used by the scientific community.

Thus, although NASA launched only seventeen dedicated space science missions and conducted four science missions aboard the Space Shuttle from 1979 to 1988, compared to the previous decade when the agency flew approximately sixty-five space science missions, the agency also continued to receive and analyze impressive data from earlier launches and prepared for future missions, some delayed following the *Challenger* accident. In addition to the delays caused by the *Challenger* accident, level funding also contributed to the smaller number of missions. NASA chose to invest its resources in more complex and costly missions that investigated a range of phenomena rather than fly a series of missions that investigated similar phenomena.

In addition to those managed by NASA, some NASA-launched missions were for other U.S. government or commercial organizations and some were in partnerships with space agencies or commercial entities from other countries. The following sections identify those scientific missions in which NASA provided only launch-related services or other limited services.

In spite of the small number of missions, NASA's OSS and OSSA were very visible. Almost every Space Shuttle mission had space science experiments aboard in addition to the dedicated Spacelab missions. Furthermore, scientists received spectacular and unprecedented data from the missions that had been launched in the previous decade, particularly the planetary probes.

This chapter describes each space science mission launched during these years as well as those conducted aboard the Space Shuttle. An overview of findings from missions launched during the previous decade is also presented.

The Last Decade Reviewed (1969–1978)

From 1969 to 1978, NASA managed space science missions in the broad areas of physics and astronomy, bioscience, and lunar and planetary science. The majority of NASA's science programs were in the physics and astronomy area, with fifty-three payloads launched. Explorer and Explorer-class satellites comprised forty-two of these investigative missions, which provided scientists with data on gamma rays, x-rays, energetic particles, the solar wind, meteoroids, radio signals from celestial sources, solar ultraviolet radiation, and other phenomena. Many of these missions were conducted jointly with other countries.

NASA launched four observatory-class physics and astronomy spacecraft programs between 1969 and 1978. These provided flexible orbiting platforms for scientific experiments. Participants in the Orbiting Geophysical Observatories gathered information on atmospheric composition. The Orbiting Astronomical Observatory returned volumes of data on the composition, density, and physical state of matter in interstellar space to scientists on Earth. It was the most complex automated spacecraft yet in the space science program. It took the first ultraviolet photographs of the stars and produced the first hard evidence of the existence of black holes in space. The High Energy Astronomy Observatories (HEAO) provided high-quality data on x-ray, gamma ray, and cosmic ray sources. HEAO-1 was the heaviest scientific satellite to date. The Orbiting Solar Observatory missions took measurements of the Sun and were the first satellites to capture on film the beginning of a solar flare and the consequent streamers of hot gases that extended out 10.6 million kilometers. It also discovered "polar ice caps" on the Sun (dark areas thought to be several million degrees cooler than the normal surface temperatures).

NASA launched several other Explorer-class satellites in cooperative projects with other countries or other government agencies. Uhuru, launched from the San Marco launch platform in 1970, scanned 95 percent of the celestial sphere for sources of x-rays and discovered three new pulsars. The bioscience program sponsored only Biosatellite 3, whose objective was to determine the effects of weightlessness on a monkey. In addition, NASA's life scientists designed many of the experiments that were conducted on Skylab.

NASA's Office of Planetary Programs explored the near planets with the Pioneer and Mariner probes. NASA conducted three Mariner projects during the 1970s, which investigated Mars, Mercury, and Venus. Mariner 9 became the first American spacecraft to go into orbit around another planet; it mapped 95 percent of the Martian surface. The two Viking landers became the first spacecraft to soft-land on another planet when they landed on Mars and conducted extended mission operations there while two orbiters circled the planet and mapped the surface.

With the Pioneer program, NASA extended its search for information to the outer planets of the solar system. Pioneer 10 (traveling at the highest velocity ever achieved by a spacecraft) and Pioneer 11 left Earth in the early 1970s, reaching Jupiter in 1973 and Saturn in 1979. Eventually, in 1987, Pioneer 10 would cross the orbit of Pluto and become the first manufactured object to travel outside our solar system. NASA also sent two Voyager spacecraft to the far planets. These excursions produced impressive high-resolution images of Jupiter and Saturn.

Detailed information relating to space science missions from 1969 through 1978 can be found in Chapter 3 of the NASA Historical Data Book, Volume III.²

²Linda Neuman Ezell, NASA Historical Data Book, Volume III: Programs and Projects, 1969–1978 (Washington, DC: NASA SP-4012, 1988).

Space Science (1979–1988)

During the ten-year period from 1979 to 1988, NASA launched seventeen space science missions. These included missions sponsored by OSS or OSSA (after its establishment in 1981), missions launched for other U.S. government agencies, and missions that were part of an international effort. The science missions were primarily in the disciplines of Earth and planetary exploration, astrophysics, and solar terrestrial studies. The Life Sciences Division, while not launching any dedicated missions, participated heavily in the Spacelab missions and other scientific investigations that took place during the decade.

The decade began with the "year of the planets" in space exploration. During 1979, scientists received their first high-resolution pictures of Jupiter and five of its satellites from Voyagers 1 and 2. Pioneer 11 transmitted the first close-up pictures of Saturn and its moon Titan. Both of these encounters revealed previously unknown information about the planets and their moons. Pioneer Venus went into orbit around Venus in December 1978, and it returned new data about that planet throughout 1979. Also, one Viking orbiter on Mars continued to transmit pictures back to Earth, as did one lander on the planet's surface.

Spectacular planetary revelations continued in 1980 with Voyager 1's flyby of Saturn. Dr. Bradford Smith of the University of Arizona, the leader of the Voyager imaging team, stated that investigators "learned more about Saturn in one week than in the entire span of human history."³ Thousands of high-resolution images revealed that the planet had hundreds, and perhaps thousands, of rings, not the six or so previously observed. The images also showed three previously unknown satellites circling the planet and confirmed the existence of several others.

Scientists also continued receiving excellent data from NASA's two Earth-orbiting HEAOs (launched in 1977 and 1978, respectively). HEAO-2 (also referred to as the Einstein Observatory) returned the first high-resolution images of x-ray sources and detected x-ray sources 1,000 times fainter than any previously observed and 10 million times fainter than the first x-ray stars observed. Scientists studying HEAO data also confirmed the emission of x-rays from Jupiter—the only planet other than Earth known to produce x-rays. Mission operations ceased in 1981, but more than 100 scientific papers per year were still being published using HEAO data in the mid-1990s.

The Solar Maximum Mission, launched in 1980, gathered significant new data on solar flares and detected changes in the Sun's energy output. Scientists stated that a cause-and-effect relationship may exist between sustained changes in the Sun's energy output and changes in Earth's weather and climate. The satellite's observations were part of NASA's

³"Highlights of 1980 Activities," *NASA News*, Release 80-199, December 24, 1980.

solar monitoring program, which focused on studying the Sun during a nineteen-month period when sunspot activity was at a peak of its elevenyear cycle of activity.

During 1981, OSS merged with the Office of Space and Terrestrial Applications to form OSSA. OSSA participated in the Space Shuttle program with its inclusion of the OSTA-1 payload aboard STS-2. This was the first scientific payload to fly on the STS.

Exploration of the solar system continued with Voyager 2's successful encounter with Saturn in August 1981. Building on the knowledge gained by the Voyager 1 encounter, Voyager 2 provided information relating to the ring structure in detail comparable to a street map and enabled scientists to revise their theories of the ring structure. After leaving Saturn's surroundings, Voyager 2 embarked on a trajectory that would bring it to Uranus in 1986.

Pioneer 6 continued to return interplanetary and solar science information while on the lengthiest interplanetary mission to date. Pioneer 10 reached more than 25 thousand million miles from the Sun. Pioneer missions to Venus and Mars also continued transmitting illuminating information about these planets.

Beginning in 1982, an increasing number of space science experiments were flown aboard the Space Shuttle. The Shuttle enabled scientists to conduct a wide variety of experiments without the commitment required of a dedicated mission.⁴ Instruments on satellites deployed from the Shuttle also investigated the Sun's ultraviolet energy output, measured the nature of the solar wind, and detected frozen methane on Pluto and Neptune's moon Triton. In addition, the Pioneer and the Viking spacecraft continued to record and transmit data about the planets each was examining.

The Infrared Astronomical Satellite, a 1983 joint venture among NASA, the Netherlands, and the United Kingdom, revealed a number of intriguing discoveries in its ten-month-long life. These included the possibility of a second solar system forming around the star Vega, five undiscovered comets, a possible tenth planet in our solar system, and a solar dust cloud surrounding our solar system.

During 1983, the Space Telescope, then scheduled for launch in 1986, was renamed the Edwin P. Hubble Space Telescope. Hubble was a member of the Carnegie Institute, whose studies of galaxies and discoveries of the expanding universe and Hubble's Constant made him one of America's foremost astronomers.

In 1984, the Smithsonian Institution's National Air and Space Museum became the new owner of the Viking 1 lander, which was parked

⁴Tables in Chapter 3 describe many of the experiments conducted aboard the Space Shuttle. Spacelab experiments and OSS and Spacelab missions are described in this chapter. The Office of Space and Terrestrial Applications missions are addressed in Chapter 2, "Space Applications," and OAST-1 is described in Chapter 3, "Aeronautics and Space Research and Technology," both in Volume VI of the NASA Historical Data Book.

on the surface of Mars. The transfer marked the first time an object on another planet was owned by a United States museum. Also in 1984, the Hubble Space Telescope's five scientific instruments underwent acceptance testing at the Goddard Space Flight Center in preparation for an anticipated 1986 launch. The acceptance testing represented the completion of the most critical element of the final checkout steps for the instruments before their assembly aboard the observatory. NASA announced the start of the Extreme Ultraviolet Explorer, a new satellite planned for launch from the Space Shuttle in 1988 that eventually was launched in 1992 by a Delta launch vehicle. The mission would make the first all-sky survey in the extreme ultraviolet band of the electromagnetic spectrum.

An encounter with the Comet Giacobini-Zinner by the International Cometary Explorer highlighted NASA's 1985 science achievements. This was the first spacecraft to carry out the on-site investigation of a comet. Also during 1985, Spacelab 3 carried a series of microgravity experiments aboard the Shuttle, and astronauts on Spacelab 2 conducted a series of astronomy and astrophysics experiments. An instrument pointing system on Spacelab 2, developed by the European Space Agency, operated for the first time and provided a stable platform for highly sensitive astronomical instruments.

The *Challenger* accident in January 1986 temporarily halted science that relied on the Shuttle for deploying scientific satellites and for providing a setting for on-board experiments. Four major scientific missions planned for 1986 were postponed, including Astro-1, the Hubble Space Telescope, and two planetary missions—Galileo and Ulysses. The Spartan Halley spacecraft, to be deployed from *Challenger*, was destroyed. However, other science activities still took place. Also, the Space and Earth Science Advisory Committee of the NASA Advisory Council issued a report on the status of space science within NASA. The two-year study, titled "The Crisis in Space and Earth Science, A Time for New Commitment," called for greater attention and higher priority for science programs. The most notable 1986 achievement was Voyager 2's encounter with Uranus in January. This encounter provided data on a planetary body never before examined at such close range. From Uranus, the Voyager continued traveling toward a 1989 rendezvous with Neptune.

In October 1987, NASA issued a revised manifest that reflected the "mixed fleet" concept. This dictated that NASA use the Shuttle only for missions that required human participation or its special capabilities. Some science missions, which had been scheduled for the Shuttle, could be transferred to an expendable launch vehicle with no change in mission objectives. No science missions were launched in 1987.

Only one expendable launch vehicle space science launch took place in 1988, but with the resumption of Space Shuttle flights that spring, NASA prepared for the 1989 launches of several delayed space science missions. This included the Hubble Space Telescope, scheduled for launch in December 1989 (but not deployed until April 1990), which underwent comprehensive ground system tests in June 1988. The Magellan spacecraft was delivered to the Kennedy Space Center in October 1988. This spacecraft, scheduled for launch in April 1989, would map the surface of Venus. Galileo, scheduled for launch in October 1989, underwent additional minor modifications associated with its most recent Venus-Earth-Earth gravity assist trajectory.

Management of the Space Science Program

NASA managed its space science and applications program from a single office, OSSA, from November 1963 to December 1971. A 1971 reorganization split the office into two organizations: the OSS and the Office of Space and Terrestrial Applications.

Office of Space Science

NASA managed its space science programs from a single office from December 1971 until November 9, 1981 (Figure 4–1). Noel W. Hinners led OSS until his departure from NASA in February 1979. (He returned as director of the Goddard Space Flight Center in 1982.) Thomas A. Mutch led the office from July 1979 through the fall of 1980, when Andrew Stofan became acting associate administrator.

Figure 4–1. Office of Space Science (Through November 1981)

In 1979, OSS included divisions for astrophysics, life sciences, planetary science, solar terrestrial science, and program analysis. The Planetary Division was renamed the Solar System Exploration Division in late 1980. This division was disestablished at the time of the reorganization in 1981 and re-formed as the new Earth and Planetary Exploration Division, existing with this title until 1984, when it regained its former title of the Solar System Exploration Division.

The Spacelab Mission Integration Division, which was established in mid-1979, evolved into the Space Flight Division in late 1980. Also in late 1980, the Astrophysics Division and the Solar Terrestrial Division combined into the Solar Terrestrial and Astrophysics Division. This division existed until the reorganization in November 1981, when it reformed as the Astrophysics Division.

Office of Space Science and Applications

In November 1981, NASA combined OSS and the Office of Space and Terrestrial Applications (OSTA) into the single OSSA (Figure 4–2). NASA Administrator James E. Beggs stated that the consolidation was done because of the program reductions that had occurred in the preceding years and because of the similarity of the technologies that both OSS and OSTA pursued. When the consolidation took place, OSSA consisted of divisions for communications, life sciences, astrophysics, Earth and

Figure 4–2. Office of Space Science and Applications (Established November 1981)

planetary exploration, Spacelab flight, environmental observation, and administration and resources management; it also had materials processing and information systems offices. The reorganization also placed the Goddard Space Flight Center and the Jet Propulsion Laboratory under the administrative management of OSSA. Andrew Stofan led OSSA as acting associate administrator until the appointment of Burton I. Edelson on February 14, 1982. Lennard A. Fisk succeeded Dr. Edelson in April 1987.

The Earth and Planetary Exploration Division, the Spacelab Flight Division, the Environmental Observation Division, and the Materials Processing Office were disestablished in January 1984. At that time, the Earth and Planetary Exploration Division became the Solar System Exploration Division, and the Spacelab Flight Division became the Shuttle Payload Engineering Division. NASA also established a new Microgravity Sciences and Applications Division and a new Earth Science and Applications Division. In September 1987, the Communications Division and the Information Systems Office merged into the Communications and Information Systems Division. NASA also promoted the Space Plasma Physics Branch and the Solar and Heliospheric Branch to the Space Physics Division. The Space Plasma Physics Branch had been part of the Earth Science and Applications Division, and the Solar and Heliospheric Branch came from the Astrophysics Division. The Space Telescope Development Division, which had been established in mid-1983, became part of the Astrophysics Division. At the same time, the Shuttle Payload Engineering Division was renamed the Flight Systems Division.

Of these divisions, life sciences, astrophysics, Earth and planetary exploration, space physics, solar system exploration, and space telescope development were considered science divisions rather than applications. This chapter covers missions that are managed by these science divisions.

The Life Sciences Division was led by Gerald Soffen through 1983, when he was succeeded by Arnauld Nicogossian. Astrophysics programs were led by Theodrick B. Norris through mid-1979, when Franklin D. Martin assumed the role of director. He remained in place when the division combined with the Solar, Terrestrial Division in 1980 (which had been headed by Harold Glaser) through early 1983. At that time, C.J. Pellerin was named to the post.

Angelo Guastaferro led the Planetary Division until it was disestablished in late 1980. Guastaferro moved to the new Solar System Exploration Division, where he remained through early 1981, when he moved to the Ames Research Center. Daniel Herman served as director of this division until the OSSA reorganization in November 1981, when the division was eliminated. When the Solar Systems Exploration Division was reestablished in 1984, Geoffrey Briggs headed it.

Jesse W. Moore led the Spacelab Mission Integration Division, which became the Spacelab Flight Division, until the November 1981 reorganization. Michael Sander assumed the leadership post at that time and held it until the division was disestablished in 1983. James C. Welch headed the Space Telescope Development Division until it was eliminated in September 1987. The Space Physics Division, which was established in September 1987, was led by Stanley Shawhan.

Office of Chief Scientist

The Office of Chief Scientist was also integral to NASA's science activities. NASA formed this office in 1977 as "a revised role for the [agency's] associate administrator."⁵ Its purpose was to "promote across-the-board agency cognizance over scientific affairs and interaction with the scientific community." The chief scientist was responsible for "advising the Administrator on the technical content of the agency's total program from the viewpoint of scientific objectives" and "will serve as a focal point for integrating the agency's programs [and] plans and for the use of scientific advisory committees."⁶

John E. Naugle served as chief scientist through June 1979. The position was vacant until he returned as acting chief scientist in December 1980, remaining until mid-1981. The position was vacant again until the appointment of Frank B. McDonald in September 1982. McDonald served as chief scientist until the appointment of Noel Hinners in 1987, who held that role concurrently with his position as NASA associate deputy administrator-institution.

Office of Exploration

In June 1987, the NASA administrator established the Office of Exploration. Also related to NASA's science activities, this office was to meet the need for specific activities supporting the long-term goal to "expand human presence and activity beyond Earth orbit into the Solar System."⁷ The office was responsible for coordinating NASA planning activities, particularly to the Moon and Mars. Major responsibilities were to analyze and define missions proposed to achieve the goal of human expansion of Earth, provide central coordination of technical planning studies that involved the entire agency, focus on studies of potential lunar and Martian initiatives, and identify the prerequisite investments in science and advance technology that must be initiated in the near term to achieve the initiatives. Primary concentrations of the Office of Exploration included mission concepts and scenarios, science opportunities, prerequisite technologies and research, precursor missions, infrastructure support requirements, and exploration programmatic

⁵"NASA Reorganization," NASA Special Announcement, October 25, 1977.

⁶Additional responsibilities are listed in NASA Management Instruction 1103.36, "Roles and Responsibilities—Chief Scientist," May 17, 1984.

⁷Office of the Press Secretary, "Presidential Directive on National Space Policy," January 5, 1988.

requirements of resources and schedules. John Aaron served as acting assistant administrator until the appointment of Franklin D. Martin as assistant administrator in December 1988.

Money for Space Science

Although NASA manages its space science missions through divisions that correspond to scientific disciplines, Congress generally allocates funds through broader categories. From 1979 to 1988, NASA submitted its science budget requests and Congress allocated funds through three categories: physics and astronomy, lunar and planetary (called planetary exploration beginning in FY 1980), and life sciences. Each of these broad categories contained several line items that corresponded either to missions such as the space telescope or to activities such as research and analysis.

Some budget category titles exactly match mission names. Other missions that do not appear in the budget under their own names were reimbursable-that is, NASA was reimbursed by another agency for its services and expended minimal funds (relatively speaking) or no funds of its own. These minimal expenses were generally included in other budget categories, such as launch support or ground system support. Still other missions were in-house projects-the work was done primarily by civil servants funded by the Research and Program Management appropriation rather than the Research and Development appropriation. Other science missions could be found in the detailed budget data and the accompanying narratives that NASA's budget office issued. For instance, the FY 1983 Explorer Development budget category under the larger Physics and Astronomy category included the Dynamics Explorer, the Solar Mesosphere Explorer, the Infrared Astronomical Satellite, the Active Magnetospheric Particle Tracer Explorer, the Cosmic Background Explorer, and a category titled "Other Explorers." NASA described the Explorer program as a way of conducting missions with limited, specific objectives that did not require major observatories.

During the period addressed in this chapter, all the launched missions were included under the broad budget category of Physics and Astronomy. The Planetary Exploration budget category funded both the ongoing activities relating to missions launched prior to 1979 and those that would be launched beginning in 1989. The Life Sciences budget category funded many of the experiments that took place on the Space Shuttle and also funded NASA-sponsored experiments on the Spacelab missions. This budget category also paid for efforts directed at maintaining the health of Space Shuttle crews, increasing understanding of the effects of microgravity, and investigating the biosphere of Earth. Funds designated for life sciences programs also contributed heavily to the Space Station program effort.

Over this ten-year period, funding for space science roughly doubled. This almost kept pace with the increase in the total Research and Development (R&D) and Space Flight, Control and Data Communications (SFC&DC) budgets, which slightly more than doubled. (The R&D appropriation was split into R&D and SFC&DC in 1984.) Thus, even though there were fewer missions over this ten-year period than in the prior ten years, if relative funding is a guide, NASA placed roughly the same importance on space science at the beginning of the decade that it did at its conclusion.

The figures in the tables following this chapter (Tables 4–1 through 4–23) show dollars that have not been inflated. If one considers inflation and real buying ability, then funding for space science remained fairly level over the decade.

Space Science Missions

Prior to the merger of NASA's OSS and OSTA in November 1981, missions could clearly be considered either space science or space applications. However, once the two organizations merged, a clear distinction was not always possible. This chapter includes activities formulated by NASA as space science missions and funded that way by Congress. It also includes science missions managed by other organizations for which NASA provided only launch services or some other nonscientific service.

The first subsection describes physics and astronomy missions, beginning with missions that were launched from 1979 to 1988. The next subsection covers on-board Shuttle missions during the decade. The third subsection contains physics and astronomy missions that were launched during the previous decade but continued to operate in these years and the missions that were under development during this decade but would not be launched until after 1988. The final subsection describes planetary missions—first those that were launched during the previous decade but continued to return data and then those being developed from 1979 to 1988 in preparation for launch after 1988. Table 4–24 lists each science mission that NASA either managed or had some other support role (indicated with an "*") and its corresponding discipline or management area.

Physics and Astronomy Program

The goal of NASA's Physics and Astronomy program was to add to what was already known about the origin and evolution of the universe, the fundamental laws of physics, and the formation of stars and planets. NASA conducted space-based research that investigated the structure and dynamics of the Sun and its long- and short-term variations; cosmic ray, x-ray, ultraviolet, optical, infrared, and radio emissions from stars, interstellar gas and dust, pulsars, neutron stars, quasars, black holes, and other celestial sources; and the laws governing the interactions and processes occurring in the universe. Many of the phenomena being investigated were not detectable from ground-based observatories because of the obscuring or distorting effects of Earth's atmosphere. NASA accomplished the objectives of the program with a mix of large, complex, freeflying space missions, less complex Explorer spacecraft, Shuttle and Spacelab flights, and suborbital activities.

Spacecraft Charging at High Altitudes

The Spacecraft Charging at High Altitudes mission was part of a U.S. Air Force program seeking to prevent anomalous behavior associated with satellites orbiting Earth at or near geosynchronous altitudes of 37,000 kilometers. NASA provided the launch vehicle and launch vehicle support as part of a 1975 agreement between OSS (representing NASA) and the Space and Missile Systems Organization (representing the Air Force). OSS also provided three scientific experiments. Each experiment investigated electrical static discharges that affected satellites in geostationary orbit. The experiments measured electrons, protons, and alpha particles, the surface charging and discharging of the satellite, and anomalous currents flowing through the spacecraft's wires at any given time. This mission's characteristics are listed in Table 4–25.

UK-6

The launch of UK-6 (also called Ariel) marked the one hundredth Scout launch. This was a fully reimbursable mission under the terms of a March 16, 1976, contract between NASA and the United Kingdom Science Research Council. NASA provided the launching and tracking services required for the mission. The project provided scientists with a large body of information about heavy nuclei. These invisible cosmic bullets supplied clues to the nature and origin of the universe. The experiments aboard the satellite examined cosmic rays and x-rays emitted by quasars, supernovas, and pulsars in deep space. UK-6's characteristics are in Table 4–26.

High Energy Astronomy Observatory-3

HEAO-3 was the third in a series of three Atlas-Centaur-launched satellites to survey the entire sky for x-ray sources and background of about one millionth of the intensity of the brightest known source, SCO X1. It also measured the gamma ray flux, determined source locations and line spectra, and examined the composition and synthesis of cosmic ray nuclei.

HEAO-3 carried three instruments that performed an all-sky survey of cosmic rays and gamma rays, similar to the earlier HEAO missions except at a higher orbital inclination. This higher orbital inclination allowed instruments to take advantage of the greater cosmic ray flux near Earth's magnetic poles. One objective was to measure the spectrum and intensity of both diffuse and discrete sources of x-ray and gamma ray radiation. In addition, HEAO-3 carried an instrument that observed high atomic number relativistic nuclei in the cosmic rays and measured the elemental composition and energy spectra of these nuclei to determine the abundance of the individual elements.

HEAO-3 operated until May 30, 1981, when it expended the last of its supply of thruster gases used for attitude control and was powered down. With twenty months of operating time in orbit, HEAO-3 became the third HEAO spacecraft to perform for more than twice its intended design life. Its characteristics are in Table 4–27; Figures 4–3 through 4–5 show diagrams of three HEAO instruments.

Figure 4-3. HEAO High-Spectral Resolution Gamma Ray Spectrometer

Figure 4-4. HEAO Isotopic Composition of Primary Cosmic Rays

Figure 4-5. HEAO Heavy Nuclei Experiment

Solar Maximum Mission

The Solar Maximum Mission (also known as Solar Max) observatory was an Earth-orbiting satellite that continued NASA's solar observatory research program, which had begun in 1962. The satellite was a three-axis inertially stabilized platform that provided precise stable pointing to any region on the Sun to within five seconds of arc. The mission studied a specific set of solar phenomena: the impulsive, energetic events known as solar flares and the active regions that were the sites of flares, sunspots, and other manifestations of solar activity. Solar Max allowed detailed observation of active regions of the Sun simultaneously by instruments that covered gamma ray, hard and soft x-ray, ultraviolet, and visible spectral ranges. Table 4–28 lists the mission's characteristics, and Figure 4–6 contains a diagram of Solar Max's instruments.

Solar Max was part of an international program involving a worldwide network of observatories. More than 400 scientists from approximately sixty institutions in seventeen foreign nations and the United States participated in collaborative observational and theoretical studies of solar flares. In the solar science community, 1980 was designated the "Solar Maximum Year" because it marked the peak of sunspot activity in the Sun's eleven-year cycle of activity.

The first months of the mission were extremely successful. Careful

Figure 4-6. Solar Maximum Instruments

orchestration of the instruments resulted in the most detailed look at solar flares ever achieved. The instruments recorded hundreds of flares, and the cumulative new data base was unsurpassed. Solar Max instruments set new standards of accuracy and precision and led scientists to a number of firsts and new answers to old questions. However, nine months into the mission, fuses in the attitude control system failed, and the satellite lost its ability to point with fine precision at the Sun. Although a few instruments continued to send valuable data despite the loss of fine pointing, most of the instruments were useless, and those still operating lost the benefits of operating in a coordinated program. The mission was declared a success, however, because its operation, although abbreviated, fulfilled the success criteria established before launch. Nevertheless, its reduction from the expected two years to nine months meant a significant loss to solar science.

NASA designed Solar Max to be serviced in space by a Space Shuttle crew. Thus, in April 1984, the crew of STS 41-C successfully repaired Solar Max. Following its repair, Solar Max operated successfully until November 1989. A description of the STS 41-C repair mission is in Chapter 3.

Dynamics Explorer 1 and 2

The Dynamics Explorer 1 and 2 satellites provided data about the coupling of energy, electric currents, electric fields, and plasmas (ionized

SPACE SCIENCE

atomic particles) among the magnetosphere, the ionosphere, and the atmosphere. The two spacecraft worked together to examine the processes by which energy from the Sun flows through interplanetary space and entered the region around Earth, controlled by the magnetic forces from Earth's magnetic field, to produce the auroras (northern lights) that affect radio transmissions and possibly influence basic weather patterns.

The two satellites were stacked on a Delta launch vehicle and placed into coplanar (in the same plane but at different altitudes) orbits. Dynamics Explorer 1 was placed in a higher elliptical orbit than Dynamics Explorer 2. The higher orbit allowed for global auroral imaging, wave measurements in the center of the magnetosphere, and crossing of auroral field lines at several Earth radii. Dynamics Explorer 2's lower orbit allowed for neutral composition and temperature and wind measurements, as well as an initial apogee to allow measurements above the interaction regions for suprathermal ions and plasma flow measurements at the base of the magnetosphere field lines. The two satellites carried a total of fifteen instruments, which took measurements in five general categories:

- Electric field-induced convection
- Magnetosphere-ionosphere electric currents
- Direct energy coupling between the magnetosphere and the ionosphere
- Mass coupling between the ionosphere and the magnetosphere
- Wave, particle, and plasma interactions

The Dynamics Explorer mission complemented the work of two previous sets of satellites, the Atmosphere Explorers and the International Sun-Earth Explorers. The three Atmosphere Explorer satellites studied the effects of the absorption of ultraviolet light waves by the upper atmosphere at altitudes as low as a satellite can orbit (about 130 kilometers). The three International Sun-Earth Explorer satellites studied how the solar wind interacted with Earth's magnetic field to transfer energy and ionized charged particles into the magnetosphere. The Dynamics Explorer mission also was to set the stage for a fourth program planned for later in the 1980s that would provide a comprehensive assessment of the energy balance in near-Earth space. The mission's characteristics are in Table 4–29.

Solar Mesospheric Explorer

The Solar Mesospheric Explorer, launched in 1981, was part of the NASA Upper Atmospheric Research program. NASA developed this program under the congressional mandates in the FY 1976 NASA Authorization Act and the Clean Air Act Amendments of 1977. It focused on developing a solid body of knowledge of the physics, chemistry, and dynamics of the upper atmosphere. From an initial emphasis on assessments of the impacts of chlorofluoromethane releases, Shuttle exhausts,

and aircraft effluents on stratospheric ozone, the program evolved into extensive field measurements, laboratory studies, theoretical developments, data analysis, and flight missions.

The Solar Mesospheric Explorer was designed to supply data on the nature and magnitude of changes in the mesospheric ozone densities that resulted from changes in the solar ultraviolet flux. It examined the interrelationship between ozone and water vapor and its photo dissociation products in the mesosphere and among ozone, water vapor, and nitrogen dioxide in the upper stratosphere.

The University of Colorado's Laboratory for Atmospheric and Space Physics provided the science instruments for this mission. The laboratory, under contract to the Jet Propulsion Laboratory, was also responsible for the observatory module, mission operations, the Project Operations Control Center, and science data evaluation and dissemination. Ball Aerospace's Systems Division provided the spacecraft bus and satellite integration and testing. The science team was composed of seventeen members from four institutions. A science data processing system, located at the Laboratory for Atmospheric and Space Physics, featured an online central processing and analysis system to perform the majority of data reduction and analysis for the science investigations.

The spacecraft consisted of two sections (Figure 4–7). The spacecraft bus carried communication, electrical, and command equipment. A notable feature was the 1.25-meter diameter disc used for mounting the 2,156 solar cells directed toward the Sun to feed power into the two nickel cadmium batteries. A passive system that used insulating material and a network of stripes on the outer surface kept internal temperatures within limits. The satellite body was spin-stabilized.

Figure 4–7. Solar Mesospheric Explorer Satellite Configuration

Figure 4–8. Altitude Regions to Be Measured by Solar Mesospheric Explorer Instruments

The observatory module carried the instruments. Four limb scanning instruments measured ozone, water vapor, nitrogen dioxide, temperature, and pressure in the upper stratosphere and mesosphere at particular altitudes (Figure 4–8). Two additional instruments monitored the Sun. The Solar Mesospheric Explorer spun about its long axis at ninety degrees to its orbital plane so that on every turn, the instruments scanned the atmosphere on the horizon between twenty and eighty kilometers. Data from the rotating science instruments are gated (cycled "on") once each revolution. Table 4–30 lists the characteristics of each instrument, and Table 4–31 lists the mission's characteristics.

Infrared Astronomy Satellite

The Infrared Astronomy Satellite (IRAS) was the second Netherlands-United States cooperative satellite project, the first being the Astronomical Netherlands Satellite launched in 1974. A memorandum of understanding between the Netherlands Agency for Aerospace Programs and NASA established the project on October 4, 1977. The United Kingdom also participated in the program under a separate memorandum of understanding between the United Kingdom's Science and Engineering Research Council and the Netherlands Agency for Aerospace Programs.

Under the terms of the memorandum of understanding, the United States provided the infrared telescope system, the tape recorders, the Delta launch vehicle, the scientific data processing, and the U.S. co-chair and members of the Joint IRAS Science Working Group. The Netherlands Agency for Aerospace Programs provided the other co-chair and European members of the Joint IRAS Science Working Group, the space-craft, the Dutch additional experiment (DAX), and the integration, testing, and launch preparations for the flight satellite. The Netherlands Agency for Aerospace Programs and the Science and Engineering Research Council provided spacecraft command and control and primary data acquisition with a ground station and control center located at Chilton, England. The United States provided limited tracking, command, and data acquisition by stations in the NASA Ground Spacecraft Tracking and Data Network.

IRAS was the first infrared satellite mission. It produced an all-sky survey of discrete sources in the form of sky and source catalogues using four broad photometry channels between eight and 120 micrometers. The mission performed the all-sky survey, provided additional observations on the more interesting known and discovered sources, and analyzed the data.

The satellite system consisted of two major systems: the infrared telescope and the spacecraft (Figure 4–9). The infrared telescope system consisted of the telescope, cryogenics equipment, electronics, and a focal-plane detector array. The detector array consisted of a primary set

Figure 4–9. Infrared Astronomy Satellite Configuration

SPACE SCIENCE

of infrared detectors, a set of photodiodes for use as aspect sensors, and a DAX. The DAX comprised a low-resolution spectrometer, a chopped photometric channel, and a short wavelength channel. The spacecraft provided the support functions of electrical power, attitude control, computing, and telecommunications.

During its all-sky survey, IRAS observed several important phenomena. It detected a new comet, named Comet IRAS-Araki-Alcock (1983d), which was distinguished by its very close approach to Earth, 5 million kilometers on May 11, 1983, the closest approach to Earth of a comet in 200 years. IRAS discovered a second, extremely faint comet (1983f) on May 12. This comet was a million times fainter than the first and was leaving the solar system. IRAS also discovered very young stars (protostars) no more than a million years old. It also observed two closely interacting galaxies that were being disrupted by each other's gravitational forces. IRAS made approximately 200,000 observations and transmitted more than 200 billion bits of data, which scientists have continued to examine and analyze.

IRAS revolutionized our understanding of star formation, with observations of protostars and of interstellar gas in star-forming regions. It discovered the "interstellar cirrus" of wispy cool far-infrared emitting dust throughout our galaxy. It discovered infrared emissions in spiral galaxies, including a previously unknown class of "ultraluminous infrared galaxies" in which new stars were forming at a very great rate. IRAS also showed that quasars emit large amounts of far-infrared radiation, suggesting the presence of interstellar dust in the host galaxies of those objects.

IRAS operated successfully until November 21, 1983, when it used the last of the super-fluid helium refrigerant that cooled the telescope. IRAS represented as great an improvement over ground-based telescopes as the Palomar 200-inch telescope was over Galileo's telescope. The unprecedented sensitivity of IRAS provided a survey of a large, unexplored gap in the electromagnetic spectrum. The international IRAS science team compiled a catalogue of nearly 250,000 sources measured at four infrared wavelengths—including approximately 20,000 new galaxies and 16,000 small extended sources—and the Jet Propulsion Laboratory's Infrared Processing and Analysis Center produced IRAS Sky Maps. IRAS successfully surveyed more than 96 percent of the sky. Its mission characteristics are in Table 4–32.

The Plasma Interaction Experiment (PIX-II) also rode on the Delta launch vehicle that deployed IRAS. A Lewis Research Center investigation, PIX-II evaluated the effects of solar panel area on the interactions between the space charged-particle environment and surfaces at high potentials (+/–one keV). PIX-II was the second experiment to investigate the effects of space plasma on solar arrays, power system conductors, insulators, and other exposed spacecraft components. The experiment remained with the second stage of the Delta launch vehicle in orbit at an altitude of 640 kilometers. Data from PIX-II were transmitted to two tracking stations.

European X-Ray Observatory Satellite

NASA launched the European X-Ray Observatory Satellite (EXOSAT) for the European Space Agency (ESA), which reimbursed NASA for the cost of providing standard launch support in accordance with the terms of a launch services agreement signed March 25, 1983. A Delta 3914 placed the satellite in a highly elliptical orbit that required approximately four days to complete. This orbit provided maximum observation periods, up to eightly hours at a time, while keeping the space-craft in full sunlight for most of the year, thereby keeping thermal conditions relatively stable and simplifying alignment procedures. The orbit also allowed practically continuous coverage by a single ground station.

EXOSAT supplied detailed data on cosmic x-ray sources in the soft x-ray band four one-hundredths keV to eighty keV. The principal scientific objectives involved locating x-ray sources and studying their spectroscopic and temporal characteristics. The location of x-ray sources was determined by the use of x-ray imaging telescopes. The observatory also mapped diffuse extended sources such as supernova remnants and resolve sources within nearby galaxies and galaxies within clusters. The space-craft performed broad-band spectroscopy, or "color" cataloguing of x-ray sources, and studied the time variability of sources over time scales ranging from milliseconds to days.

The EXOSAT observatory was a three-axis stabilized platform with an inherent orbit correction capability. It consisted of a central body covered with super-insulating thermal blankets and a one-degree-of-freedom rotatable solar array. The platform held the four experiments, which were co-aligned with the optical axis defined by two star trackers, each mounted on an imaging telescope (Figure 4–10). Table 4–33 contains the mission's characteristics.

Shuttle Pallet Satellite

The Shuttle Pallet Satellite (SPAS)-01 was a reusable platform built by the German aerospace firm Messerschmitt-Bolkow-Blohm (MBB) and carried on STS-7 as part of an agreement with MBB. The agreement provided that, in return for MBB's equipping SPAS-01 for use in testing the deployment and retrieval capabilities of the remote manipulator arm, NASA would substantially reduce the launching charge for SPAS-01. The platform contained six scientific experiments from the West German Federal Ministry of Research and Technology, two from ESA, and three from NASA along with several cameras.

The first satellite designed to be recaptured by the Shuttle's robot arm, SPAS-01 operated both inside and outside the orbiter's cargo bay. In the cargo bay, the satellite demonstrated its system performance and served as a mounted platform for operating scientific experiments. Seven scientific experiments were turned on during the third day of the flight and ran continuously for about twenty-four hours.

Figure 4-10. Exploded View of the European X-Ray Observatory Satellite

In the free-flyer mode, SPAS-01 was used as a test article to demonstrate the orbiter's capability to deploy and retrieve satellites in low-Earth orbit. During this phase of the mission, crew members operated two German and three NASA experiments. MBB built the platform to demonstrate how spaceflights could be used for private enterprise purposes. The West German Federal Ministry of Research and Technology supported the SPAS-01 pilot project and contributed to mission funding. Mission characteristics are in Table 4–34.

Hilat

The Air Force developed Hilat to gather data on ionospheric irregularities and auroras (northern lights) in an effort to improve the effectiveness of Department of Defense communications systems. The interaction of charged particles, ionized atmospheric gases, and magnetic fields can degrade radio communications and radar system performance at high latitudes. Four of the five experiments on board were sponsored by the Defense Nuclear Agencies. They measured turbulence caused by ionospheric irregularities and observed electron, ion, proton, and magnetic activity. The fifth experiment, sponsored by the Air Force Geophysics Laboratory at Hanscom Air Force Base, used an auroral ionospheric mapper to gather imagery of the auroras. NASA was reimbursed for launch services. Table 4–35 contains the mission's characteristics.

Active Magnetospheric Particle Tracer Explorers

The Active Magnetospheric Particle Tracer Explorers (AMPTE) project investigated the transfer of mass from the solar wind to the magnetosphere and its further transport and energization within the magnetosphere. It attempted to establish how much of this immense flow from the Sun, which sometimes affected the performance of electronic systems aboard satellites, entered the magnetosphere and where it went. AMPTE mission objectives were to:

- Investigate the entry of solar wind ions to the magnetosphere
- Study the transport of magnetotail plasma from the distant tail to the inner regions of the magnetosphere
- Study the interaction between an artificially injected plasma and the solar wind
- Establish the elemental and charge composition of energetic charge particles in the equatorial magnetosphere

The scientific experiments carried aboard the three AMPTE satellites (described below) helped determine the number and energy spectrum of solar wind ions and, ultimately, how they gained their high energies. Figure 4–11 illustrates the distortion of Earth's magnetic field into the magnetosphere.

AMPTE also investigated the interaction of two different flowing plasmas in space, another common astronomical phenomenon. AMPTE studied in detail the local disturbances that resulted when a cold dense plasma was injected and interacted with the hot, rapidly flowing natural plasmas of the solar wind and magnetosphere. The AMPTE spacecraft injected tracer elements into near-Earth space and then observed the motion and acceleration of those ions. One expected result was the formation of artificial comets, which were observed from aircraft and from the ground. In this respect, AMPTE's active interaction with the environment made it different from previous space probes, which had passively measured their surrounding environment.

This international cooperative mission consisted of three spacecraft: (1) a German-provided Ion Release Module (IRM), which injected artificial tracer ions (lithium and barium) inside and outside Earth's magnetosphere; (2) a U.S.-provided Charge Composition Explorer (CCE), which detected and monitored these ions as they convected and diffused

Figure 4–11. Distortion of Earth's Magnetic Field (The solar wind distorts Earth's magnetic field, in some cases pushing field lines from the day side of Earth back to the night side.)

through the inner magnetosphere; and (3) a United Kingdom-provided subsatellite (UKS), which detected and monitored these ions within a few hundred kilometers of the release point. Each of the spacecraft contributed to the achievement of the mission objectives. The IRM released tracer ions in the solar wind and attempted to detect them with the CCE inside the magnetosphere. This was done four times under different solar wind conditions and with different tracer ions.

The IRM also released barium and lithium ions into the plasma sheet and observed their energy spectrum at the CCE. Four such releases took place. In addition to the spacecraft observations, ground stations and aircraft in the Northern and Southern Hemispheres observed the artificial comet and tail releases. No tracer ions were detected in the CCE data, a surprising result, because, according to accepted theories, significant fluxes of tracer ions should have been observed at the CCE. However, in the case of the last two tail releases, the loss of the Hot Plasma Composition Experiment instrument on April 4, 1985, severely restricted the capability of the CCE to detect low-energy ions. The spacecraft also formed two barium artificial comets. In both instances, a variety of ground observation sites in the Northern and Southern Hemispheres obtained good images of these comets.

Observations relating to the composition, charge, and energy spectra of energetic particles in the near equatorial orbit plane of the CCE were to occur for a period of at least six months. With the exception of the Hot Plasma Composition Experiment, the instruments on board the CCE acquired the most comprehensive and unique data set on magnetospheric ions ever collected. For the first time, the ions that made up the bulk of Earth's ring current were identified, their spectrum determined, and dynamics studied. Several major magnetic storms that occurred during the first year of operation allowed measurements to be taken over a wide range of magnetic activity indices and solar wind conditions.

The three AMPTE spacecraft were launched into two different orbits. A Delta launch vehicle released the three satellites in a stacked fashion. The CCE separated first from the group of three, and the IRM and UKS remained joined. The CCE on-board thrusters fired to position the satellite in Earth's equatorial plane. About eight hours later, the IRM fired an on-board rocket to raise the IRM/UKS orbit apogee to twice its initial value. The two satellites then separated, and for the remainder of the mission, small thrusters on the UKS allowed it to fly in close formation with the IRM satellite. Tables 4–36, 4–37, and 4–38 list the specific orbit characteristics of the three satellites.

Spartan 1

Spartan 1 was the first of a continuing series of low-cost free-flyers designed to extend the observing time of sounding-rocket-class experiments from a few minutes to several hours. The Astrophysics Division of NASA's OSSA sponsored the satellite. The Naval Research Laboratory provided the scientific instrument through a NASA grant. The instrument, a medium-energy x-ray scanner, had been successfully flown several times on NASA sounding rockets. It scanned the Perseus Cluster, Galactic Center, and Scorpius X-2 to provide x-ray data over the energy range of a half keV to fifteen keV (Figure 4–12).

The June 1985 launch was NASA's second attempt to launch Spartan 1. It had previously been manifested on STS 41-F for an August 1984 flight, but was demanifested because of problems with the launch of *Discovery*.

Researchers could use the Spartan family of reusable satellites for a large variety of astrophysics experiments. The satellites were designed to be deployed and retrieved by the Shuttle orbiter using the remote manipulator system. Once deployed, the Spartan satellite could perform scientific observations for up to forty hours. All pointing sequences and satellite control commands were stored aboard the Spartan in a micro-computer controller. A 10¹⁰-bit tape recorder recorded all data, and no command or telemetry link was provided. Once the Spartan satellite completed its observations, it "safed" all systems and placed itself in a stable attitude to allow for retrieval by the orbiter and a return to Earth for data analysis and preparation for a new mission. Table 4–39 lists Spartan 1's mission characteristics.

Figure 4-12. Spartan 1

Plasma Diagnostic Package

The Plasma Diagnostics Package (PDP) flew on two Shuttle missions—STS-3 as part of the OSS-1 payload and STS 51-F as part of the Spacelab 2 mission. On its first flight, it made measurements while mounted in the Shuttle payload bay and while suspended from the remote manipulator arm. It successfully measured electromagnetic noise created by the Shuttle and detected other electrical reactions taking place between the Shuttle and the ionospheric plasma.

On STS 51-F, the PDP made additional measurements near the Shuttle and was also released as a free-flyer on the third day of the mission to measure electric and magnetic fields at various distances from the orbiter. During the maneuvers away from the Shuttle, called a "flyaround," a momentum wheel spun the satellite to fix it in a stable enough position for accurate measurements. As the orbiter moved away to a distance of approximately a half kilometer, an assembly of instruments mounted on the PDP measured various plasma characteristics, such as low-energy electron and proton distribution, plasma waves, electric field strength, electron density and temperature, ion energy and direction, and pressure of unchanged atoms. This was the first time that ambient plasma was sampled so far from the Shuttle. The survey helped investigators determine how far the orbiter's effects extended. Figure 4–13 illustrates PDP experiment hardware, and Table 4–40 describes characteristics of the PDP on STS 51-F. PDP characteristics on STS-3 were very similar.

Figure 4–13. Plasma Diagnostics Package Experiment Hardware

Spartan 203 (Spartan Halley)

Spartan 203 was one of the STS 51-L payloads aboard *Challenger* that was destroyed in January 1986. Spartan Halley, the second in NASA's continuing series of low-cost free-flyers, was to photograph Halley's comet and measure its ultraviolet spectrum during its forty hours of flight in formation with the Shuttle. The spacecraft was to be deployed during the second day of the flight and retrieved on the fifth day. Both operations would use the remote manipulator system. The instruments being used had flown on sounding rockets as well as on the Mariner spacecraft. The mission was to take advantage of Comet Halley's location of less than 107.8 million kilometers from the Sun during the later part of January 1986. This period was scientifically important because of the increased rate of sublimation as the comet neared perihelion, which would occur on February 9. As Halley neared the Sun, temperatures would rise, releasing ices and clathrates, compounds trapped in ice crystals.

NASA's Goddard Space Flight Center and the University of Colorado's Laboratory for Atmospheric and Space Physics recycled several instruments and designs to produce a low-cost, high-yield spacecraft. Two spectrometers, derived from backups for a Mariner 9 instrument that studied the Martian atmosphere in 1971, were rebuilt to survey the comet in ultraviolet light from 128- to 340-nanometer wavelength. The spectrometers were not to produce images but would reveal the comet's chemistry through the ultraviolet spectral lines they recorded. From these data, scientists would have gained a better understanding of how (1) chemical structure of the comet evolved from the coma and proceeded down the tail, (2) species changed with relation to sunlight and dynamic processes within the comet, and (3) dominant atmospheric activities at perihelion related to the comet's long-term evolution. Figure 4–14 shows the Spartan Halley configuration, and Table 4–41 lists the mission's characteristics.

Figure 4–14. Spartan Halley Configuration

Polar BEAR

The Polar Beacon Experiments and Auroral Research satellite (Polar BEAR) mission, a follow-on to the 1983 Hilat mission, conducted a series of experiments for the Department of Defense that studied radio interference caused by the Aurora Borealis. Launched by NASA on a Scout launch vehicle, the satellite had hung in the Smithsonian for more than fifteen years. The retooled Oscar 17 satellite was built in the mid-1960s by the Navy as a spare but never launched. Polar BEAR's characteristics are in Table 4–42.

San Marco D/L

The San Marco D/L spacecraft, one element of a cooperative satellite project between Italy and the United States, explored the relationship between solar activity and meteorological phenomena, with emphasis on lower atmospheric winds of the equatorial thermosphere and ionosphere. This information augmented and was used with data obtained from ground-based facilities and other satellites. The San Marco D/L project was the fifth mission in a series of joint research missions conducted under an agreement between NASA and the Italian Space Commission. The first memorandum of understanding (MOU) between Italy's Italian Commissione per le Ricerche Spaziali and NASA initiated the program in May 1962. The first flight under this agreement took place in March 1964 with the successful launch by the Centro Ricerche Aerospaziali of a twostage Nike sounding rocket from the Santa Rita launch platform off Kenya's coast. This vehicle carried the basic elements of the San Marco science instrumentation, flight-qualified the components, and provided a means of checking out range instrumentation and equipment.

This launch was followed by the December 1964 launch of the fully instrumented San Marco-I spacecraft from Wallops Island, Virginia. This marked the first time in NASA's international cooperative program that a satellite launch operation had been conducted by a non-U.S. team and the first use of a satellite fully designed and built in Western Europe. This launch also qualified the basic spacecraft design and confirmed the usefulness and reliability of the drag balance device for accurate determinations of air density values and satellite attitude.

Implementation of the agreement continued with the launch of San Marco-II into an equatorial orbit from the San Marco platform off the coast of Kenya in April 1967. This was the first satellite to be placed into equatorial orbit. The San Marco-II carried the same instrumentation as the San Marco-I, but the equatorial orbit permitted a more detailed study of density variations versus altitude in the equatorial region. The successful launch also qualified the San Marco range as a reliable facility for future satellite launches.

A second MOU between Centro Ricerche Aerospaziali and NASA signed in November 1967 provided for continued cooperation in satellite measurements of atmospheric characteristics and the establishment of the San Marco C program. The effort enhanced and continued the drag balance studies of the previous projects and initiated complementary mass spectrometer investigations of the equatorial neutral particle atmosphere. This phase enabled simultaneous measurements of atmospheric density from one satellite by three different techniques: direct particle detection, direct drag, and integrated drag. The San Marco C1 was launched on April 24, 1971, and the San Marco C2 was launched on February 18, 1974, both from the San Marco platform. The platform had also been used earlier in 1970 to launch Uhuru, an Explorer satellite that scanned 95 percent of the celestial sphere for sources of x-rays. It discovered three new pulsars that had not previously been identified.

NASA and Centro Ricerche Aerospaziali signed a third MOU in August 1974, continuing and extending their cooperation in satellite measurements of atmospheric characteristics and establishing the San Marco/Atmosphere Explorer Cooperative Project. This effort measured diurnal variations of the equatorial neutral atmosphere density, composition, and temperature for correlation with the Explorer 51 data for studies of the physics and dynamics of the thermosphere.

The San Marco D MOU was signed by Centro Ricerche Aerospaziali in July 1976 and by NASA in September 1976. This MOU assigned project management responsibility for the Italian portion of the project to Centro Ricerche Aerospaziali, while the Goddard Space Flight Center assumed project responsibility for the U.S. portion. There was also an

Figure 4–15. San Marco D/L Spacecraft

auxiliary cooperative agreement between the University of Rome and the Deutsche Forschungs Versuchsanstat für Luft und Raumfahrt (DFVLR) of the Federal Republic of Germany. This activity would explore the possible relationship between solar activity and meteorological phenomena to further define the structure, dynamics, and aeronomy of the equatorial thermosphere. Although initially both a low-orbit and an upper orbit spacecraft were planned, the program was reduced to a single spacecraft program—the low-orbit San Marco D/L (Figure 4–15).

In accordance with the MOU, the Centro Ricerche Aerospaziali provided the spacecraft, its subsystems, and an air drag balance system. The Deutsche Forschungs Versuchsanstat fur Luft und Raumfahrt provided an airglow solar spectrometer. NASA provided an ion velocity instrument, a wind/temperature spectrometer, and an electric field instrument. NASA also provided the Scout launch vehicle and technical and consultation support to the Italian project team. Mission characteristics of the San Marco D/L are in Table 4–43.

Attached Shuttle Payload Bay Science Missions

Beginning with the launch of STS-1 in April 1981, NASA had an additional platform available for performing scientific experiments. No longer did it have to deploy a satellite to obtain the benefits of a microgravity environment. Now, the payload bay on the Space Shuttle could provide this type of environment. NASA used these surroundings for a variety of smaller experiments, small self-contained payloads, and large experimental missions. These larger missions were sponsored by NASA's OSS, OSTA, OSSA, and Office of Aeronautics and Space Technology (OAST). This chapter addresses the OSS and OSSA missions (the Spacelab missions). The OSTA missions are included in Chapter 2, "Space Applications," and the mission sponsored by OAST is discussed in Chapter 3, "Aeronautics and Space Research and Technology," both in Volume VI of the NASA Historical Data Book.

Spacelab Missions

NASA conducted three joint U.S./ESA Spacelab missions. Spacelab 1 (STS-9) and Spacelab 2 (STS 51-G) were verification flights. Spacelab 3 (STS 51-B) was an operational flight. Spacelab 1 was the largest international cooperative space effort yet undertaken and concluded more than ten years of intensive work by some fifty industrial firms and ten nations. Spacelab 1 cost the ESA approximately \$1 billion. NASA also flew the first Spacelab reimbursable flight, Deutschland-1 (D-1), on STS 61-A in 1985. Table 4–44 provides a chronology of Spacelab development prior to the first Spacelab mission. Tables 4–45 through 4-48 supply details of the experiments flown on each mission.

Spacelab 1. The Spacelab 1 mission, which flew on STS-9, exemplified the versatility of the Space Shuttle. Payload specialist Ulf Merbold of ESA summed up the mission: "That was science around the clock and round the earth."⁸ Payload specialists conducted science and applications investigations in stratospheric and upper atmospheric physics, materials processing, space plasma physics, biology, medicine, astronomy, solar physics, Earth observations, and lubrication technology. The broad discipline areas included atmospheric physics and Earth observations, space plasma physics, material sciences and technology, and life sciences (Table 4–45).

Atmospheric physics and Earth observations, space plasma physics, and solar physics investigators used the Spacelab 1 orbiting laboratory to study the origin and influence of turbulent forces that sweep by Earth causing visible auroral displays and disturbing radio broadcasts, civilian and military electronics, power distribution, and satellite systems. The astronomy investigations studied astronomical sources in the ultraviolet and x-ray wavelengths. These wavelengths were not observable on Earth because of absorption by the ionosphere or ozone layer. The materials science and technology investigations demonstrated the capability of Spacelab as a technological development and test facility. The experi-

⁸"Spacelab Utilization Future Tasks," *MBB/ERNO Report*, Vol. 9, No. 1, April 1984, p. 8, NASA Historical Reference Collection, NASA Headquarters, Washington, DC.

ments in this group took advantage of the microgravity conditions to perform studies on materials and mechanisms that are adversely affected on Earth by gravity. The life sciences investigations studied the effects of the space environment (microgravity and high-energy radiation) on human physiology and on the growth, development, and organization of living systems. Figures 4–16, 4–17, and 4–18 show the locations of the Spacelab 1 experiments.

Spacelab 3. Spacelab 3, conducted on STS 51-B, was the first operational Spacelab mission. It used several new mini-laboratories that would be used again on future flights. Investigators evaluated two crystal growth furnaces, a life support and housing facility for small animals, and two types of apparatus for the study of fluids on this flight. Most of the experiment equipment was contained inside the laboratory, but instruments that required direct exposure to space were mounted outside in the open payload bay of the Shuttle. Figure 4–19 shows the experiment module layout, and Table 4–46 lists Spacelab 3's experiments.

Materials science was a major thrust of Spacelab 3. Spacelab served as a microgravity facility in which processes could be studied and materials produced without the interference of gravity. A payload specialist with special expertise in crystal growth succeeded in producing the first crystal grown in space. Studies in fluid mechanics also took advantage of the microgravity environment. Investigations proved the concept of "containerless" processing for materials science experiments with the successful operation of the Drop Dynamics Module.

Figure 4–16. Spacelab 1 Module Experiment Locations (Port Side)

Figure 4–17. Spacelab 1 Module Experiment Locations (Starboard Side)

Spacelab 3 carried a contingent of animals living in the newly designed Research Animal Holding Facility. This facility maintained healthy, small mammals, although animal food and waste leaked from the containers because of inadequate seal design and higher than expected vigor of monkeys, who kicked the material into the airflow of their cages. During the mission, the crew members observed two monkeys and twenty-four rodents for the effects of weightlessness. The crew also served as experimental subjects, with investigations in the use of biofeedback techniques to control space sickness and in changes in body fluids brought about by weightlessness.

Atmospheric physics and chemistry experiments provided more data than previously obtained in decades of balloon-based research. An experimental atmospheric modeling machine provided more than 46,000 images useful for solar, Jupiter, and Earth studies. In all, more than 250 billion bits of data were returned during the mission, and of the fifteen experiments conducted, fourteen were considered successful.

Spacelab 2. Spacelab 2 completed the second of two planned verification flights required by the Spacelab Verification Test Flight program. Flown on STS 51-F, Spacelab 2 was a NASA-developed payload. Its configuration included an igloo attached to a lead pallet, with the instrument pointing subsystem mounted on it, a two-pallet train, and an experiment special support structure (Figure 4–20). The experiments were located on the instrument pointing subsystem, the pallets, the special support structure, and the middeck of the orbiter, and one was based on the ground.

Figure 4–18. Spacelab 1 Pallet Experiment Locations

The pallets provided mounting and support for experiments that required an atmosphere-free environment. The special support structure was specially designed to support the Elemental Composition and Energy Spectral of Cosmic Ray Nuclei experiment.

Fourteen experiments supported by seventeen principal investigators were conducted (Table 4–47). The experiments were in the fields of life sciences, plasma physics, infrared astronomy, high-energy physics, solar physics, atmospheric physics, and technology.

Spacelab D-1. Spacelab D-1, the "German Spacelab," concentrated on scientific experiments on materials in a microgravity environment.

Figure 4–19. Spacelab 3 Experiment Module Layout (Looking Down From the Top)

This mission, flown on STS 61-A, was the second flight of the Materials Experiment Assembly (the first was on STS-7). Experiments included investigations of semiconductor materials, miscibility gap materials, and containerless processing of glass melts (Table 4–48).

OSS-1 (STS-3)

The OSS-1 mission objectives were to conduct scientific observations that demonstrated the Space Shuttle's research capabilities and that were

Figure 4-20. Spacelab 2 Configuration

SPACE SCIENCE

appropriate for flight on an early mission; to conduct supplementary observations of the orbiter's environment that had specific applicability to plasma physics and astronomical payloads; and to evaluate technology that may have application in future experiments in space. The experiments obtained data on the near-Earth space environment, including the degree of contamination (gases, dust, and outgassing particles) introduced by the orbiter itself.

The OSS-1 payload, also designated the "Pathfinder Mission," was a precursor to the Spacelab missions. It was developed to characterize the environment around the orbiter associated with the operation of the Shuttle and to demonstrate the Shuttle's research capability for science applications and technology in space. It verified that research measurements could be carried out successfully on future Shuttle missions and performed scientific measurements using the Shuttle's unique capabilities.

The mission included scientific investigations in space plasma physics, solar physics, astronomy, life sciences, and space technology. Six of the nine experiments were designed by scientists at five American universities and one British university and were operated under their supervision during the mission. One experiment was developed by the Naval Research Laboratory, and two were developed by the Goddard Space Flight Center (Table 4–49). The OSS-1 experiments being flown in the orbiter's payload bay were carried on a special U-shaped structure called an orbital flight test pallet. The three-meterby-four-meter aluminum frame and panel structure weighing 527 kilograms was a Spacelab element that would be used later in the STS program (Figure 4–21).

Other Physics and Astronomy Missions

The following sections describe physics and astronomy missions that were launched prior to 1979 and continued operating into the 1980s, followed by a discussion of missions that underwent development from 1979 to 1988 but did not launch until later. Readers can find details of the early stages of the ongoing science missions in Volume III of the NASA Historical Data Book.⁹

Ongoing Physics and Astronomy Missions

International Ultraviolet Explorer. The International Ultraviolet Explorer (IUE) mission was a joint enterprise of NASA, ESA, and the British Science Research Council. IUE 1, launched into geosynchronous orbit on January 26, 1978, on a Delta launch vehicle, allowed hundreds of users at two locations to conduct spectral studies of celestial ultraviolet sources. It was the first satellite totally dedicated to ultraviolet astronomy.

⁹Ezell, NASA Historical Data Book, Volume III.

Figure 4-21. OSS-1 Payload Configuration

The IUE mission objective was to conduct spectral distribution studies of celestial ultraviolet sources. The scientific goals were to:

- Obtain high-resolution spectra of stars
- Study gas streams
- Observe faint stars, galaxies, and quasars
- Observe the spectra of planets and comets
- Make repeated observations that showed variable spectra
- Define more precisely the modifications of starlight caused by interstellar dust and gas

NASA provided the IUE spacecraft, the optical and mechanical components of the scientific instruments, the U.S. ground observatory, and the spacecraft control software. ESA contributed the solar arrays needed as a power source and the European ground observatory in Spain. The British Science Research Council oversaw the development of the spectrograph television cameras and, with the United States, the image processing software.

Targets of IUE's investigations included faint stars, hot stars, quasars, comets, gas streams, extragalactic objects, and the interstellar medium. A forty-five-centimeter Ritchey Chretien telescope aided in the investigations. Geosynchronous orbit permitted continuous observations and real-

time data by the investigators at the two ground observatories. Objects observed by IUE included planets, stars, and galaxies. IUE specialized in targets of opportunity, such as comets, novae, and supernovae.

Often, IUE allowed simultaneous data acquisition and was used in conjunction with other telescopes from around the world. In its later years of operation, these collaborations involved such spacecraft as the Hubble Space Telescope, the German Roentgen Satellite, the Compton Gamma Ray Observatory, the Voyager probes, the Space Shuttle's Astro-1 mission, the Extreme Ultraviolet Explorer, and Japan's ASCA satellite, as well as numerous ground-based observatories.

In 1979, IUE produced the first evidence confirming the existence of a galactic halo, consisting of high-temperature, rarefied gas extending far above and below the Milky Way. In 1980, it verified expectations that space between isolated galaxies was highly transparent and contributed very little to the total mass of the universe. Extensive observation of active binary stars demonstrated that stellar magnetic fields and rotation probably combined to cause the tremendous levels of solar-like activity in many classes of such stellar systems. Studies using IUE data also indicated a consistent and continuous evolution of coronas, wind characteristics, and mass-loss rates, varying from the hot, fast winds and low mass-loss rate of the Sun to the slow, cool winds and high mass-loss rate of the coolest giant and supergiant stars. In addition, IUE provided the first detailed studies of comets throughout their active cycle in the inner solar system, providing new clues to their internal composition. Observations also confirmed the discovery of a hot halo of gas surrounding the Milky Way.

In 1986, IUE provided space-based observations of Halley's Comet and its tail during the Japanese, European, and Soviet missions to its nucleus and later initiated periodic observations of Supernova 1987a. The observations provided the key data required to identify the true progenitor of the supernova. As it continued to observe Supernova 1987a, IUE discovered the remnant shell from the red supergiant stage of the supernova as well as determined the changing properties of the ejecta from continuing observations. The spacecraft made the best determination of the light curve and its implications concerning the nature of the energy source.

When launched in 1978, the IUE spacecraft had a stated lifetime expectancy of three to five years. It was shut down on September 30, 1996, after more than eighteen years of mission elapsed time.

International Sun-Earth Explorer/International Cometary Explorer. The International Sun-Earth Explorer (ISEE) program was a collaborative three-spacecraft program with ESA. ISEE 3 was injected into a "halo" orbit in November 1978 about the Earth-Sun libration point, from which it observed the solar wind an hour before it reached Earth's magnetosphere. This capability could provide advance warning of impending magnetospheric and ionosphere disturbances near Earth, which the ISEE 1 and 2 spacecraft monitored. ISEE 3 also observed electrons that carried energy from Earth's bow shock toward the Sun. Although Earth's magnetic field diverted most of the solar wind, some interacted, producing plasma waves; some transferred energy inside the magnetosphere; and some was hurled back toward the Sun.

ISEE 3 completed its original mission of monitoring the solar wind in 1983 and was maneuvered into an orbit swinging through Earth's magnetic tail and behind the Moon, using the Moon's gravity to boost the spacecraft toward rendezvous with a comet. ISEE 3 obtained the first *in situ* field and particle measurements in Earth's magnetotail. Also in 1983, NASA renamed ISEE 3 the International Cometary Explorer (ICE). It left its Earth orbit on December 22, 1983, to encounter the Comet Giacobini-Zinner on September 11, 1985. ICE passed within 8,000 kilometers of the comet's nucleus and through the comet's tail. It provided the first spacecraft data on a comet's magnetic field, plasma environment, and dust content.

Orbiting Astronomical Observatories. The Orbiting Astronomical Observatory-3, named Copernicus, continued to furnish information on an apparent black hole detected in the constellation Scorpius until its operations were shut down on December 31 1980, because of degradation in the experiment's detection system. Its work also included discoveries of clumpy structures and shocked million-degree gas in the interstellar medium and measurements of the ultraviolet spectra of the chromospheres and coronas of stars other than the Sun.

Physics and Astronomy Missions Under Development From 1979 to 1988

Hubble Space Telescope. The history of the Hubble Space Telescope can be traced back as far as 1962, when the National Academy of Sciences published a report recommending the construction of a large space telescope. In 1973, NASA established a small scientific and engineering steering committee to determine which scientific objectives would be feasible for a proposed space telescope. C. Robert O'Dell of the University of Chicago headed the team. He viewed the project as an opportunity to establish a permanent orbiting observatory. In 1978, responsibility for the design, development, and construction of the space telescope went to the Marshall Space Flight Center. The Goddard Space Flight Center was chosen to lead the development of the scientific instruments and the ground control center. Marshall selected Perkin-Elmer of Danbury, Connecticut, over Itek and Kodak to develop the optical system and guidance sensors. Lockheed Missiles and Space Company of Sunnyvale, California, was selected over Martin Marietta and Boeing to produce the protective outer shroud and the support systems module for the telescope, as well as to assemble and integrate the finished product.

ESA agreed to furnish the spacecraft solar arrays, one of the scientific instruments (Faint Object Camera), and personnel to support the Space Telescope Science Institute in exchange for 15 percent of the observing time and access to the data from the other instruments. Goddard scientists were selected to develop one instrument, and scientists at the California Institute of Technology, the University of California at San Diego, and the University of Wisconsin were selected to develop three other instruments. The telescope's construction was completed in 1985.

Because of Hubble's complexity, NASA established two new facilities under the direction of Goddard that were dedicated exclusively to the scientific and engineering operation of the telescope. The Space Telescope Operations Control Center at Goddard would serve as the ground control facility for the telescope. The Space Telescope Science Institute, located on the campus of Johns Hopkins University, would perform the science planning for the telescope.

Hubble was originally scheduled for a 1986 launch. The destruction of *Challenger* in 1986, however, delayed the launch for several years. Engineers used the interim period to subject the telescope to intensive testing and evaluation. A series of end-to-end tests involving the Space Telescope Science Institute, Goddard, the Tracking and Data Relay Satellite System, and the spacecraft were performed during that time, resulting in overall improvements in system reliability. The launch would finally occur on April 25, 1990.

After launch, it was discovered that the telescope's primary mirror had a "spherical aberration" that caused out-of-focus images. A mirror defect only one-twenty-fifth the width of a human hair prevented Hubble from focusing all light to a single point. In addition, problems with the solar panels caused degradation in the spacecraft's pointing stability. At first many believed that that the spherical aberration, which was undetected during manufacturing because of a flawed measuring device, would cripple the telescope, but scientists quickly found a way to use computer enhancement to work around the abnormality. A repair mission aboard STS-61 in December 1993 replaced the solar panels and installed corrective lenses, which greatly improved the quality of the images. Table 4–50 outlines the development of the Hubble mission.

The scientific objectives of the Hubble mission were to investigate the composition, physical characteristics, and dynamics of celestial bodies, to examine the formation, structure, and evolution of stars and galaxies, to study the history and evolution of the universe, and to provide a long-term space-based research facility for optical astronomy. In addition, the Space Telescope Advisory Committee identified three key Hubble projects: (1) determine distances to galaxies and the Hubble Constant, (2) conduct a medium-deep survey of the sky, and (3) study quasar absorption lines.

The Hubble Space Telescope is a large Earth-orbiting astronomical telescope designed to observe the heavens from above the interference and turbulence of Earth's atmosphere. It is composed of a 2.4-meter Ritchey-Chretien reflector with a cluster of five scientific instruments at the focal plane of the telescope and the fine guidance sensors. Its scientific instruments can make observations in the ultraviolet, visible, and near-infrared parts of the spectrum (roughly 120-nanometer to one-millimeter wavelengths), and it can detect objects as faint as magnitude 31, with an angular resolution of about one-tenth arcsecond in the visible part

Figure 4–22. Hubble Space Telescope

of the spectrum. The spacecraft is to provide the first images of the surfaces of Pluto and its moon Charon and, by looking back in time and space, to determine how galaxies evolved in the initial period after the Big Bang. The telescope relays data to Earth via the high-gain antennae.

The Hubble Space Telescope is distinguished from ground-based observatories by its capability to observe light in the ultraviolet and near infrared. It also has an order of magnitude better resolution than is capable from within Earth's atmosphere. The telescope has a modular design, allowing on-orbit servicing via the Space Shuttle (Figure 4–22). Over the course of its anticipated fifteen-year operational lifetime, NASA plans several visits by Space Shuttle crews for the installation of new instruments, repairs, and maintenance. Hubble is about the size of a bus—it has a weight of approximately 11,000 kilograms and length of more than thirteen meters. It travels in a 611-kilometer circular orbit with an inclination of twenty-eight and a half degrees.

Compton Gamma Ray Observatory. NASA initiated the Compton Gamma Ray Observatory (CGRO) mission in 1981. It would be the second of NASA's orbiting Great Observatories, following the Hubble Space Telescope. During 1984, NASA completed the critical design reviews on all the instruments, and flight instrument hardware fabrication and assembly began. Also in 1984, NASA completed the spacecraft preliminary design review. In 1985, the design was completed, and NASA conducted the observatory critical design review. Manufacturing began on the structure and mechanisms and nearly completed fabrication of all hardware for

the four scientific instruments. Manufacturing of the mechanical components and electronic systems approached completion during 1987, and the primary structure for the observatory was fabricated and assembled.

CGRO was a NASA cooperative program. The Federal Republic of Germany (the former West Germany), with co-investigator support from The Netherlands, ESA, the United Kingdom, and the United States, had principal investigator responsibility for one of the four instruments. Germany also furnished hardware elements and co-investigator support for a second instrument. NASA provided the remaining instruments and named the observatory in honor of Dr. Arthur Holly Compton, who won the Nobel Prize in physics for work on scattering of high-energy photons by electrons. This process was central to the gamma ray detection techniques of all four instruments.

CGRO was launched on April 5, 1991, aboard the Space Shuttle *Atlantis*. Dedicated to observing the high-energy universe, it would be the heaviest astrophysical payload flown to that time, weighing 15,422 kilograms, or more than fifteen metric tons (Figure 4–23). While Hubble's instruments would operate at visible and ultraviolet wavelengths, CGRO would carry a collection of four instruments that together could detect an unprecedented broad range of gamma rays. These instruments were the Burst and Transient Source Experiment, the Oriented Scintillation Spectrometer Experiment, the imaging Compton Telescope (known as COMPTEL), and the Energetic Gamma Ray Experiment Telescope.

Figure 4–23. Compton Gamma Ray Observatory Configuration

These four instruments would be much larger and more sensitive than any gamma ray telescopes previously flown in space. The large size was necessary because the number of gamma ray interactions that could be recorded was directly related to the mass of the detector. Because the number of gamma ray photons from celestial sources was very small when compared to the number of optical photons, large instruments were needed to detect a significant number of gamma rays in a reasonable amount of time. The combination of these instruments would detect photon energies from 20,000 electron volts to more than 30 billion electron volts. For each of the instruments, an improvement in sensitivity of better than a factor of ten was realized over previous missions.

CGRO mission objectives were to measure gamma radiation from the universe and to explore the fundamental physical processes powering it. The observational objectives of CGRO were to search for direct evidence of the synthesis of the chemical elements, to observe high-energy astrophysical processes occurring in supernovae, neutron stars, and black holes, to locate gamma ray burst sources, to measure the diffuse gamma ray radiation for cosmological evidence of its origin, and to search for unique gamma ray emitting objects. The observatory had a diverse scientific agenda, including studies of very energetic celestial phenomena: solar flares, cosmic gamma ray bursts, pulsars, nova and supernova explosions, accreting black holes of stellar dimensions, quasar emission, and interactions of cosmic rays with the interstellar medium.

Extreme Ultraviolet Explorer. The Extreme Ultraviolet Explorer (EUVE) was an Earth-orbiting sky survey and spectroscopy mission. Its primary objectives were to produce a definitive sky map and catalogue of sources covering the extreme ultraviolet portion of the electromagnetic spectrum and to conduct pointed spectroscopy studies of selected extreme ultraviolet targets. Scientists from the University of California at Berkeley proposed the sky survey experiment for EUVE in 1975 in response to two NASA Announcements of Opportunity. NASA conditionally accepted the Berkeley concept in 1977, pending receipt of adequate funding and completion of implementation studies.

In 1981, the Jet Propulsion Laboratory assumed project management responsibilities. NASA transferred this responsibility to the Goddard Space Flight Center in 1986, following a decision to retrieve the Multimission Modular Spacecraft from the Solar Maximum Mission and refurbish it for use with EUVE. In 1986, when it became evident that the Solar Maximum Mission would reenter Earth's atmosphere before a retrieval mission could be mounted, NASA exercised its option to procure a new spacecraft from Fairchild Space. The resulting Explorer Platform was an upgraded version of the Multimission Modular Spacecraft. Initially, this spacecraft bus would have a dual-launch capability—that is, it could use both Shuttle and Delta launch vehicles. In 1988, NASA decided to launch EUVE on a Delta. Figure 4–24 shows the major elements of the EUVE observatory.

EUVE would conduct the first detailed all-sky survey of extreme ultraviolet radiation between 100 and 900 angstroms, a previously unex-

Figure 4–24. Extreme Ultraviolet Explorer Observatory

plored portion of the electromagnetic spectrum. EUVE would be a twophase mission, with the first six months devoted to scanning the sky to locate and map sources emitting radiation in the extreme ultraviolet range and the remainder of the mission (about twenty-four months) devoted to detailed spectroscopy of sources located during the first phase (Figure 4–25). NASA launched EUVE on a Delta launch vehicle in June 1992. Upon completion of the EUVE mission, plans were to have the Shuttle rendezvous with the Explorer Platform and replace the EUVE payload with the X-ray Timing Explorer (XTE), which would monitor changes in the x-ray luminosity of black holes, quasars, and x-ray pulsars and would investigate physical processes under extreme conditions.¹⁰

Roentgen Satellite. The Roentgen Satellite (ROSAT) was a cooperative project of the West Germany, the United Kingdom, and the United States to perform high-resolution imaging studies of the x-ray sky. The mission's objectives were to study coronal x-ray emissions from stars of all spectral types, to detect and map x-ray emissions from galactic supernova remnants, to evaluate the overall spatial and source count distributions for various x-ray sources, to perform a detailed study of various populations of active galaxy sources, to perform a morphological study of the x-ray emitting clusters of galaxies, and to

¹⁰The Shuttle was not used to launch the X-ray Timing Explorer, which was launched on a Delta rocket in December 1995.

Figure 4–25. Two Phases of the Extreme Ultraviolet Explorer Mission

perform detailed mapping of the local interstellar medium by the extreme ultraviolet survey.

The United States would provide a high-resolution imaging instrument and launch services. West Germany would contribute the spacecraft and the main telescope, and the United Kingdom would provide the widefield camera. The ROSAT project originated from a 1975 proposal to the Bundeministerium für Forschungs und Technologie (BMFT) from scientists at the Max Planck Institut fuer Extraterrestrische Physik (MPE). The original objective was to conduct an all-sky survey with an imaging x-ray telescope of moderate angular resolution. Between 1977 and 1982, German space companies carried out extensive advance studies and preliminary analyses. Simultaneously, the Carl Zeiss Company in Germany initiated the development of a large x-ray mirror system, and MPE began to develop the focal plane instrumentation.

In 1979, following the regulations of ESA convention, BMFT announced the opportunity for ESA member states to participate by offering the possibility of flying a small, autonomous experiment together with the large x-ray telescope. In response to this announcement, a consortium of United Kingdom institutes led by Leicester University proposed an extreme ultraviolet wide-field camera to extend the spectral band measured by the x-ray telescope to longer wavelengths. The British Science and Engineering Research Council approved this experiment, and in 1983, BMFT and the council signed an MOU.

In 1981 and 1982, NASA and BMFT conducted negotiations for U.S. participation in the ROSAT mission, with the resulting MOU signed in 1982. Under this MOU, NASA agreed to provide the ROSAT launch with the Space Shuttle and a focal-point high-resolution imager detector.

SPACE SCIENCE

BMFT's responsibilities included the design, fabrication, test, and integration of the spacecraft; mission control, tracking, and data acquisition after separation from the Shuttle; and the initial reduction and distribution of data. NASA would provide, at minimal charge, a flight model copy of the high-resolution imager previously flown on the 1978 High Energy Astronomy Observatories mission (HEAO-2). In 1983, NASA Headquarters issued a sole-source contract to the Smithsonian Astrophysical Observatory to build flight and engineering model highresolution imagers and provide integration and launch support. In May 1985, NASA transferred this contract to the Goddard Space Flight Center for administration and implementation.

The *Challenger* accident led to a reconsideration of schedules and the launch vehicle. In 1987, NASA and BMFT decided to launch with a Delta launch vehicle. Germany redesigned the spacecraft appropriately, and the United States developed a new three-meter fairing for the Delta II nose section to accommodate ROSAT's maximum cross-sectional dimension. ROSAT was launched on a Delta rocket in June 1990. Figure 4–26 shows the ROSAT flight configuration.

Cosmic Background Explorer. The development of the Cosmic Background Explorer (COBE) began during fiscal year 1982. Developed by NASA's Goddard Space Flight Center, COBE would measure the diffuse infrared and microwave radiation from the early universe, to the limits set by our astrophysical environment. The spacecraft would carry out a definitive, all-sky exploration of the infrared background radiation of the universe between the wavelengths of one micrometer and 9.6 millimeters. The detailed information that COBE was to provide on the spectral and

Figure 4-26. ROSAT Flight Configuration

spatial distribution of low-energy background radiation was expected to yield significant insight into the basic cosmological questions of the origin and evolution of the universe. COBE would measure the residual three-Kelvin background radiation believed to be a remnant of the "Big Bang" origin of the universe.

COBE, as initially proposed, was to have been launched by a Delta rocket. However, once the design was under way, the Shuttle was adopted as the NASA standard launch vehicle. After the Challenger accident occurred in 1986, ending plans for Shuttle launches from the west coast, NASA redesigned the spacecraft to fit within the weight and size constraints of the Delta. Three of the subsystems that on the Shuttle would have been launched as fixed components-the solar arrays, radiofrequency/thermal shield, and antenna—had to be replaced by deployable systems. The final COBE satellite had a total mass of 2,270 kilograms, a length of 5.49 meters, and a diameter of 2.44 meters with Sun-Earth shield and solar panels folded (8.53 meters with the solar panels deployed) rather than the 4,990 kilograms in weight and 4.3 meters in diameter allowed with a Shuttle launch. (Figure 4–27 shows the COBE observatory.) In 1988, instrument development was completed, the flight hardware delivered, and the observatory integration completed.

COBE was launched aboard a Delta rocket on November 18, 1989, from the Western Space and Missile Center at Vandenberg Air Force Base, California, into a Sun-synchronous orbit. Its orbital alignments are shown in Figure 4–28. COBE carried three instruments: a far-infrared absolute spectrophotometer to compare the spectrum of the cosmic microwave background radiation with a precise blackbody, a differential microwave radiometer to map the cosmic radiation precisely, and a diffuse infrared background experiment to search for the cosmic infrared background radiation. COBE has transmitted impressive data that strongly supports the Big Bang theory of the origin of the universe.

Planetary Exploration Program

NASA launched no new planetary exploration missions from 1979 to 1988. However, missions that had been launched earlier continued returning outstanding data to scientists on the ground. Details of the early years of these missions can be found in Volume III of the *NASA Historical Data Book*.¹¹ NASA also continued preparing for missions that had originally been scheduled for launch during this decade but were delayed by the *Challenger* accident.

The Planetary Exploration program encompassed the scientific exploration of the solar system, including the planets and their satellites, comets and asteroids, and the interplanetary medium. The program objectives were to:

¹¹Ezell, NASA Historical Data Book, Volume III.

Figure 4–27. Cosmic Background Explorer Observatory (Exploded View)

- Determine the nature of planets, comets, and asteroids as a means for understanding the origin and evolution of the solar system
- Understand Earth better through comparative studies with the other planets
- Understand how the appearance of life in the solar system was related to the chemical history of the solar system
- Provide a scientific basis for the future use of resources available in near-Earth space

NASA's strategy emphasized equally the Earth-like inner planets, the giant gaseous outer planets, and the small bodies (comets and asteroids). Missions to these planetary bodies began with reconnaissance and exploration to achieve the most fundamental characterization of the bodies and proceeded to detailed study. In general, the reconnaissance phase of inner planet exploration began in the 1960s and was completed by the late 1970s. Most activities that occurred in the 1980s involved more detailed study of the inner planetary bodies or the early stages of study about the outer planets and small bodies.

Figure 4–28. Cosmic Background Explorer Orbital Alignments

Voyager Program

The objectives of the Voyager missions were to conduct comparative studies of the Jupiter and Saturn planetary systems, including the satellites and Saturn's rings, and to study the interplanetary medium between Earth and Saturn. Voyager 1 encountered both planets, using Jupiter's gravity to go on to Saturn in 1980, scanned Saturn's primary moon Titan, and was flung by Saturn's gravity up out of the ecliptic plane. Voyager 2 followed Voyager 1 to Jupiter and Saturn, and it then proceeded to Uranus and Neptune, using the gravity of each previous planet to go on to the next one. This outer planet "grand tour" required a planetary alignment that repeats only once every 176 years.¹²

NASA launched Voyager 1 on September 5, 1977. It began its measurements of the Jovian system on January 6, 1979, with its closest

¹²"Handy Facts," *The Voyager Neptune Travel Guide*, NASA Jet Propulsion Laboratory, JPL Publication 89-24, June 1, 1989.

approach occurring on March 5, 1979, when it reached within 277,400 kilometers of the surface. During that year, the spacecraft returned more than 18,000 images of Jupiter and its four Galilean planets and mapped the accessible portion of Jupiter's complex magnetosphere.

Voyager discovered the presence of active volcanoes on the Galilean moon Io. Volcanic eruptions had never before been observed on a world other than Earth. The Voyager cameras identified at least nine active volcanoes on Io, with plumes of ejected material extending as far as 280 kilometers above the moon's surface. Io's orange and yellow terrain probably resulted from the sulfur-rich materials brought to the surface by volcanic activity that resulted from tidal flexing caused by the gravitational pull among Io, Jupiter, and the other three Galilean moons.

The spacecraft encountered Saturn in November 1980, approaching within 123,910 kilometers of the surface. Voyager 1 found hundreds, and perhaps thousands, of elliptical rings and one that appeared to be seven twisted or braided ringlets. It passed close to its ring system and to Titan, and it also provided a first close-up view of several of its other moons. Voyager 1 determined that Titan had a nitrogen-based atmosphere with methane and argon—one more similar to Earth's in composition than the carbon dioxide atmosphere of Mars and Venus. Titan's surface temperature of -179 degrees Celsius implied that there might be water-ice islands rising above oceans of ethane-methane liquid or sludge. However, Voyager 1's cameras could not penetrate the moon's dense clouds. Following this encounter, the satellite began to travel out of the solar system as its instruments studied the interplanetary environment.

A Titan-Centaur launched Voyager 2 on August 20, 1977. Its closest approach to Jupiter occurred on July 9, 1979, when it reached 277,400 kilometers from Jupiter's surface. The spacecraft provided patterns of Jupiter's atmosphere and high-resolution views of volcanoes erupting on Io and views of other Galilean satellites and clear pictures of Jupiter's ring.

Voyager 2 came closest to Saturn on August 25, 1981, approaching 100,830 kilometers, and returned thousands of high-resolution images and extensive data. It obtained new data on the planets, satellites, and rings, which revolutionized concepts about the formation and evolution of the solar system. Additional scientific detail on the planet returned by the spacecraft suggested that the rings around Saturn were alternating bands of material at increased and decreased densities. Saturn's eighteenth moon was discovered in 1990 from images taken by Voyager 2 in 1981.

Leaving Saturn's neighborhood, the spacecraft continued on its trip and approached Uranus on January 24, 1986, at a distance of 81,440 kilometers. It was the first spacecraft to look at this giant outer planet. From Uranus, Voyager 2 transmitted planetary data and more than 7,000 images of the planet, its rings, and moons. Voyager 2 discovered ten new moons, twenty new rings, and an unusual magnetic field around the planet. Voyager 2 discovered that Uranus's magnetic field did not follow the usual north-south axis found on the other planets. Instead, the field was tilted sixty degrees and offset from the planet's center. Uranus's atmosphere consisted mainly of hydrogen, with approximately 12 percent helium and small amounts of ammonia, methane, and water vapor. The planet's blue color occurred because the methane in its atmosphere absorbed all other colors.

On its way from Uranus to Neptune, Voyager 2 continued providing data on the interplanetary medium. In 1987, Voyager 2 observed Supernova 1987A and continued intensive stellar ultraviolet astronomy in 1988. Toward the end of 1988, Voyager 2 returned its first color images of Neptune. Its closest approach to Neptune occurred on August 25, 1989, approaching within 4,850 kilometers. The spacecraft then flew to the moon Triton. During the Neptune encounter, it became clear that the planet's atmosphere was more active than that of Uranus. Voyager 2 also provided data on Neptune's rings. Observations from Earth indicated that there were arcs of material in orbit around the planet. It was not clear from Earth how Neptune could have arcs and how these could be kept from spreading out into even, unclumped rings. Voyager 2 detected these arcs, but discovered that they were, in fact, part of thin, complete rings. Leaving Neptune's environment, Voyager 2 continued its journey away from the Sun.

Viking Program

The objective of Vikings 1 and 2 were to observe Mars from orbit and direct measurements in the atmosphere and on the surface, with emphasis on biological, chemical, and environmental data relevant to the existence of life on the planet. NASA had originally scheduled Viking 1 for an equatorial region and Viking 2 for the middle latitudes. NASA launched Viking 1 on August 20, 1975, and followed with the launch of Viking 2 on September 9. Their landings on Mars in the summer of 1976 set the stage for the next step of detailed study of the planet, the Mars Observer mission, which NASA approved in 1984.

The Viking orbiters and landers exceeded their design lifetime of 120 and ninety days, respectively. Viking Orbiter 2 was the first to fail on July 24, 1978, when a leak depleted its attitude-control gas. Viking Lander 2 operated until April 12, 1980, when it was shut down because of battery degeneration. Viking Orbiter 1 quit on August 7, 1980, when the last of its attitude-control gas was used up. Viking Lander 1 ceased functioning on November 13, 1983.

Pioneer Program

Pioneers 10 and 11. NASA launched Pioneers 10 and 11 in the 1972 and 1983, respectively, and the spacecraft continued to return data throughout the 1980s. Their objectives were to study interplanetary char-

acteristics (asteroid/meteoroid flux and velocities, solar plasma, magnetic fields, and cosmic rays) beyond two astronomical units and to determine characteristics of Jupiter (magnetic fields, atmosphere, radiation balance, temperature distribution, and photopolarization). Pioneer 11 had the additional objective of traveling to Saturn and making detailed observations of the planet and its rings.

The flybys of Jupiter by Pioneers 10 and 11 returned excellent data, which contributed significantly to the success of the 1979 flybys of two Voyager spacecraft through the Jovian system. The spacecraft made numerous discoveries as a result of these encounters, and they demonstrated that a safe, close passage by Saturn's rings was possible. The first close-up examination of Saturn occurred in September 1979, when Pioneer 11 reached within 21,400 kilometers of that planet after receiving a gravity-assist at Jupiter five years earlier.

During 1979, Pioneer 10 traveled 410 million kilometers on its way out of the solar system and continued to return basic information about charged particles and electromagnetic fields of interplanetary space where the Sun's influence was fading. It crossed Uranus's orbit in July 1979 on its trip out of the solar system. The spacecraft crossed Neptune's orbit in May 1983, and on June 13, 1983, it became the first artificial object to leave the solar system, heading for the star Aldebaran of the constellation Taurus. During 1985, it returned data on the interstellar medium at a distance of nearly thirty-five astronomical units from the Sun. This was well beyond the orbit of Neptune and in the direction opposite to the solar apex, which is the direction of the Sun's motion with respect to nearby stars. Through 1985 and 1986, it continued to return data, aiming to detect the heliopause, the boundary between the Sun's magnetic influence and interstellar space, and to measure the properties of the interplanetary medium well outside the outer boundary of the solar system.

Pioneer 11, launched in 1973, headed in the opposite direction and completed the first spacecraft journey to Saturn in September 1979. It discovered that the planet radiates more heat than it received from the Sun and also discovered Saturn's eleventh moon, a magnetic field, and two new rings. The spacecraft continued to operate and return data as it moved outward from the Sun during the next several years. By 1987, Pioneer 11 was approaching the orbit of Neptune.

Pioneer Venus. In 1978, NASA launched two Pioneer probes to Venus. Their objectives were to jointly conduct a comprehensive investigation of the atmosphere of Venus. Pioneer Venus 1 would determine the composition of the upper atmosphere and ionosphere, observe the interaction of the solar wind with the ionosphere, and measure the planet's gravitational field. Pioneer Venus 2 would conduct its investigations with hard-impact probes—one large probe, three small probes, and the space-craft bus would take in situ measurements of the atmosphere on their way to the surface to determine the nature and composition of clouds, the composition and structure of the atmosphere, and the general circulation patterns of the atmosphere.

Pioneer Venus 1 went into orbit around Venus in late 1978 and completed its primary mission in August 1979. A radio altimeter provided the first means of seeing through the planet's dense cloud cover and determining surface features over almost the entire planet. It also observed the comets and obtained unique images of Halley's Comet in 1986, when the comet was behind the Sun and unobservable from Earth. The spacecraft also measured the solar wind interaction, which was found to be comet-like.

Pioneer Venus 2 released its payload of hard-landers in November 1978. These probes were designated for separate landing zones so that investigators could take on-site readings from several areas of the planet during a single mission.

The Pioneer Venus mission carried the study of the planet beyond the reconnaissance stage to the point where scientists were able to make a basic characterization of the massive cloud-covered atmosphere of Venus, which contained large concentrations of sulfur compounds in the lower atmosphere. This characterization also provided some fundamental data about the formation of the planet. However, because of the opacity of the atmosphere, information about the Venus surface character remained sparse. Therefore, in 1981, NASA proposed the Venus Orbiting Imaging Radar mission, which would use a synthetic aperture radar instrument on a spacecraft in low circular orbit to map at least 70 percent of the surface of Venus at a resolution better than about 400 meters. The radar sensor was also to collect radio emission and altimetry data over the imaged portions of Venus's surface. However, the Venus Orbiting Imaging Radar mission was canceled in 1982.

Magellan

In 1983, NASA replaced the Venus Orbiting Imaging Radar mission with a more focused, simpler mission, provisionally named the Venus Radar Mapper. Nonradar experiments were removed from the projected payload, but the basic science objectives of the Venus Orbiting Imaging Radar mission—investigation of the geological history of the surface and the geophysical state of the interior of Venus—were retained. NASA selected Hughes Aircraft Company as the prime contractor for the radar system, Martin Marietta Astronautics Group had responsibility for the spacecraft, and the Jet Propulsion Laboratory managed the mission. In 1986, NASA renamed the mission Magellan in honor of Ferdinand Magellan.

The objective of the Magellan mission was to address fundamental questions regarding the origin and evolution of Venus through global radar imagery of the planet. Magellan was also to obtain altimetry and gravity data to accurately determine Venus's topography and gravity field, as well as internal stresses and density variations. The detailed surface morphology of Venus was to be analyzed to compare the evolutionary history of Venus with that of Earth. The spacecraft configuration is shown in Figure 4–29.

Figure 4–29. Magellan Spacecraft Configuration

Originally scheduled for a 1988 launch, NASA remanifested Magellan after the *Challenger* accident and the elimination of the Centaur upper stage. The launch took place on May 4, 1989, on STS-30, with an inertial upper stage boosting the spacecraft into a Venus transfer orbit (Figure 4–30). Magellan would reveal a landscape dominated by volcanic features, faults, and impact craters. Huge areas of the surface would show evidence of multiple periods of lava flooding with flows lying on top of previous ones. The Magellan mission would end on October 12, 1994, when the spacecraft was commanded to drop lower into the fringes of the Venusian atmosphere during an aerodynamic experiment, and it burned up, as expected. Magellan would map 98 percent of the planet's surface with radar and compile a high-resolution gravity map of 95 percent of the planet.

Project Galileo

Project Galileo had its genesis during the mid-1970s. Space scientists and NASA mission planners at that time were considering the next steps in outer planet exploration. Choosing Jupiter, which was the most readily accessible of the giant planets, as the next target, they realized that an advanced mission should incorporate a probe to descend into the atmosphere and a relatively long-lived orbiter to study the planet, its satellites, and the Jovian magnetosphere. NASA released the Announcement of Opportunity in 1976. The science payload was tentatively selected in August 1977 and confirmed in January 1979. Congress approved the Jupiter orbiter-probe mission in 1977. The program was renamed Project

Figure 4-30. Magellan Orbit

Galileo in honor of the Italian astronomer who discovered the four large satellites of Jupiter.

Project Galileo was a cooperative effort between the United States and the Federal Republic of Germany (West Germany). A wide range of science experiments, chosen to make maximum progress beyond the Voyager finds, was selected. The mission was originally planned for an early 1985 launch on a Shuttle/Centaur upper stage combination but was delayed first to 1986 and then to 1989 because of the *Challenger* accident and the cancellation of the Centaur upper stage. Planned to operate for approximately twenty months, the Galileo spacecraft was launched October 18, 1989, on STS-34, assisted by an inertial upper stage on a trajectory using gravity assists at Venus and Earth. The orbiter would be able to make as many as ten close encounters with the Galilean satellites.

Project Galileo would send a sophisticated, two-part spacecraft to Jupiter to observe the planet, its satellites, and its space environment. The objective of the mission was to conduct a comprehensive exploration of Jupiter and its atmosphere, magnetosphere, and satellites through the use of both remote sensing by an orbiter and in situ measurements by an atmospheric probe. The scientific objectives of the mission were based on recommendations by the National Academy of Sciences to provide continuity, balance, and orderly progression of the exploration of the solar system.

Galileo would make three planetary gravity-assist swingbys (one at Venus and two at Earth) needed to carry it out to Jupiter in December 1995. (Figure 4–31 shows the Galileo trajectories.) There, the spacecraft would be the first to make direct measurements from a heavily instrumented probe within Jupiter's atmosphere and the first to conduct long-term observations of the planet, its magnetosphere, and its satellites from orbit.

The Galileo spacecraft would have three segments to investigate the planet's atmosphere, the satellites, and the magnetosphere. The probe

Figure 4-31. Galileo Mission

would descend into the Jovian atmosphere; a nonspinning section of the orbiter carrying cameras and other aimed sensors would image the planet and its satellites; and the spinning main orbiter spacecraft that carried fixed instruments would sense and measure the environment directly as the spacecraft flew through it (Figure 4–32). Unfortunately, after launch, the high-gain antenna on the probe would fail, reducing the amount of data that could be transmitted. Even so, the Galileo orbiter continued to transmit data from the probe throughout 1996.

Ulysses

The International Solar Polar Mission (renamed Ulysses in 1984) was a joint mission of NASA and ESA, which provided the spacecraft and some scientific instrumentation. NASA provided the remaining scientific instrumentation, the launch vehicle and support, tracking support, and the radioisotope thermoelectric generator. The mission was designed to obtain the first view of the Sun above and below the plane in which the planets orbit the Sun. The mission would study the relationship between the Sun and its magnetic field and particle emissions (solar wind and cosmic rays) as a function of solar latitude to provide a better understanding of solar activity on Earth's weather and climate. Figure 4–33 shows the spacecraft configuration.

The basis for the Ulysses project was conceived in the late 1950s by J.A. Simpson, a professor at the University of Chicago. Initially planned as a two-spacecraft mission between NASA and ESA, this mission, called "Out of Ecliptic," would allow scientists to study regions of the Sun and the surrounding space environment above the plane of the ecliptic that had never before been studied. Later, the project name was changed to the

Figure 4-32. Galileo Spacecraft

International Solar Polar Mission. Delays in Shuttle development and concerns over the effectiveness of the inertial upper stage led to a House Appropriations Committee recommendation in the 1980 Supplemental Appropriations Bill that the International Solar Polar Mission be terminated. Later, in 1981, budget cuts led NASA to cancel the U.S. spacecraft contribution to the joint mission, which was restructured to a single ESA spacecraft mission. This was the first time that NASA had reneged on an international commitment. The ESA spacecraft completed its flight acceptance tests in early 1983 and was placed in storage.

In 1984, the International Solar Polar Mission was renamed Ulysses. It was originally scheduled to launch in 1986 but was another victim of the *Challenger* accident and the elimination of the Centaur upper stage. The launch took place in October 1990 using the Shuttle and both an inertial upper stage and payload assist module upper stage. The launch services were contributed by NASA. Table 4–51 presents an overview of the history of the Ulysses project.

Mars Geochemical-Climatology Orbiter/Mars Observer

The Mars Observer mission was the first in a series of planetary observer missions that used a lower cost approach to inner solar system exploration. This approach starts with a well-defined and focused set of science objectives and uses modified production-line Earth-orbital spacecraft and instruments with previous spaceflight heritage. The objectives of the Mars Observer mission were to extend and complement the data

Figure 4-33. Ulysses Spacecraft Configuration

acquired by the Mariner and Viking missions by mapping the global surface composition, atmospheric structure and circulation, topography, figure, gravity, and magnetic fields of Mars to determine the location of volatile reservoirs and observe their interaction with the Martian environment over all four seasons of the Martian year.

The Mars Observer was launched on September 25, 1992. It lost contact with Earth on April 21, 1993, three days before it was to enter orbit around Mars.

Small Planetary Bodies

In 1985, NASA made the first close-up studies of the solar system's comets and asteroids. These objects may represent unaltered original solar system material preserved from the geological and chemical changes that took place in even smaller planetary bodies. By sampling and studying comets and asteroids, scientists could begin to inquire into the origin of the solar system itself. These efforts began with the encounter of Comet Giacobini-Zinner by the International Cometary Explorer spacecraft in September 1985 and continued with the 1986 encounters of Comet Halley by U.S. and foreign spacecraft and by intensive studies of the comet from ground-based observatories coordinated through the International Halley Watch.

Table	e 4–1. Total Space Sci	ence Funding History (in thousands of dollars	(-
t Itom	Doguost	Authomization	Annonniofion	Programmed
et tiem	513,200	515,200	Appropriation —	(Actual) 505,400
nomy	285,500	285,500	a	282,900
ary	187,100	187,100	q	182,400
	40,600	42,600	c	40,100
ce	601,600	601,600		600,500
momy	337,500	337,500	p	336,800
ation	220,200	220,200	в	219,900
	43,900	43,900	, J	43,800
nce	561,000	577,500	$\textbf{541,488}_{g}$	541,488
onomy	346,600 h	352,700	323,700 i	323,700
ation	175,300j	179,600	$175,600 \ k$	175,600
	39,100 /	45,200	42,188 m	42,188
lce	584,200	592,200		588,133
nomy	325,400 n	333,400	0	322,433
ation	215,300 p	215,300	<i>b</i>	210,000
	43,500 r	43,500	43,500 s	39,500
nce	682,000	707,000	697,800	712,400
onomy	471,700	473,700	461,700 t	470,300
ation	154,600	177,600	$180,400 \ u$	186,400
	55,700	55,700	55,700	55,700
lce	779,000	841,500	843,000	843,000
onomy	514,600	562,100	578,600	567,600
ation	205,400	220,400	205,400	217,400
	59,000	59,000	59,000	58,000

					Programmed
	Year and Budget Item	Request	Authorization	Appropriation	(Actual)
ľ	1985 - Space Science	1,027,400	1,056,400	1,037,400	1,030,400
	Physics and Astronomy	677,200	696,200	680,200	677,200
	Planetary Exploration	286,900	296,900	293,900	290,900
	Life Sciences	63,300	63,300	63,300	62,300
	1986 - Space Science	1,061,400	1,042,400	1,027,400	989,000
	Physics and Astronomy	630,400	620,400	605,400	569,300
	Planetary Exploration	359,000	354,000	354,000	353,600
	Life Sciences	72,000	68,000 v	68,000	66,100
	1987 - Space Science	973,900	978,000	972,500	985,000
	Physics and Astronomy	529,900 w	529,400	528,500	554,000
	Planetary Exploration	374,300 x	374,300	374,300	359,200
	Life Sciences	69,700 y	$74,300\ z$	69,700	71,800
	1988 - Space Science	949,000	976,700	984,000	1,014,300
	Physics and Astronomy	567,100	581,800	577,100	614,400
	Planetary Exploration	307,300	320,300	332,300	327,700
	Life Sciences	74,600	74,600	74,600	72,200
a	Undistributed. Total $R\&D = \$3,477,200,00$	0. House Appropriations (Committee amount = $$284,900$	000. Senate Appropriations Cor	mittee amount $=$ \$265,500,000.
q	Undistributed. Total $R\&D = \$3,477,200,00$	0. House Appropriations 6	Committee amount = $\$181,400$	000. Senate Appropriations Cor	mittee amount = $$177,100,000$.
0	Undistributed. Total $R\&D = \$3.477.200.00$	0. House Appropriations (Committee amount = $$40.600.0$	00. Senate Annronriations Com	mittee amount = $$40.600.00$.

Table 4–1 continued

5 hh ndoudd

Undistributed. Total R&D =\$4,091,086,000.

Undistributed. Total R&D = \$4,091,086,000.

Undistributed. Total R&D = \$4,091,086,000.

Reflects recission.

Amended budget submission. Initial budget submission = \$438,700,000.

Reflects recission. k j. i. hos f e d

Amended budget submission. Initial budget submission = \$179,600,000.

Reflects recission.

	Table 4–1 continued
1	Amended budget submission. Initial budget submission = $$49,700,000$.
ш	Reflects recision.
и	Amended budget submission. Initial budget submission = \$451,400,000.
0	Undistributed. Total FY 1982 R&D basic appropriation = \$4,973,100. House Appropriations Committee allocated \$325,400,000 for Physics and Astronomy; Senate
	Appropriations Committee allocated \$\$340,400,000 for Physics and Astronomy. Effect of General Provision Section 501 reduced R&D appropriation to \$4,740,900,000.
	Report of Conference Committee regarding supplemental appropriation titled "Making Urgent Supplemental Appropriations for the Fiscal Year Ending September 30, 1982,
	and for Other Purposes," H.R. 6685, dated July 15, 1982, allocates \$325,200,000 for Physics and Astronomy (including \$40,000,000 for Shuttle-Spacelab payloads).
d	Amended budget submission. Initial budget submission = \$245,100,000.
d	Undistributed. Total FY 1982 R&D basic appropriation = \$4,973,100; appropriation reflecting effect of General Provision Section 501 = \$4,740,900. Report of Conference
	Committee regarding supplemental appropriation titled "Making Urgent Supplemental Appropriations for the Fiscal Year Ending September 30, 1982, and for Other
	Purposes," H.R. 6685, dated July 15, 1982, allocates \$205,000,000 for Planetary Exploration.
r	Amended budget submission. Initial budget submission = \$49,200,000.
S	Indicates basic appropriation for Life Sciences. Appropriation that reflects effects of General Provision Section 501 is undistributed. Report of Conference Committee
	regarding supplemental appropriation titled "Making Urgent Supplemental Appropriations for the Fiscal Year Ending September 30, 1982, and for Other Purposes," H.R. 6685, dated July 15, 1982, allocates \$39,500,000 for Life Sciences.
t	Senate Appropriations Committee increased amount by \$38 million for Physics and Astronomy and for Planetary Exploration, of which not less than \$5 million was to be
	used for Physics and Astronomy. Senate Appropriations Conference Committee retained \$5 million for Physics and Astronomy but reduced remaining \$33 million to
	\$25 million in final appropriation.
п	See footnote "p" above.
И	Congressional action reduced authorized amount by \$4,000,000 (undistributed).
Й	Amended budget submission. Original submission = \$539,400,000.
x	Amended budget submission. Original submission = \$323,300,000.
y	Amended budget submission. Original submission = \$74,700,000.
N	Congressional action reduced authorized amount by \$400,000 (undistributed) (Authorization Committee acted on original budget submission of \$74,700,000).

Budget					
Category/Year	1979	1980	1981	1982	1983
e Science	505,400	600,500	541,488	588,133	712,400
hysics and Astronomy	282,900	336,800	323,700	322,433	470,300
unar and Planetary a	182,400	219,900	175,600	210,000	186,400
ife Sciences	40,100	43,800	42,188	39,500	55,700
Budget					
lategory/Year	1984	1985	1986	1987	1988
e Science	843,000	1,030,400	989,000	985,000	1,014,300
hysics and Astronomy	567,600	677, 200	569,300	554,000	614,400
unar and Planetary	217,400	290,900	353,600	359,200	327,700
ife Sciences	58,000	62,300	66,100	71,800	72,200

SPACE SCIENCE

425

Dev	еюртені ги	naing fisiory (i	n inousanas oj ac	mars)
Year (Fiscal)	Submission	Authorization	Appropriation	Programmed
				(Actual)
1979	11,400	11,400	а	10,647
1980	4,800	4,800	b	2,100
a Undistribut	ad House and Se	nata appropriations as	mmittage allocated \$11	400.000

Table 4–3. High Energy Astronomy Observatories Development Funding History (in thousands of dollars)

a Undistributed. House and Senate appropriations committees allocated \$11,400,000.

b Undistributed.

 Table 4–4. Solar Maximum Mission Development Funding History (in thousands of dollars)

	(, , ,	
Year (Fiscal)	Submission	Authorization	Appropriation	Programmed
				(Actual)
1979	16,200	16,200	а	16,700
1980	600	600	b	3,100

a Undistributed. House and Senate appropriations committees allocated \$16,200,000.

b Undistributed.

Year (Fiscal)	Submission	Authorization	Appropriation	Programmed
				(Actual)
1979	79,200	79,200	b	79,200
1980	112,700	112,700	С	112,700
1981	119,300	119,300	119,300	119,300
1982	119,500	119,500	119,500	121,500
1983	137,500	137,500	137,500	182,500
1984	120,600	165,600 d	165,600	195,600
1985	195,000	195,000	195,000	195,000
1986	127,800	127,800	127,800	125,800
1987	95,900 e	95,900	95,900	96,000
1988	98,400	98,400	93,400	93,100

Table 4–5. Space Telescope Development Funding History (in thousands of dollars) a

a Renamed Hubble Space Telescope Development in FY 1986 submission.

b Undistributed. House Appropriations Committee allocated \$64,200,000. Senate Appropriations Committee allocated \$79,200,000.

c Undistributed.

 d House Authorization Committee increased amount for development of space telescope by \$47 million; Senate Authorization Committee increased amount for space telescope by \$50 million to pay for cost overruns. Conference Committee reduced Senate authorization by \$5 million.

e Amended budget submission. Original submission = \$27,900,000.

	(111	mousunus oj uc	nurs) u	
Year (Fiscal)	Submission	Authorization	Appropriation	Programmed
				(Actual)
1979	13,000	13,000	b	12,500
1980	50,000	50,000	С	47,900
1981	39,600 d	39,600	28,000 e	28,000
1982	5,000 f	5,000	g	5,000 h
1983	21,000	21,000	6,000	6,000
1984 i		See Table 4–17		

Table 4–6. Solar Polar Mission Development Funding History(in thousands of dollars) a

a Renamed International Solar Polar Mission in FY 1980.

b Undistributed. House Appropriations Committee allocated \$8,000,000. Senate Appropriations Committee allocated \$13,000,000.

c Undistributed.

d Amended budget submission. Initial budget submission = \$82,600,000. Decrease reflects program descoping that took place in mid-1980 to contain the amount of cost growth because of change in launch date from 1983 to 1985. The change resulted from the FY 1981 budget amendment (*NASA FY 1982 Budget Estimate*, International Solar Polar Mission Development, Objectives and Status, pp. RD 4–12).

e Reflects recission.

f Amended budget submission. Initial budget submission = \$58,000,000. Decrease reflects
 NASA's decision to terminate the development of the U.S. spacecraft for the mission.

g Undistributed. Total FY 1982 R&D appropriation = \$4,973,100,000 (basic appropriation).

h Programmed amount placed under Planetary Exploration funding beginning in FY 1982.

i Became part of Planetary Exploration program. See Table 4–7.

Year (Fiscal)	Submission	Authorization	Appropriation	Programmed (Actual)
1981	19,100	19,100	8,200 a	8,200
1982	8,000 b	8,000	8,000	8,000
1983	34,500	34,500	34,500	34,500
1984	89,800	89,800	89,800	85,950
1985	120,200	120,200	120,200	117,200
1986	87,300	87,300	87,300	85,300
1987	51,500	51,500	51,500	50,500
1988	49,100	49,100	49,100	53,400

 Table 4–7. Gamma Ray Observatory Development Funding History (in thousands of dollars)

a Reflects recission.

b Amended budget submission. Initial budget submission = \$52,000,000.

	(5	, ,	
Year (Fiscal)	Submission	Authorization	Appropriation	Programmed (Actual)
1979	38,300	38,300	С	34,900
1980	41,300	41,300	d	40,600
1981	29,100	29,100	27,400 e	27,400
1982	35,000 f	43,000	g	47,556
1983	81,400	81,400	81,400	81,000
1984	92,900	88,400 h, i	92,900	80,900
1985	105,400	113,400	105,400	105,400
1986	135,500	125,500	110,500	89,400
1987	84,600 j	84,100	84,600	72,800 k
1988	75,400	75,400	80,400	47,800 <i>l</i>

Table 4–8. Shuttle/Spacelab Payload Development Funding History(in thousands of dollars) a, b

a Included mission management beginning FY 1981.

b Incorporated Space Station Payload Development and mission management beginning in FY 1986.

c Undistributed. Both House and Senate appropriations committees allocated \$38,300,000.

d Undistributed.

e Reflects recission.

f Amended budget submission. Initial budget submission = \$51,800,000.

g Undistributed. FY 1982 R&D basic appropriation = \$4,973,100. R&D appropriation reflecting effects of General Provision Section 501 = \$5,740,900. House Appropriations Committee allocation for Shuttle/Spacelab Payload Development = \$35,000,000. Senate Appropriations Committee allocation for Shuttle/Spacelab Payload Development = \$40,000,000.
 Supplemental appropriations bill Conference Committee report indicates allocation of \$40,000,000 for Shuttle/Spacelab Payload Development.

h Senate Authorization Committee reduced amount authorized for solar optical telescope by \$1.6 million to offset space telescope increases and added \$5 million for space plasma laboratory. Conference Committee added \$2.5 million for space plasma laboratory and decreased by \$7 million amount authorized for solar optical telescope.

i Amended budget submission. Original budget submission = \$95,400,000.

j Amended budget submission. Original budget submission = \$115,100,000.

k Included \$5 million for astrophysics payloads and \$4.6 million for space physics payloads.

l Additional \$8.1 million for astrophysics payloads and \$9.9 million for space physics payloads were added to programmed amount.

Year (Fiscal)	Submission	Authorization	Appropriation	Programmed
				(Actual)
1979	29,800	29,800	a	31,288
1980	30,400	30,400	b	32,300
1981	33,000	33,000	33,000	33,300
1982	36,600	36,600	36,600	33,300
1983	34,300	34,300	34,300	34,300
1984	48,700	48,700	48,700	48,700
1985	51,900	51,900	51,900	51,900
1986	55,200	55,200	55,200	48,200
1987	56,700	56,700	56,700	55,700
1988	60,300	70,300	70,300	67,900

Table 4–9. Explorer Development Funding History (in thousands of dollars)

a Undistributed. Both House and Senate appropriations committees allocated \$29,800,000 for Explorer Development.

b Undistributed.

Table 4–10.	Physics a	and Astro	onomy M	Aission	Operations	and Data
Ana	lysis Fun	ding Hist	ory (in	thousan	nds of dolla	rs)

Year (Fiscal)	Submission	Authorization	Appropriation	Programmed
				(Actual)
1979	32,400	32,400	а	25,453
1980	36,500	36,500	b	37,100
1981	38,900	38,900	38,900	38,900
1982	47,000 c	47,000	47,000	45,300
1983	85,600	86,600 d	85,600	61,400
1984	79,500	80,500 e	79,500	68,100
1985	109,100	109,100	109,100	109,100
1986	119,900	119,900	119,900	111,700
1987	125,700 f	125,700	125,700	131,000
1988	128,100	128,100	128,100	140,500

a Undistributed. Both House and Senate appropriations committees allocated \$32,400,000.

b Undistributed.

d Amended budget submission. Initial budget submission = \$53,500,000.

- d House Authorization Committee reduced amount to be allocated for Space Shuttle/Solar Maximum Mission Spacecraft Retrieval by \$9.2 million to \$77,400,000 and increased amount by \$1 million for data analysis for HEAO and OAO. Senate Authorization Committee increased the amount to \$93,600,000 to counter "slow progress in future programs and basic technology areas." (Footnote "d" accompanying *Chronological History of the FY 1983 Budget Submission*, prepared by NASA Comptroller, Budget Operations Division.) Authorization Conference Committee reduced increase to \$1 million over submission.
- e House Authorization Committee increased amount for HEAO by \$1 million.
- f Amended budget submission. Original budget submission = 172,700,000.

Year (Fiscal)	Submission	Authorization	Appropriation	Programmed
				(Actual)
1979	35,900	35,900	а	44,005
1980	34,300	34,300	b	33,774
1981	36,700 c	42,800	basic: 42,800	37,700
			reflects Sec.	
			412: 38,000	
1982	38,000 d	38,000	38,000	22,935
1983	39,200	39,200 e	39,200	28,500
1984	29,800	35,800 f	49,800 g	35,873
1985	36,900	47,900	39,900	111,700
1986	42,300	42,300	42,300	49,000
1987	51,100	51,100	49,700	53,400
1988	60,100	60,100	60,100	82,900 h

Table 4–11. Physics and Astronomy Research and Analysis Funding History (in thousands of dollars)

a Undistributed. Both House and Senate appropriations committees allocated \$35,900,000 for Research and Analysis.

b Undistributed.

c Amended budget submission. Original budget submission = \$42,800,000.

d Amended budget submission. Original budget submission = \$42,500,000.

e See footnote "c" in Table 4–10.

f House Authorization Committee increased authorization for Universities Basic Research program by \$4 million and Universities Research Instrumentation by \$2 million. Senate Authorization Committee increased Universities Basic Research by \$4 million.

g House and Senate appropriation committees increased appropriation by \$20 million for Physics and Astronomy and Planetary Exploration at NASA's discretion.

h Additional \$10.3 million for Shuttle Test of Relativity Experiment added to programmed amount.

Thereby (in monsular of actions)						
Year (Fiscal)	Submission	Authorization	Appropriation	Programmed		
				(Actual)		
1979	29,300	29,300	a	28,207		
1980	26,900	26,900	b	27,226		
1981	30,900	30,900	30,900	39,900		
1982	35,500 <i>c</i>	35,500	35,500	43,842		
1983	38,200	39,200 <i>d</i>	38,200	48,100		
1984	53,300	53,300	52,300	52,477		
1985	58,700	58,700	58,700	58,700		
1986	62,400	62,400	62,400	59,900		
1987	64,400	64,400	64,400	79,100		
1988	75,700	80,400	75,700	44,700		

Table 4–12. Physics and Astronomy Suborbital Programs Funding History (in thousands of dollars)

a Undistributed. Both House and Senate appropriations committees allocated \$29,300,000 for Suborbital Programs.

b Undistributed.

c Amended budget submission. Original budget submission = 37,500,000.

d See footnote "c" in Table 4–10.

SPACE SCIENCE

	(in thousands of dollars)					
	Year (Fiscal) Submission Authorization Appropriation			Programmed		
					(Actual)	
	1987 a	—	_	—	18,900	
	1988	20,000 b	20,000	20,000	15,500	
a	Space Station	Planning not inclu	ded in budget estimate	es or appropriation for	FY 1987 as sep-	

 Table 4–13. Space Station Planning Funding History (in thousands of dollars)

a Space Station Planning not included in budget estimates or appropriation for FY 1987 as separate budget item. Incorporated in Spacelab/Space Station Payload Development and Mission Management Budget category.

b Increased budget submission from \$0 to \$20,000,000.

Year (Fiscal)	Submission	Authorization	Appropriation	Programmed
(,			II I W	(Actual)
1979	78,700	78,700	b	78,700
1980	116,100	116,100	С	116,100
1981	63,100	63,100	63,100	63,100
1982	108,800	108,000	108,000	115,700
1983	92,600	92,600	91,600	91,600
1984	79,500	79,500	79,500	79,500
1985	56,100	56,100	56,100	58,800
1986	39,700	39,700	39,700	64,200
1987	77,000 d	77,000	77,000	71,200
1988	55,300	55,300	55,300	51,900

Table 4–14. Jupiter Orbiter/Probe and Galileo Programs Funding History (in thousands of dollars) a

a Renamed Galileo Development in FY 1981.

b Undistributed. House Appropriations Committee allocated \$68,700,000. Senate Appropriations Committee allocated \$78,700,000.

c Undistributed.

d Reflects budget amendment that increased budget submission from \$0 to \$77,000,000

(In mousands of donals)					
Year (Fiscal) Submission		Authorization	Appropriation	Programmed	
				(Actual)	
1984	29,000	29,000	29,000	29,000	
1985	92,500	92,500	92,500	92,500	
1986	112,000	112,000	112,000	120,300	
1987	69,700 a	69,700	69,700	97,300	
1988	59,600	59,600	59,600	73,000	

Table 4–15. Venus Radar Mapper/Magellan Funding History (in thousands of dollars)

a Amended budget submission. Original budget submission = \$66,700,000.

	(in mousulus of dollars) a					
Ŋ	ear (Fiscal)	Submission	Authorization	Appropriation	Programmed	
					(Actual)	
	1988		_	_	18,600	
a	Global Geosp	ace Science was pr	reviously budgeted und	er Environmental Obso	ervations	
	(Applications). There was no spe	ecific budget amount fo	or Global Geospace Sc	ience in the FY	
	1988 budget s ations bill (H.	submission. Howev R. 2783, Septembe	er, the Senate report, wer 25, 1987), indicated	which accompanied the that NASA had reques	FY 1988 appropri- ted \$25,000,000 for	
	the program f	or FY 1988. NASA	A's FY 1988 budget sub	mission for Environm	ental Observations	
	= \$393,800,00	00, the authorizatio	n = \$393,800,000, and	the appropriation $=$ \$3	378,800,00. These	
	figures were c cided with the	compiled prior to the OSSA reorganization	ne OSSA reorganization tion, Global Geospace	n. For the FY 1988 but Science was moved to	lget year that coin- Physics and	

 Table 4–16. Global Geospace Science Funding History (in thousands of dollars) a

 Table 4–17. International Solar Polar Mission/Ulysses Development

 Funding History (in thousands of dollars) a, b

Year (Fiscal)	Submission	Authorization	Appropriation	Programmed
				(Actual)
1984 c	8,000	8,000	8,000	6,000
1985	9,000	9,000	9,000	9,000
1986	5,600	5,600	5,600	8,800
1987	24,000 d	24,000	24,000	10,300
1988	10,800	10,800	10,800	7,800

a Renamed International Solar Polar Mission in FY 1980.

b Renamed Ulysses in FY 1986 submission.

c Moved from Physics and Astronomy Management (see Table 4–6).

d Reflects budget amendment that increased budget submission from \$0 to 24,000,000.

Table 4–18.	Mars Geoscienc	e/Climatolog	y Orbiter	Program	Funding
	History (in	thousands of	f dollars)	a	

Year (Fiscal)	(Fiscal) Submission Authorization Appropriation		Programmed			
				(Actual)		
1985	16,000	16,000	16,000	13,000		
1986	43,800	38,800	38,800	33,800		
1987	62,900	62,900	62,900	35,800		
1988	29,300	42,300	54,300	53,900		

a Renamed Mars Observer in FY 1986 submission.

Astronomy.

And	Analysis Funding History (in thousands of doulars)					
Year (Fiscal)	Submission	Authorization	Appropriation	Programmed		
				(Actual)		
1979	84,400	84,400	а	59,300		
1980	59,000	59,000	b	58,800		
1981	60,500 c	64,800	basic: 64,800	61,800		
			reflects Sec.			
			412: 61,800			
1982	45,800 d	45,800	45,800	42,600		
1983	26,500	38,500	26,500	38,500		
1984	43,400	43,400	43,400	43,400		
1985	58,800	58,800	58,800	56,100		
1986	95,000	95,000	95,000	67,000		
1987	77,200 e	77,200	77,200	75,100		
1988	77,000	77,000	77,000	73,792		

Table 4–19. Lunar and Planetary Mission Operations and Data Analysis Funding History (in thousands of dollars)

a Undistributed. House Appropriations Committee allocated \$84,400,000. Senate Appropriations Committee allocated \$78,700,000.

b Undistributed.

c Amended budget submission. Initial budget submission = \$64,800,000.

d Amended budget submission. Initial budget submission = \$50,900,000.

e Amended budget submission. Initial budget submission = \$130,200,000.

Year (Fiscal)	Submission	Authorization	Appropriation	Programmed
				(Actual)
1979	24,000	24,000	а	44,400
1980	45,100	45,100	b	45,000
1981	51,700	51,700	basic: 51,700	50,700
			reflects Sec.	
			412: 50,700	
1982	51,500 c	51,500	d	46,700
1983	35,500	46,500	37,300	50,300
1984	45,500	60,500	45,500	59,500
1985	54,500	64,500	61,500	61,500
1986	62,900	62,900	62,900	59,500
1987	63,500	63,500	63,500	69,500
1988	75,300	75,300	75,300	67,308

 Table 4–20. Lunar and Planetary Research and Analysis Funding History (in thousands of dollars)

a Undistributed. Both House and Senate appropriations committees allocated \$24,000,000.

b Undistributed.

c Amended budget submission. Original budget submission = \$57,200,000.

d Undistributed. Total R&D (basic appropriation) = \$4,973,100.000. R&D appropriation reflecting Sec. 501 = \$4,740,900,000.
Year (Fiscal)	Submission	Authorization	Appropriation	Programmed
				(Actual)
1979	12,400	14,400	a	15,700
1980	12,900	12,900	b	16,600
1981	12,700 c	14,700	12,700	12,700
1982	14,000 d	14,000	14,000	14,000
1983	24,000	24,000	24,000	24,000
1984	23,000	23,000	23,000	23,000
1985	27,100	27,100	27,100	27,100
1986	33,400	33,400	33,400	32,100
1987	31,700 e	36,700	31,700	30,000
1988	32,900	32,900	32,900	33,800

 Table 4–21. Life Sciences Flight Experiments Program Funding History (in thousands of dollars)

a Undistributed. Both House and Senate appropriations committees allocated \$12,400,000.

b Undistributed.

c Amended budget submission. Initial budget submission = \$19,200,000.

d Amended budget submission. Initial budget submission = \$16,500,000.

e Amended budget submission. Initial budget submission = \$36,700,000.

 Table 4–22. Life Sciences/Vestibular Function Research Funding History (in thousands of dollars)

Ye	ear (Fiscal)	Submission	Authorization	Appropriation	Programmed
					(Actual) a
	1979	3,800	3,800	b	—
	1980	3,700	3,700	С	

a No amount programmed specifically for Vestibular Function Research. Included in Space Biology Research to be conducted on the orbital flight test or Spacelab 1 mission.

b Undistributed. Both House and Senate appropriations committees allocated \$3,800,000.

c Undistributed.

Year (Fiscal)	Submission	Authorization	Appropriation	Programmed
				(Actual)
1979	24,400	24,400	а	24,400
1980	27,300	27,300	b	27,200
1981	26,400 c	30,500	basic: 30,500	29,488
		ref	ects Sect. 412:	
			29,488	
1982	29,500 d	29,500	29,500	25,500
1983	31,700	31,700	31,700	31,700
1984	36,000	36,000	36,000	35,000
1985	36,200	36,200	36,200	35,200
1986	38,600	38,600	38,600	34,000
1987	63,500	63,500	63,500	41,800
1988	41,700	41,700	41,700	38,400

 Table 4–23. Life Sciences Research and Analysis Funding History

 (in thousands of dollars)

a Undistributed. Both House and Senate appropriations committees allocated \$24,400,000.

b Undistributed.

c Amended budget submission. Initial budget submission = 30,500,000.

d Amended budget submission. Initial budget submission = \$32,700,000.

Date	Mission	Discipline/Program Sponsor
Jan. 30, 1979	Spacecraft Charging at High	Solar Terrestrial/U.S. Air Force
	Altitudes	
June 2, 1979	UK-6 (Ariel)*	Astrophysics/U.K. Science
		Research Council
Aug. 10, 1979	High Energy Astronomy	Astrophysics
	Observatory-3 (HEAO)	
Feb. 14, 1980	Solar Maximum Mission	Solar Terrestrial
Aug. 3, 1981	Dynamics Explorer 1 and 2	Solar Terrestrial and
		Astrophysics
Oct. 6, 1981	Solar Mesosphere Explorer	Solar Terrestrial and
		Astrophysics
March 22, 1982	OSS-1 (STS-3)	Spacelab
Jan. 25, 1983	Infrared Astronomy Satellite	Astrophysics
	(IRAS)	
May 26, 1983	European X-Ray Observatory	Astrophysics/European Space
	Satellite (EXOSAT)*	Agency
June 22, 1983	Shuttle Pallet Satellite (SPAS)-01	Platform for science
		experiments/Germany
June 27, 1983	Hilat*	Astrophysics/U.S. Air Force
Nov. 28, 1983	Spacelab 1 (STS-9)	Spacelab (multidiscipline)
Aug. 16, 1984	Active Magnetospheric Particle	Astrophysics
	Tracer Explorers (AMPTE)	
April 29, 1985	Spacelab 3 (STS 51-B)	Spacelab (multidiscipline)
June 17, 1985	Spartan-1	Astrophysics
July 29, 1985	Spacelab 2 (STS 51-F)	Spacelab (multidiscipline)
July 29, 1985	Plasma Diagnostic Package (PDP)	Earth Sciences and Applications
Oct. 30, 1985	Spacelab D-1 (STS 61-A)	German Spacelab
		(multidiscipline)
Jan. 23, 1986	Spartan 203 (Spartan-Halley)	Astrophysics
	(failed to reach orbit)	
Nov. 13, 1986	Polar Bear*	Astrophysics/U.S. Air Force
March 25, 1988	San Marco D/L	Astrophysics

Table 4–24. Science Missions (1979–1988)

* NASA provided launch service or other nonscience role.

Launch Date/Range January 30, 1979/Eastern Test Range **Date of Reentry** Turned off May 28, 1991 Launch Vehicle Delta 2914 Launch services for U.S. Air Force and three experiments NASA Role Responsible (Lead) Center Goddard Space Flight Center **Mission Objectives** Place the Air Force satellite into a highly elliptical orbit of sufficient accuracy to allow the spacecraft to achieve its final elliptical orbit while retaining sufficient stationkeeping propulsion to meet the mission lifetime requirements Instruments and 1. Satellite Surface Potential Monitor measured the Experiments potential of a sample surface of various compositions (NASA experiments and aspects relative to vehicle ground or to the reference surface by command. were the Light Ion Mass Spectrometer, 2. Charging Electrical Effect Analyzer measured the the Electric Field electromagnetic background induced in the Detector, and the spacecraft as a result of the charging phenomena. 3. Magnetic Field Spacecraft Sheath Electric Fields measured the asymmetric sheath-electric field of the spacecraft, the Monitor) effects of this electric field on particle trajectories near the spacecraft, and the current to the spherical probe surfaces mounted on booms at distances of 3 meters from the spacecraft surface. Energetic Proton Detector measured the energetic 4. proton environment of the trapped particles at spacecraft altitudes with energies of 20 to 1,000 keV, in six or more differential channels, plus an integral flux in the range from 1 to 2 MeV. 5. High Energy Particle Spectrometer measured the flux, spectra, and pitch angle distribution of the energetic electron plasma in the energy range of 100 keV to >3000 keV, the proton environment at energies between 1 MeV and 100 MeV, and the alpha particle environment between 6 MeV and 60 MeV during the solar particle events. 6. Satellite Electron Beam System consisted of an indirectly heated, oxide-coated cathode and a control grid. It controlled the ejection of electrons from the spacecraft. Satellite Positive Ion Beam System consisted of a 7. Penning discharge chamber ion source and a control grid. It controlled the ejection of ions from the spacecraft. 8. Rapid Scan Particle Detector measured the proton and electron temporal flux variations from 50eV to 60 keV for protons and 50 eV to 10 MeV for electrons, with an ultimate time resolution of milliseconds.

Table 4–25. Spacecraft Charging at High Altitudes Characteristics

Table 4–25 continued

	9. Thermal Plasma Analyzer measured, by retarding		
	potential analysis, the environmental photo and sec-		
	ondary electron densities and temperatures, in the		
	range of 10^{-1} to 10^{4} electrons per cubic centimeter, for		
	electrons of energies in the range 0 eV to 100 eV		
	10 Light Ion Mass Spectrometer used magnetic mass		
	analysis and retarding notantial analysis for tempera		
	true determination. It recorded the ion density and		
	ture determination. It measured the foll density and		
	temperature in the energy range of 0.01 to 100 eV		
	and in the density range of 0.01 to 1,000 ions/cm ³ .		
	11. Energetic Ion Composition Experiment determined		
	momentum and energy per charge and measured ions		
	in the mass range of 1 to 150 AMU per charge with		
	energies of 100 eV to 20,000 eV.		
	12. San Diego Particles Detectors measured protons and		
	electrons in the energy range 1 eV to 80,000 eV in		
	64 discrete steps. This experiment measured the parti-		
	cle flux to the spacecraft, overall charge of the space-		
	craft, differential charge on parts of the spacecraft.		
	and charge accumulated on selected material samples		
	It also measured the ambient plasma and detected		
	assillations, anabling better predictions of magnetos		
	scillations, enabling better predictions of magnetos-		
	phere dynamics.		
	13. Electric Field Detector measured AC and DC electric		
	fields in the tenuous plasma region of the outer mag-		
	netosphere.		
	14. Magnetic Field Monitor measured the magnetic flux		
	density in the range ± 5 milligauss with a resolution of		
	0.004 milligauss.		
	15. Thermal Coatings monitored temperatures of insulat-		
	ed material samples to determine the changes that		
	took place in their solar absorptive and emissive char-		
	acteristics with time exposure in space.		
	16. Quartz Crystal Microbalance measured the deposition		
	rate of contaminants (mass) as a function of energy in		
	the axial and radial directions respectively		
Orbit Characteristics:			
Anogee (km)	43 251		
Perigee (km)	27 543		
Inclination (deg.)	7.81		
Pariod (min)	1 /16 2		
Woight (kg)	655		
Dimonsions	Disputer of 172.7 amy length of 174.5 am		
Shapa	Cylindrical		
Shape Dowon Counce			
rower Source	Solar arrays		
Prime Contractor	SAMSO, Martin Marietta Aerospace Corp.		

Launch Date/Range	June 2, 1979/Wallops Flight Center		
Date of Reentry	Switched off March 1982; reentered September 23, 1990		
Launch Vehicle	Scout		
NASA Role	Launch services for United Kingdom Science		
	Research Council		
Responsible (Lead) Center	Langley Research Center		
Mission Objectives	Place the UK-6 satellite in an orbit that will enable the		
	successful achievement of the payload scientific objectives:		
	• Measure the charge and energy spectra of galactic		
	cosmic rays, especially the ultraheavy component		
	• Extend the x-ray astronomy to lower levels by exam-		
	ining the spectra, structure, and position of intrinsi-		
	cally low energy sources, extend the spectra of		
	known sources down to low energies, and study the		
	Iow-energy diffuse component		
	• Study the fast periodic and aperiodic fluctuations in		
	tude sources and improve the knowledge of the con-		
	tinuum spectra of the sources being observed		
Instruments and	1 Cosmic Ray Experiment measured the charge and		
Experiments	energy spectra of the ultraheavy component of		
Laperments	cosmic radiation with particular emphasis on the		
	charge region of atomic weights above 30 (Bristol		
	University).		
	2. Leicester X-Ray Experiment investigated the periodic		
	and aperiodic fluctuations in emissions from a wide		
	range of x-ray sources, down to submillisecond time		
	scales (Leicester University).		
	3. MSSL/B X-Ray Experiment studied discrete sources		
	and extended features of the low-energy x-ray sky in		
	the range of 0.1 to 2 keV. It also studied long- and		
	short-term variability of individual x-ray sources		
	(Mullar Space Laboratory of University College,		
	London and Birmingham University).		
	4. Solar Cell Experiment investigated the performance		
	in orbit of new types of solar cells mounted on a flex-		
	ible, lightweight support (Royal Aircraft		
	Establishment).		
	5. CMOS Experiment was a complementary metal		
	oxide semiconductor (CMOS) electronics experiment		
	that investigated the susceptibility of these devices to		
	radiation in a space environment (Royal Aircraft		
	Establishment).		

Table 4–26. UK-6 (Ariel) Characteristics

Orbit Characteristics:	
Apogee (km)	656
Perigee (km)	607
Inclination (deg.)	55.04
Period (min.)	97
Weight (kg)	154.5
Dimensions	n/a
Shape	Cylindrical
Power Source	Solar array and battery power
Prime Contractor	Marconi Space and Defense Systems, Ltd.
Results	The satellite lasted beyond its 2-year design life. However,
	it lost at least half its data. It suffered from radio interfer-
	ence from Earth, which caused the high-voltage supplies
	and its tape recorder to switch on and off sporadically and
	to lose information that should have been stored. The
	problem was alleviated by using more NASA ground sta-
	tions, an Italian receiving station in Kenya, and a portable
	station set up by University College in Australia.

Table 4–26 continued

Launch Date/Range	September 20, 1979/Eastern Test Range		
Date of Reentry	December 7, 1981		
Launch Vehicle	Atlas-Centaur		
NASA Role	Project management		
Responsible (Lead) Center	Marshall Space Flight Center		
Mission Objectives	Study gamma ray emission with high sensitivity and		
5	resolution over the energy range of about 0.06 MeV to		
	10 MeV and measure the isotopic composition of cosmic		
	rays from lithium through iron and the composition of		
	cosmic rays heavier than iron		
Instruments and	1 High-Spectral Resolution Gamma Ray Spectrometer		
Experiments	(Jet Propulsion Laboratory) explored sources of x-ray		
Laperments	and gamma ray line emissions from approximately		
	0.06 to 10 million electron volts. It also searched for		
	new discrete sources of x-rays and gamma rays and		
	measured the spectrum and intensity of Farth's x-ray		
	and gamma ray albedo (Figure 4, 3)		
	 Isotopic Composition of Primary Cosmic Pays 		
	2. Isotopic Composition of Finnary Cosmic Rays (Center for Nuclear Studies, France, and Danish		
	Space Desearch Institute) measured the isotopic com		
	position of primary cosmic rays with atomic charge 7		
	between $7-4$ (hervilium) to $7-26$ (iron) and in the		
	between Σ_{-4} (berymull) to Σ_{-20} (non) and in the		
	numentum range from 2 to 20 giga electron voits per		
	 Hanny Nuclei Experiment (Weshington University) 		
	5. Heavy Nuclei Experiment (washington University,		
	Minnesote) sheering remaining the stemps number		
	(7, 20) relativistic availation the assuming rate la		
	$(\Sigma > 50)$, relativistic nuclei in the cosmic rays. It also		
	aneastre of these nuclei with sufficient resolution to		
	spectra of these nuclei with sufficient resolution to		
	determine the abundance of individual elements from $(7, 17)$ (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		
	chlorine ($Z=1/$) through at least uranium ($Z=92$).		
	These data provided information on nucleosynthesis		
	models and on the relative importance of different		
	types of stellar objects as cosmic ray sources		
	(Figure $4-5$).		
Urbit Characteristics:	504.0		
Apogee (km)	504.9		
Perigee (km)	486.4		
Inclination (deg.)	43.6		
Period (min.)	94.5		
Weight (kg)	2,904		
Dimensions	Diameter of 2.35 m; length of 5.49 m		
Shape	Cylindrical with solar panels (two modules: experiment		
• <i>a</i>	and equipment)		
Power Source	Solar arrays and nickel cadmium batteries		
Prime Contractor	TRW Systems, Inc.		
Results	Mission was highly successful; the satellite returned data		
	for 20 months.		

Table 4–27. HEAO-3 Characteristics

Launch Date/Range	February 14, 1980/Eastern Test Range		
Date of Reentry	December 2, 1989		
Launch Vehicle	Delta 3910		
NASA Role	Project management		
Responsible (Lead) Center	Goddard Space Flight Center		
Mission Objectives	Observe a sizable number of solar flares or other active-		
Ū	Sun phenomena simultaneously by five or six of the Solar		
	Maximum Mission experiments, with coalignment of the		
	narrow field-of-view instruments, and measure the total		
	radiative output of the Sun over a period of at least		
	6 months with an absolute accuracy of 0.5 percent and		
	short-term precision of 0.2 percent		
Instruments and	1. Gamma Ray Spectrometer measured the intensity,		
Experiments (Figure 4–6)	energy and Doppler shift of narrow gamma ray		
	radiation lines and the intensity of extremely broad-		
	ened lines.		
	2. Hard X-Ray Spectrometer helped determine the role		
	that energetic electrons played in the solar flare		
	phenomenon.		
	3. Hard X-Ray Imaging Spectrometer imaged the Sun in		
	hard x-rays and provided information about the posi-		
	tion, extension, and spectrum of the hard x-ray bursts		
	in flares.		
	4. Soft X-Ray Polychromator investigated solar activity		
	that produced solar plasma temperatures in the		
	1.5 million to 50 million degree range. It also studied		
	solar plasma density and temperature.		
	5. Ultraviolet Spectrometer and Polarimeter studied the		
	ultraviolet radiation from the solar atmosphere, par-		
	ticularly from active regions, flares, prominences, and		
	active corona, and studied the quiet Sun.		
	6. High Altitude Observatory Coronagraph/Polarimeter		
	returned imagery of the Sun's corona in parts of the		
	visible spectrum as part of an investigation of coronal		
	disturbances created by solar flares.		
	7. Solar Constant Monitoring Package monitored the		
	output of the Sun over most of the spectrum and over		
	the entire solar surface.		
Orbit Characteristics:			
Apogee (km)	573.5		
Perigee (km)	571.5		
Inclination (deg.)	28.5		
Period (min.)	96.16		
weight (kg)	2,315.1		
Dimensions	Diameter of 2.1 m; length of 4 m		
Power Source	Solar arrays		
Prime Contractor	Goddard in-house		

Table 4–28. Solar Maximum Mission

Table 4–28 continued

Results/Remarks	This mission was judged successful based on the results of
	the mission with respect to the approved prelaunch objec-
	tives. For the first 9 months of operation, the mission con-
	tinuously gathered data from seven experiments on board.
	These data represented the most comprehensive informa-
	tion ever collected about solar flares. Project scientists
	gained valuable insight into the mechanisms that trigger
	solar flares and significant information about the total
	energy output from the Sun. The payload of instruments
	gathered data collectively on nearly 25 flares. After 9
	months of normal operation, the satellite's attitude control
	system lost its capability to point precisely at the Sun. At
	that point, the spacecraft was placed in a slow spin using a
	magnetic control mode, which permitted continued opera-
	tion of three instruments while coarsely pointing at the
	Sun. This was the first NASA satellite designed to be
	retrieved and serviced by the Space Shuttle. The Solar
	Max Repair Mission (STS 41-C) was successful and was
	completed after 7 hours, 7 minutes of extravehicular activ-
	ity. Following its repair, Solar Max discovered several
	comets as well as continuing with its planned solar
	observations.

Launch Date/Kange	August 5, 1961/ western fest Kallge		
Date of Reentry	Dynamics Explorer 1 retired February 28, 1991,		
	Dynamics Explorer 2 reentered February 19, 1983		
Launch Vehicle	Delt	a 3913	
NASA Role	Proi	ect management	
Responsible (Lead) Center	God	dard Space Flight Center	
Mission Objectives	Inve	stigate the strong interactive processes coupling the	
Wilssion Objectives	Investigate the strong interactive processes coupling the		
	not,	tenuous, convecting plasmas of the magnetosphere	
	and	the cooler, denser plasmas and gases co-rotating in	
	Eart	h's ionosphere, upper atmosphere, and plasmasphere	
Instruments and	Dyn	amics Explorer 1:	
Experiments	1.	High Altitude Plasma Instrument (five electrostatic	
		analyzers) measured phase-space distributions of	
		electrons and positive ions from 5 eV to 25 eV as a	
		function of pitch angle.	
	2.	Retarding Ion Mass Spectrometer (magnetic ion mass	
		spectrometer) measured density temperature and	
		bulk flow of H_{\perp} He \perp and O_{\perp} in high altitude mode	
		and composition in the 1 64 AMU range in low	
		and composition in the 1–04 AWO range in low-	
	•	altitude mode.	
	3.	Spin-Scan Auroral Imager (spin-scan imaging pho-	
		tometers) imaged aurora at visible and ultraviolet and	
		made photometric measurements of the hydrogen	
		corona.	
	4.	Plasma Waves (long dipole antennae and a magnetic	
		loop antenna) measured electric fields from 1 hertz	
		(Hz) to 2 MHz, magnetic fields from 1 Hz to 400	
		kHz and the DC notential difference between the	
		alactric dipole alamants	
	5	Hot Diasma Composition (anargatic ion mass space	
	5.	Hot Plasma Composition (energetic for mass spec-	
		trometer) measured the energy range from 0 keV to	
		17 keV per unit charge and the mass range from	
		1 AMU to 138 AMU per unit charge.	
	6.	Magnetic Field Observations (fluxgate magnetome-	
		ter) measured field-aligned currents in the auroral	
		oval and over the polar cap at two altitudes.	
	Dyn	amics Explorer 2:	
	1.	Langmuir Probe (cylindrical electrostatic probe) mea-	
		sured electron temperature and electron or ion	
		concentration	
	2	Neutral Atmosphere Composition Spectrometer (mass	
	2.	spectrometer) measured the composition of the neu	
		spectrometer) measured the composition of the neu-	
	2	uai aunosphere.	
	3.	Retarding Potential Analyzer measured ion tempera-	
		ture, 10n composition, 10n concentration, and ion bulk	
		velocity.	
	4.	Fabray-Periot Interferometer measured drift and tem-	
		perature of neutral ionic atomic oxygen.	
	5.	Ion Drift measured bulk motions of ionospheric	
		plasma.	
		r	

Table 4–29. Dynamics Explorer 1 and 2 Characteristics

-

Table 4–29 continued

	6. Vector E	lectric Field Instrument (triaxial antennas)		
	measured	d electric fields at ionospheric altitudes and		
	extra-lov	y-frequency and low-frequency ionosphere		
	irregular	ities.		
	7. Wind and Temperature Spectrometer (mass spectrom eter) measured in-situ, neutral winds, neutral particle			
	temperat	ures, and the concentration of selected gases.		
	8. Magnetio	c Field Observations (see Dynamics Explorer		
	1 above)			
	9. Low Altitude Plasma Instrument (plasma instrument)			
measured positive ions and electrons from				
	keV.			
Orbit Characteristics:	Dynamics Ex	plorer 1 Dynamics Explorer 2		
Apogee (km)	23,173	1,012.5		
Perigee (km)	569.5	309		
Inclination (deg.)	89.91 89.99			
Period (min.)	409 97.5			
Weight (kg)	424			
Dimensions	Width of 134.6 cm; length of 114.3 cm			
Shape	16-sided polygon			
Power Source	Solar cell arrays			
Prime Contractor	RCA			
Results	The spacecraft achieved a final orbit somewhat low			
	planned because of short burn of the second stage in the			
	Delta launch	vehicle, but could still carry out the full sci-		
	entific mission	n		

	Δλ Per Step			4.8Å/91Å/ step		44Å/step			44Å/step			3.2Å/step		6.4Å/step		2.6Å/step			I			
<i>haracteristics</i>	Grating	Steps	per Scan	208/11		512			512				512/438			512						
	Full Width	at Half	Maximum	15Å		123Å			123Å			9.8Å		19.6Å		14\AA		4.0µ	1.0μ	2.0µ	1.1µ	
Instrument C	At Exit Slit			18Å/mm		First Order			384Å/mm				28Å/mm			30Å/mm						
ric Explorer	Total	Shaft	Angle		14.4°				13.4°				21.6°			9.7°						
Mesospher	ζ			1,200		1,200		1.4µ			1.4µ		2,800Å		1,250Å		1,250Å	l			I	
4-30. Solar	Spectral	Range		1,900-3,100		2,300-3,500		1.1μ–2.5μ			1.1µ–2.5µ	4,390-4,420		2,900-5,700	1,800-3,100		1,200-2,540	17.2–13.2μ	15.7–14.7μ	10.6–8.6μ	7.2-6.1μ	
Table	Detector			Channel A, 510 F		Channel B, 520F	Channel A	(Lead Sulfide)		Channel B	(Lead Sulfide)	Channel A		Channel B, 510 N	Channel A, 510F		Channel B, 510F	Channel A, 15.1μ	Channel B, 15.5µ	Channel C, 9.6µ	Channel D, 6.3μ	
	Instrument			Ultraviolet	Ozone	Experiment		1.27µ	Airglow	Experiment			Visible NO ²	Experiment	Solar	Ultraviolet	Monitor	Four-	Channel	Infrared	Radiometer	

446

NASA HISTORICAL DATA BOOK

Launch Date/Range	October 6, 1981/Western Test Range
Date of Reentry	March 5, 1991
Launch Vehicle	Delta 2310
NASA Role	Project management
Responsible (Lead) Center	Jet Propulsion Laboratory
Mission Objectives	Investigate the processes that create and destroy ozone in
Ū.	Earth's mesosphere and upper stratosphere, with the fol-
	lowing specific goals:
	• Determine the nature and magnitude of changes in ozone densities that result from changes in the solar ultraviolet flux
	• Determine the interrelationship among the solar flux, ozone, and the temperature of the upper stratosphere and mesosphere
	• Determine the interrelationship between water vapor and ozone
	• Determine the interrelationship between nitrogen dioxide (NO ₂) and ozone
Instruments and Experiments	 If a significant number of solar proton events occur, determine the relationship between the magnitude of the decrease in ozone and the flux and energy of the solar protons, the recovery rate of ozone following the event, and the role of water vapor in the solar proton destruction of ozone Incorporate the results of the SME mission in a model of the upper stratosphere and mesosphere that could predict the future behavior of ozone Ultraviolet Ozone Spectrometer measured ozone between 40 km and 70 km altitude. 1.27-Micron Spectrometer measured ozone between 50 km and 90 km altitude and hydroxyl between (0 km and 00 km)
	 60 km and 90 km. Nitrogen Dioxide Spectrometer measured NO₂ hetwaan 20 km and 40 km altituda
	 Four-Channel Infrared Radiometer measured temper- ature and pressure between 20 km and 70 km alti- tudes and water vapor and ozone between 30 km and 65 km altitude.
	5. Ultraviolet Solar Monitor looked 45 degrees from the spacecraft rotation axis to scan through the Sun once each revolution of the spacecraft. The instrument measured the amount of incoming solar radiation from 1,700 Angstroms to 3,100 Angstroms and at 1,216 Angstroms.
	 Proton Alarm Sensor monitored the amount of integrated solar protons from 30 to 500 million eV. Spatial Reference Unit controlled the timing for data gating from the instruments.

Table 4–31. Solar Mesospheric Explorer Characteristics

Orbit Characteristics:	
Apogee (km)	534
Perigee (km)	533
Inclination (deg.)	98.0
Period (min.)	95.3
Weight (kg)	437
Dimensions	Diameter of 1.25 m; length of 1.7 m
Shape	Cylindrical
Power Source	Solar cell array
Prime Contractor	University of Colorado's Laboratory for Atmospheric and
	Space Physics, Ball Aerospace Systems Division
Remarks	The mission objective was accomplished by measuring
	ozone parameters and the processes in the mesosphere and
	upper stratosphere that determined their values. All mis-
	sion events occurred as planned and on schedule.

Table 4–31 continued

Launch Date/Range	January 25, 1983/Western Test Range
Date of Reentry	Ceased operations November 21, 1983
Launch Vehicle	Delta 3910
NASA Role	Provided telescope, tape recorders, launch vehicle, data
	processing, co-chairman and members of the Joint IRAS
	Science Working Group
Responsible (Lead) Center	Jet Propulsion Laboratory—overall project management;
	Ames Research Center-management of the infrared
	telescope system until integrated with spacecraft
Mission Objectives	Obtain basic scientific data about infrared emissions
	throughout the total sky, to reduce and analyze these data,
	and to make these data and results available to the public
	and the scientific community in a timely and orderly
	manner
Instruments and	1. Ritchey-Chretien telescope detected infrared
Experiments	radiation in the region of 9 to 119 microns and
	observed emissions of infrared energy as faint as one
	million-trillionth of a watt per square centimeter.
	2. Dutch Additional Experiment:
	Low-Resolution Spectrometer acquired spectra
	of strong infrared point sources observed by the
	main telescope in the wavelength range from
	7.4 to 23 microns.
	Short-Wavelength Channel Detector obtained
	information on the distribution of stars in areas
	of high stellar density. It provided statistical data
	on the number of infrared sources.
	3. Long-Wavelength Photometer mapped infrared
	sources that radiated in two wavelength bands simul-
	taneously—from 41 to 62.5 microns and from 84 to
	114 microns.
Orbit Characteristics:	
Apogee (km)	911
Perigee (km)	894
Inclination (deg.)	99.1
Period (min.)	103
Weight (kg)	1,076
Dimensions	Diameter of 2.1 m; length of 3.7 m
Shape	Cylindrical
Power Source	Two deployable solar panels
Prime Contractor	Ball Aerospace Systems Division in the United States;
	Fokker Schipol in The Netherlands

Table 4–32. Infrared Astronomy Satellite Characteristics

NASA HISTORICAL DATA BOOK

Table 4–32 continued

During its 300 days of observations, IRAS carried out the
first complete survey of infrared sky. On-board instru-
ments with four broad infrared photometry channels (8 to
120 microns) detected unidentified cold astronomical
objects, bands of dust in the solar system, infrared cirrus
clouds in interstellar space, infrared radiation from visual-
ly inconspicuous galaxies, and possible beginnings of new
solar systems around Vega and other stars. IRAS investi-
gated selected galactic and extragalactic sources and
mapped extended sources. The mission provided a com-
plete and systematic listing of discrete sources in the form
of sky and source catalogs. More than 2x1011 bits of data
were received from IRAS. IRAS also discovered five new
comets.

-	5
Launch Date/Range	May 26, 1983/Western Space and Missile Center
Date of Reentry	May 6, 1986
Launch Vehicle	Delta 3914
NASA Role	Launch support for European Space Agency
Responsible (Lead) Center	Goddard Space Flight Center
Mission Objectives	Launch the EXOSAT spacecraft into an elliptical polar
	orbit on a three-stage Delta 3914 launch vehicle with suf-
	ficient accuracy to allow the spacecraft to accomplish its
	scientific mission
Payload Objectives	Make a detailed study of known x-ray sources and identify
	new x-ray sources
Instruments and	1. X-Ray Imaging Telescopes (2)
Experiments	2. Large Area Proportional Counter Array
	3. Gas Scintillation Proportional Counter Spectrometer
Orbit Characteristics:	
Apogee (km)	194,643
Perigee (km)	6,726
Inclination (deg.)	72.5
Period (min.)	58,104 (4.035 days)
Weight (kg)	510
Dimensions	Diameter of 2.1 m; height of 1.35 m
Shape	Box
Power Source	Solar array
Prime Contractor	European Cosmos Consortium headed by Messerschmitt-
	Bolkow-Blohm (MBB)

Table 4–33. European X-Ray Observatory Satellite Characteristics

I I D (/D	
Launch Date/Range	Released from cargo bay June 22, 1983
Date of Reentry	Retrieved June 24, 1983
NASA Role	Provided Shuttle launch for Messerschmitt-Bolkow-Blohm
	(MBB), BMFT, and European Space Agency, for reduced
	fee
Launch Vehicle	STS-7 (Challenger)
Responsible (Lead) Center	n/a
Mission Objectives	Launch and retrieve the reusable SPAS
Instruments and	1. Microgravity experiments with metal alloys
Experiments	2. Microgravity experiments with heat pipes
-	3. Microgravity experiments with pneumatic conveyors
	4. An instrument that can control a spacecraft's position by observing Earth below
	5. Remote sensing "push-broom" scanner that can
	detect different kinds of terrain and land/water
	boundaries
	6. Mass spectrometer for monitoring gases in the cargo
	bay and around the orbiter's thrusters
	7. Experiment for calibrating solar cells
	8. A series of tests in which the Remote Manipulator
	System arm released the pallet to fly in space and
	then retrieved it and restowed it in the cargo bay
Orbit Characteristics:	alon realeved it and restorved it in the earge sug
Anogee (km)	300
Perigee (km)	295
Inclination (deg.)	28.5
Period (min.)	90.5
Weight (kg)	2 278
Dimensions	Length of 4.8 m: height of 3.4 m: width of 1.5 m
Shape	Rectangular
Power Source	Battery power while outside orbiter; orbiter power while
	in cargo bay
Prime Contractor	MBB
Remarks	All experiment activities, planned detailed test objectives.
	and detailed secondary objectives were accomplished on
	schedule. The mission carried out successful detached and
	attached operations. It performed scientific experiments
	tested the remote manipulator arm, and photographed
	Challenger.

Table 4–34. Shuttle Pallet Satellite-01 Characteristics

1000	
Launch Date/Range	June 27, 1983/Western Test Range
Date of Reentry	n/a
Launch Vehicle	Scout
NASA Role	Launch services for U.S. Air Force
Responsible (Lead) Center	n/a
Mission Objectives	Place the satellite in orbit to permit the achievement of Air Force objectives and satellite evaluation of certain propagation effects of disturbed plasmas on radar and communications systems
Instruments and	1. Beacon measured signal scintillation.
Experiments	 Magnetometer measured field-aligned currents. Particle detector measured precipitating electrons in the 10,000–20,000 eV range. Auroral/ionospheric mapper measured the visible and ultraviolet auroras. Drift meter determined the electronic field from ion drift measurements.
Orbit Characteristics:	
Apogee (km)	819
Perigee (km)	754
Inclination (deg)	82
Period (min)	100.6
Weight (kg)	101.6
Dimensions	n/a
Shape	n/a
Power Source	Solar arrays
Prime Contractor	Applied Physics Laboratory, Johns Hopkins University

Table 4–35. Hilat Characteristics

Launch Date/Range	August 16, 1984/Cape Canaveral
Date of Reentry	Stopped transmitting data January 1989; was officially ter-
	minated July 14, 1989; has not reentered the atmosphere
Launch Vehicle	Delta 3924
NASA Role	Provided instrument for cooperative international mission;
	project management; launch services
Responsible (Lead) Center	Goddard Space Flight Center
Mission Objectives	Place the satellite in near-equatorial elliptical orbit to
Ū	detect "tracer" ions released by the Ion Release Module
	within Earth's magnetosphere
Instruments and	1. Hot Plasma Composition Experiment monitored the
Experiments	natural low-energy magnetospheric tracer elements
	and detected artificially injected tracer ions at the
	Charge Composition Explorer over the low-energy
	range.
	2. Charge-Energy-Mass Spectrometer measured the
	composition, charge state, and energy spectrum of the
	natural particle population of the ionosphere.
	3. Medium Energy Particle Analyzer measured very
	small fluxes of lithium tracer ions over a wide energy
	range in the presence of the intense background of
	protons alpha particles and electrons while main-
	taining as large a geometry factor and as low an ener-
	av threshold as possible
	4 Magnetometer measured high-frequency magnetic
	fluctuations.
	5. Plasma Wave Spectrometer provided first-order
	correlative information for studies of strong wave-
	particle interactions that develop close to the magnetic
	equator or have maximum effectiveness there
	6 Additional magnetic field and plasma ray experi-
	ments were conducted
Orbit Characteristics:	
Apogee (km)	49.618
Perigee (km)	1.174
Inclination (deg.)	2.9
Period (min.)	939.5
Weight (kg)	242
Dimensions	122 cm across the flat sides and 40.6 cm high
Shape	Closed right octagonal prism
Power Source	Solar cell array, redundant nickel cadmium batteries.
	redundant battery charge controllers, and power switching
	and conditioning elements
Prime Contractor	Applied Physics Laboratory, Johns Hopkins University

Table 4–36. Charge Composition Explorer Characteristics

Launch Date/Range	August 16, 1984/Cape Canaveral
Date of Reentry	November 1987
Launch Vehicle	Delta 3924
NASA Role	See Table 4–36
Responsible (Lead) Center	Goddard Space Flight Center; satellite provided by
-	Federal Republic of Germany
Mission Objectives	Place the satellite in a highly elliptical orbit for the study
u u	of Earth's magnetosphere and release barium and lithium
	atoms into the solar wind and distant magnetosphere
Instruments and	1. Plasma Analyzer measured the complete three-
Experiments	dimensional energy-per-charge distributions of ions
Laperments	and electrons over the range of 10 V to 30 keV as
	well as a retarding potential analyzer for the measure-
	ment of very low energy (-0) eV to 25 eV) electrons
	2 Mass Separating Ion Sensor measured simultaneously
	2. Mass separating for sensor measured simulateously the distribution functions of ions of up to 10 different
	the distribution functions of following to 10 the 12 keV/c
	2 Suggesthermed Energy Jonie Charge Analyzer dater
	5. Supramerinal Energy forme Charge Analyzer deter-
	mined the fonic charge stage and mass composition
	of all major ions from hydrogen through iron over the
	energy range of $10-300 \text{ keV/q}$.
	4. Magnetometer measured magnetic fields with a sensi-
	tivity of 0.1 nT.
	5. Plasma Wave Spectrometer measured the intensities
	of the electric fields associated with plasma waves
	over the range of DC to 5 MHz with two long anten-
	nas and of magnetic wave fields from 30 Hz to
	1 MHz with two boom-mounted search coils.
	6. Lithium/Barium Release Experiments ejected
	16 release canisters in pairs, eight with a Li-CuO
	mixture and eight with a Ba-CuO mixture, which
	ignited about a kilometer away from the spacecraft to
	expel hot lithium or barium gas.
Orbit Characteristics:	
Apogee (km)	113,818
Perigee (km)	402
Inclination (deg.)	27.0
Period (min.)	2 653 4
Weight (kg)	705 (including anogee kick motor)
Dimonsions	Diameter of 1.8 m: height of 1.3 m
Shapa	16 chamical release containers mounted on cylinder
Dowor Source	Solar array
Drime Contractor	May Dianaly Institute for Extratorregative Dhysics and the
rinne Contractor	wax rance institute for Extraterrestrial Physics under the
	sponsorsmp of the Research and Technology Ministry of
	the Federal Republic of Germany

Table 4–37. Ion Release Module Characteristics

Launch Date/Range	August 16, 1984/Cape Canaveral			
Date of Reentry	November 1988			
Launch Vehicle	Delta 3924			
NASA Role	See Table 4–36			
Responsible (Lead) Center	Goddard Space Flight Center; satellite provided by Great			
	Britain			
Mission Objectives	Keep station with the IRM spacecraft at controllable dis-			
	tances of up to a few hundred miles to measure local dis-			
	turbances created in the natural space plasma by the			
	injection of tracer ions by the IRM			
Instruments and	1. Ion Analyzer measured ion distribution over the			
Experiments	energy range of 10 eV/q to 20 keV/q.			
	2. Electron Analyzer measured the electron distribution			
	with high time and angular resolution over the energy			
	range of 6 eV to 25 keV.			
	3. Particle Modulation Analyzer computed auto correla-			
	tion functions and fast Fourier transform of electron			
	and ion time variations resulting from wave-particle			
	interactions and processed raw pulses from the elec-			
	tron and ion analyzers to reveal any significant reso-			
	nances in the frequency range of 1 Hz to 1 MHz.			
	4. Magnetometer measured fields in the range of			
	0 to 256 nT or 0 to 9192 nT, with a resolution up to			
	30 pT, from DC to 10 Hz.			
	5. Plasma Wave Spectrometer measured the electric			
	component of the plasma-wave field in the range of			
	10 Hz to 2 MHz and the magnetic component in the			
	range of 30 Hz to 20 kHz.			
Orbit Characteristics:				
Apogee (km)	113,417			
Perigee (km)	1,002			
Inclination (deg.)	26.9			
Period (min.)	2,659.6			
Weight (kg)				
Dimensions	Diameter of 1 m, height of 0.45 m			
Snape	Cylindrical			
Power Source	Solar cells			
Prime Contractor	Rutherford Appleton and the Mullard Space Science			
	Laboratories under contract to the British Science and			
Damarka	Engineering Research Council			
Kemarks	tion During that time it had suggested three she			
	uon. During that time, it had supported three chemical			
	releases and had met /0 percent of the United Kingdom			
	project objectives.			

Table 4–38. United Kingdom Subsatellite Characteristics

Launch Date/Range	June 17, 1985/Kennedy Space Center, deployed from
	Shuttle June 20
Date of Reentry	Retrieved June 24, 1985
Launch Vehicle	STS 51-G (Discovery)
NASA Role	Project management
Responsible (Lead) Center	Goddard Space Flight Center
Mission Objectives	Launch and retrieve Spartan 1, map the x-ray emissions
	from the Perseus Center, the nuclear region of the Milky
	Way galaxy, and the SCO X-2, and obtain engineering test
	data to prove the Spartan concept
Instruments and	The scanner observed various cosmic x-ray sources at
Experiments	rates of about 20 arc-sec/sec to provide x-ray data over an
	energy range of 0.5 keV to 15 keV. These observations
	were used for studies of emission processes in clusters of
	galaxies and the exploration of the galactic center.
Orbit Characteristics	
(same as Shuttle):	
Apogee (km)	391
Perigee (km)	355
Inclination (deg.)	28.5
Period (min.)	92
Weight (kg)	2,051
Dimensions	320 cm by 107 cm by 122 cm
Shape	Rectangular box
Power Source	Silver zinc batteries
Prime Contractor	Built by the Attached Shuttle Payloads Project at Goddard
	Space Flight Center

Table 4–39. Spartan 1 Characteristics

Launch Date/Range	July 29, 1985
Date of Reentry	Retrieved July 29 after 6 hours of operation away from the
-	orbiter; continued observations on-board orbiter through-
	out mission
Launch Vehicle	STS 51-F (Challenger)
NASA Role	Project management
Responsible (Lead) Center	Marshall Space Flight Center (Spacelab 2)
Mission Objectives	 Study orbiter-magneto plasma interactions in terms of density wakes, direct current electric fields, energized plasma, and a variety of possible wave-particle instabilities Provide engine burns in support of the ground radar observations of the plasma depletion experiments for ionospheric and radio astronomical studies Measure fields, waves, and plasma modifications induced by the orbiter and Spacelab subsystems in the payload bay and out to distances of 600 meters Observe natural waves, fields, and plasmas in the unperturbed magnetosphere Assess the Spacelab system performance of active
Instruments and Experiments	 and passive magnetospheric experiments Develop the methods and hardware to operate instruments at the end of the remote manipulator arm and to eject and retrieve small scientific subsatellites Quadrispherical low-energy proton and electron differential analyzer Plasma wave analyzer Electric dipole and magnetic search coil sensors
	 Direct current electric field meter Triaxial flux-gate magnetometer Langmuir probe Retarding potential analyzer Differential flux analyzer Ion mass spectrometer Cold cathode vacuum gauge
Orbit Characteristics:	
Apogee (km)	321
Perigee (km)	312
Inclination (deg.)	49.5
Period (min.)	90.9
Weight (kg)	407
Dimensions	Diameter of 106.9 cm; height of 140 cm to top of grapple fixture
Shape	Cylindrical with extendible antennas
Power Source	Battery
Principal Investigator	Dr. Louis A. Frank, University of Iowa

Table 4–40. Plasma Diagnostics Package Characteristics

Launch Date/Range	January 28, 1986/Kennedy Space Center
Date of Reentry	None
Launch Vehicle	STS 51-L (Challenger)
NASA Role	Project management
Responsible (Lead) Center	Goddard Space Flight Center
Mission Objectives	Determine the composition of Comet Halley when it was under greatest heating and was, therefore, most active, and look for changes in the composition and structure of the comet as it drew closer to the Sun
Instruments and	Two ultraviolet spectrometers were to survey Comet
Experiments	Halley in ultraviolet light from 128 nm to 340 nm wave-
	length. The spectrometers were also to observe the comet close to the perihelion and to look for cometary composi- tion constituents and their rates of change during this highly active period in the cometary life cycle.
Orbit Characteristics	Did not achieve orbit
Weight (kg)	2,041
Dimensions	Carrier: 132 cm by 109 cm by 130 cm
Shape	Rectangular box
Power Source	Silver zinc batteries
Prime Contractor	General Electric-Matsco, Physical Sciences Laboratory at
	the University of New Mexico
Remarks	Although the Spartan program would continue during the next decade, this opportunity to observe Comet Halley was
	lost.

Table 4–41. Spartan 203 Characteristics

Idole I	12. Total DEfit Characteristics
Launch Date/Range	November 13, 1986/Western Test Range
Date of Reentry	n/a
Launch Vehicle	Scout
NASA Role	Launch services for U.S. Air Force
Responsible (Lead) Center	n/a
Mission Objectives	Place the Air Force P87-1 (Polar BEAR) satellite into an
	orbit that will enable the successful achievement of Air
	Force mission objectives
Payload Objectives	Conduct several experiments to study atmospheric effects
	on electromagnetic propagation
Instruments and	1. Geophysics experiment photographed the aurora
Experiments	borealis.
	2. Defense Nuclear Agency beacon experiment mea-
	sured distortion of the ionosphere.
Orbit Characteristics	-
Apogee (km)	1,014
Perigee (km)	954
Inclination (deg)	89.6
Period (min.)	104.8
Weight (kg)	122.5
Dimensions	n/a
Shape	Cylindrical
Power Source	Solar arrays
Prime Contractor	Applied Physics Laboratory, Johns Hopkins University

Table 4–42. Polar BEAR Characteristics

Table 4–43. San Marco D/L Characteristics

Launch Date/Range	March 25, 1988/San Marco Equatorial Range in Kenya,
_	Africa
Date of Reentry	December 6, 1988
Launch Vehicle	Scout (launch was conducted by an Italian crew)
NASA Role	Provided an ion velocity instrument, wind/temperature
	spectrometer, electric field instrument, and Scout launch
	vehicle for cooperative mission with Italy
Responsible (Lead) Center	NASA Headquarters Office of Space Science and
	Applications (OSSA) and Goddard Space Flight Center
Mission Objectives	Launch satellite into low-Earth orbit to explore the possi-
	ble relationship between solar activity and meteorological
	phenomena and determine the solar influence on low
	atmosphere phenomena through the thermosphere by
	obtaining measurements of parameters necessary for the
	study of dynamic processes occurring in the troposphere,
	stratosphere, and thermosphere
Instruments and	1. Neutral Atmosphere Density Experiment (Italy)
Experiments	measured drag forces on the satellite in orbit.
	2. Airglow Solar Spectrometer (West Germany) mea-
	sured equatorial airglow, solar extreme ultraviolet
	radiation, solar radiation from Earth's surface and
	from clouds, and the radiation from interplanetary
	and intergalactic origins reaching the satellite.
	3. Wind and Temperature Spectrometer (Goddard) mea-
	sured neutral winds, neutral particle temperatures,
	and concentrations of selected gases in the
	atmosphere.
	4. Three-Axis Electric Field Experiment (Goddard)
	measured the electric field surrounding the spacecraft
	in orbit.
	5. Ion Velocity Instrument (University of Texas) mea-
	sured the plasma concentration and ion winds sur-
	rounding the spacecraft in orbit.
Orbit Characteristics:	
Apogee (km)	614
Perigee (km)	260
Inclination (deg.)	2.9
Period (min.)	99
Weight (kg)	237
Dimensions	96.5 cm diameter
Snape Doman Common	Spherical
Power Source	Solar cell allay
rinne Contractor	(Italy)
Romarks	(nary) The wind and temperature spectrometer instrumentation
Nullai NS	system failed after providing approximately 1 week of date
	The remaining four experiments operated satisfactorily
	The remaining rour experiments operated satisfactority.

Date	Event
Sept. 10, 1971	First documented use of the term "Sortie Can," predecessor to
	Spacelab, is used. NASA Headquarters Space Station Task
	Force Director Douglas R. Lord asks Marshall Space Flight
	Center to begin an in-house design study of a Sortie Can, a
	manned system to be carried in the Shuttle cargo bay for the
	conduct of short-duration missions.
Nov. 30–Dec. 3, 1971	The Joint Technical Experts Group meets in Washington.
Feb. 16, 1972	NASA Associate Administrator for Manned Space Flight Dale
,	Myers investigates the Sortie Can and related activities at
	Marshall and issues new guidelines.
June 14–16, 1972	A delegation from the European Space Conference travels to
	Washington for a discussion with senior U.S. officials. The
	European Research and Technology Center (ESTEC) is
	assigned the task of determining needed resources for Europe
	to develop the Sortie Module (Lab).
July 31-Aug. 4, 1972	NASA Associate Administrator for Space Science Dr. John E.
oui, 01 110g. 1, 1972	Naugle heads a Space Shuttle Sortie Workshop at Goddard
	Space Flight Center
Aug. 17-18, 1972	NASA Headquarters hosts a meeting to review provisions that
nug. 17 10, 1772	might appear in an agency-to-agency agreement that was devel-
	oped based on earlier agreements between Europe and NASA
Nov 8_9 1972	Furopean space ministers agree to formulate plan for a single
1101. 0-7, 1772	European space agency by December that would merge the
	existing European Space Research Organization (ESRO) and
	European Launcher Development Organization (ELDO) into
	the European Space Agency (ESA)
Dec 20 1972	At the space ministers' official meeting, the formal develop-
<i>Dec.</i> 20, 1772	ment commitment to the Sortie I ab is made
	NASA and Europeans prepare first drafts of an agency level
Dy Jan. 1775	agreement
Ion 0 1073	ESPO's format of a Memorandum of Understanding (MOU) is
Jan. 9, 1975	discussed by Roy Gibson ESRO's deputy of administration
	and Arnold Frutkin NASA's Associate Administrator for
	International Affairs
Ion 15 17 1073	A symposium is held at ESRO's European Space Research
Jan. 15–17, 1775	Institute (ESRIN) facility in Erascati Italy to acquaint
	Furopean users with the Sortie Lab (Spacelab) concent
Ian 18 1973	The ESBO Council meets and votes to authorize a "Special
Jan. 10, 1975	Project" to develop the Sortie Lab, which the Europeans call
	Spacelab
Ian 23 1073	Space and Space
Jan. 23, 1973 Fob 22 23 1073	NASA and State Department representatives travel to Paris
100. 22-23, 1713	Although the stated purpose of the meeting is to work on the
	Annough the stated purpose of the fileeting is to work on the
	agency-to-agency agreement, the U.S. team gets its infst look at the intre European agreement then in draft form which would
	the muta-European agreement, then in drait form, which would
	infinity commit the European signers to Spacelab development.

Table 4-44. Chronology of Spacelab Development

Table 4–44 continued

Date	Event
March 23, 1973	The program directors approve the first Spacelab concept docu-
	ment, "Level I Guidelines and Constraints for Program
	Definition," formulated by NASA. It addresses programmatics,
	systems, operations, interfaces, user requirements, safety, and
	resources.
May 1973	The expanded working groups review the findings from the
	July 1971 Goddard workshop, identify new requirements for
	the Shuttle and sortie systems, and identify systems and subsys-
	tems to be developed in each discipline. They also identify sup-
	porting research and technology needs, note changes in policies
	or procedures to fully exploit the Shuttle, and prepare cost,
	schedule, and priority rankings for early missions.
May 3-4, 1973	Representatives from Belgium, France, West Germany, Italy,
	the Netherlands, Spain, and the United Kingdom meet at the
	U.S. State Department to negotiate the draft intergovernmental
	agreement and the related draft NASA/ESRO MOU.
July 25, 1973	The Concept Verification Test (CVT) is assembled to simulate
	high-data-rate experiments emphasizing data compression tech-
	niques, including data interaction and on-board processing.
July 30, 1973	The Interim Programme Board for the European Spacelab
	Programme meets and approves the text of the intergovernmen-
	tal agreement, the text of the MOU, and a draft budget.
July 31, 1973	The ministers of 11 European countries agree to a "package
	deal" by the European Space Conference.
Aug. 10, 1973	Belgium, France, West Germany, Switzerland, and the United
	Kingdom endorse the "Arrangement Between Certain Member
	States of the European Space Research Organization and the
	European Space Research Organization Concerning the
	Execution of the Spacelab Program." Subsequently, Spain, the
	Netherlands, Denmark, Italy, and later Austria also sign the
	arrangement.
Aug. 14, 1973	Belgium, France, West Germany, Switzerland, the United
	Kingdom and the United States sign the intergovernmental
	agreement titled "Agreement Between the Government of the
	United States of America and Certain Governments, Members
	of the European Space Research Organization, for a
	Cooperative Program Concerning the Development,
	Procurement, and Use of a Space Laboratory, In Conjunction
	with the Space Shuttle System." The Netherlands signs on
	August 18, Spain on September 18, Italy on September 20, and
	Denmark on September 21.

Table 4–44 continued

Date	Event
Aug. 15, 1973	This is the "magic" date when NASA would have to initiate the
	program, in the absence of a European undertaking, to have a
	Sortie Laboratory available for use by 1979. It states a readi-
	ness, therefore, to accept a firm European commitment in
	October and signed agreement by late October-early
	November, along with immediate initiation of a full-scale pro-
	ject definition effort, as well as an added proviso that the
	Europeans could withdraw from that commitment by August
	15, 1973, if their definition work indicated that the projected
	target costs would be unacceptably exceeded.
Sept. 7, 1973	The NASA-developed Spacelab Design Requirements are
	reviewed and approved by NASA Administrator James
	Fletcher.
Sept. 21, 1973	The second issue of the Guidelines and Constraints Document
	is signed.
Sept. 24, 1973	In a U.S. Department of State ceremony in Washington, Acting
	Secretary of State Kenneth Rush and the Honorable Charles
	Hanin, Belgian science minister and chairman of the European
	Space Conference, sign a communiqué noting the completion
	of arrangements for European participation in the Space Shuttle
	program and marking the start of a new era in U.SEuropean
	space cooperation. NASA Administrator James C. Fletcher and
	Dr. Alexander Hocker, director general of the ESRO, also sign
	the MOU to implement this international cooperative project.
Oct. 1973	The NASA Headquarters Sortie Lab Task Force is renamed the
	Spacelab Program Office, with responsibilities for overall pro-
	gram planning, direction, and evaluation as well as establishing
	program and technical liaison with ESRO. The name change
	from Sortie Lab to Spacelab recognizes the right of ESRO, as the
	sponsoring agency, to choose its preferred title for the program.
Oct. 9–10, 1973	Marshall reviews the preliminary design effort.
Nov. 16, 1973	NASA Administrator Fletcher directs NASA to evaluate the
	impact of a Shuttle docking module (then required on Shuttle
	missions carrying more than three crew members) on the mis-
	sion model and on specific payloads.
Jan. 1974	The NASA administrator agrees with the recommendations not
	to use a docking module on all Spacelab missions. A general
	purpose laboratory, much like a Spacelab module, is added to
	the CVT complex at Marshall.
Early 1974	The Joint User Requirements Group begins informal discus-
	sions of the real Spacelab mission. The Joint Spacelab Working
	Group (JSWG) expresses its concern over the need to use the
	first missions to verify Spacelab performance.
March 5, 1974	The third version of the Guidelines and Constraints Document
	is signed and renamed the "Level I Programme Requirements
	Document."

Table 4–44 continued

Date	Event
March 19, 1974	The JSWG meets and establishes the Spacelab Operations
	Working Group with the thought that it would have a limited
	life, possibly through the Critical Design Review. In actuality,
	the Operations Working Group continues not only beyond that
	time, but eventually is divided into two groups, one focused on
	ground operations, the other on flight operations. The Software
	Coordination Group is also established: its initial focus is on the
	HAL-S and GOAL languages, which NASA is to furnish to
	FSRO but it quickly broadens its scope to include micropro-
	gramming Dr. Orther of ESRO proposes a joint ESRO/NASA
	program called the Airborne Science/Speecheb Experiments
	System Simulation (ASSESS). Dy May it is acroad that a joint
	system simulation (Assess). By May, it is agreed that a joint
	MOUL
	MOU by a simple exchange of letters between the two program
	directors. The JSWG states that the Spacetab program should
	dictate the flight configuration and specify the resources avail-
	able for experiments. It specifies that the first mission would
	have a long module and a pallet of two segments; 3,000–4,000
	kg of weight, 1.5–2.5 kW of electrical power, and approximately
	100–150 hours of crew time would be available for experiment
	activities; and the first mission would be no longer that 7 days.
April 23, 1974	The NASA/ESRO Joint Planning Group, co-chaired by Dr.
	Gerald Sharp of NASA and Jacques Collet of ESRO, meet to
	develop guidelines and procedures for selecting the first
	Spacelab payload.
May 17, 1974	NASA presents an expanded set of constraints for consideration
	at a JSWG meeting, including constraints imposed by the
	Shuttle, one of which is a limit of four to five crew members
	for the first Spacelab mission if it is conducted, as then
	planned, on the seventh Shuttle flight.
May 20, 1974	First annual review of the Spacelab program is held.
May 29–30, 1974	After it is suggested that the CVT general purpose laboratory
	be upgraded to make it more like the Spacelab design, a
	Preliminary Requirements Review for the improved simulator
	is held. Its completion is planned for mid-1976.
Summer of 1974	Some 60 Europeans, both ESRO and industry representatives of
	the Spacelab team, embark on a 2-week visit to the United States.
July 1–14, 1974	Fourteen points are approved by the NASA Manned Space Flight
	Management Council. The configuration now states a one- or
	two-segment pallet with the long module. Weight and power are
	unchanged, but the crew size is to be "minimized" and "up to"
	100 crew-hours would be available for experiment operations.
July 12, 1974	John Thomas, NASA's chief engineer for the Spacelab Program
	Office at Marshall, gives the first detailed requirements of the
	Verification Flight Instrumentation to the JSWG. He presents
	parameters to be measured, the type of test equipment, power
	and weight requirements, and summary mission timelines.

Date	Event
July 15–19, 1974	An integrated life science mission is conducted in the CVT
	facility. Planned and conducted by Ames Research Center sci-
	entists, this test demonstrates candidate experiment protocols,
	modular organism housing units, and rack-mounted equipment
	plus radioisotope tracer techniques.
July 22–23, 1974	The Spacelab team visits Johnson Space Center for technical
	discussions of the primary Shuttle/Spacelab interfaces.
Aug. 8, 1974	A letter from Lord to Stoewer, the ESRO acting program direc-
	tor, projects a joint mission in 1975 to draw up Spacelab design
	conclusions, study operational concepts, and perform scientific
	experiments. Marshall issues an Instrument Pointing System
	(IPS) Requirements Document.
Aug. 26, 1974	Stoewer's confirmation letter states full agreement with Lord's
	proposal but cautions that ESRO's funding limit for the first
	mission is 350,000 accounting units (approximately \$440,000
	at the time). By the end of 1974, planning for the first ASSESS
	mission is to take shape. A series of five flights on consecutive
	days would approximate the useful time of a 7-day Spacelab
	mission.
Sept. 23, 1974	The Joint Planning Group meets. ESRO reports that a call for
- '	Spacelab utilization ideas elicited 241 replies, over half of
	which were new "customers" for space experimentation. The
	JSWG members discuss the constraints for the second Spacelab
	mission, the most important one being that it would not be a
	joint payload. ESRO does not agree to this point. NASA also
	suggests that a DOD mission might replace the first Spacelab
	on the first Shuttle operational flight. ESRO objects strongly to
	this proposal.
Sept. 26, 1974	The new version of the Programme Requirements Document
1 /	(Revision 1) is signed.
Oct. 21–31, 1974	After receipt of the data package from ERNO on October 21,
,	independent technical teams are set up by ESRO at ESTEC and
	by NASA at Marshall. The teams conduct their reviews and
	write Review Item Discrepancies (RIDs). The three baseline
	documents for this review are: the Program Requirements
	Document (Level I), the System Requirements Document
	(Level II), and the Shuttle Payload Accommodations, Volume
	XIV.
Nov. 7, 1974	The Shuttle/ Spacelab Interface Working Group on Avionics,
,	or, as it is soon called, the Avionics Ad Hoc Group, is estab-
	lished by agreement of the program directors.
Dec. 1974	NASA accepts ESRO's choice of the Mitra 25 computer system.
Dec. 11, 1974	The Joint Planning Group holds its final meeting; its functions
,	would be assumed by line payload organizations.
Jan. 1975	It is agreed that the transfer tunnel would be offset below the
	orbiter centerline so that lightweight payloads could be mount-
	ed on bridging structures above the tunnel if desired.

Table 4–44 continued

Table 4–44 continued

Date	Event
March 1975	A second decision establishes the approach to the orbiter end of
	the tunnel. The Shuttle program would build a removable tun-
	nel adapter, which would be placed between the Spacelab tun-
	nel and the orbiter cabin wall. The adapter would have doors at
	both ends and a third door at the top where the airlock could be
	mounted.
May 29–30, 1975	The NASA Preboard "N" chaired by Jack Lee conducts its
	review of the System Requirements Documents at Marshall. In
	the meantime, ESA conducts a parallel review.
June 4, 1975	An annual review of the Spacelab program is held. Roy Gibson,
	director of ESA, and NASA Administrator Fletcher propose to
	accept the objectives for the first Spacelab payload as presented
	by the Joint Planning Group, and the group formally dissolves.
	A review is also presented on the status of the IPS proposal.
June 7, 1975	The ASSESS simulation flights are conducted, successfully
	completing the program at Ames Research Center. The interna-
	tional crew of five completes a 6-day mission on board the CV
	990 Galileo II.
June 9, 1975	The combined ESA/NASA teams meets in Noordwijk to con-
	sider the 1,772 RIDs prepared by both agencies.
Aug. 28–29, 1975	ESA Spacelab Programme Director Deloffre and Lord draft a
	"package deal" that would commit the agencies to develop or
	fund activities and equipment that have been in question.
Sept. 1975	By this meeting between Lord and Deloffre, plans for go-ahead
	have fallen apart. ESA has rejected the Dornier proposal (sub-
	mitted through ERNO as the prime contractor) because of unac-
	ceptable schedule and cost risks. ESA has issued RFPs to
	ERNO, MBB, and Dornier, with a response due December 5.
Sept. 24, 1975	Revision 2 of the Programme Requirements Document is issued.
Sept. 30, 1975	The main contract between ESA and prime contractor VFW
	Fokker/ERNO is signed in the amount of approximately
	600 million Deutschmarks. Over the next 9 months, negotia-
	tions between ERNO and its co-contractors are concluded.
Nov. 17-21, 1975	Another CVT simulation is conducted to determine how effec-
	tively a team of scientists in orbit, with only moderate experi-
	ment operations training, could conduct experiments while
	being monitored on the ground by principal investigators using
	two-way voice and downlink-TV contact.
Nov. 18–19, 1975	The Joint Program Integration Committee meets and reviews
	preliminary management plans for the first mission, Level I
	constraints, Level II guidelines imposed by the system and veri-
	fication test requirements, and payload accommodation study
	results and plans.

Table 4–44 continued

Date	Event
Winter 1975–1976	The ESA team holds subsystem reviews. Also, ESA Spacelab
	Programme Director Bernard Deloffre works to sign contracts
	with each member of the consortium, reduce the backlog of
	engineering change proposals, recover schedule slips, and meet
	with European and NASA groups to review the program. To
	improve NASA's visibility into the European contractor effort,
	Deloffre invites NASA program management to participate in
	his quarterly reviews at ERNO beginning in September 1975.
By early 1976	ESA receives two proposals for the IPS: a joint bid on the IPS
	by Dornier and MBB and a bid from ERNO covering integra-
	tion of the IPS into the Spacelab.
March 1976	Final approval is obtained to conduct ASSESS II as a joint mis-
	sion sponsored by NASA's Office of Applications and Office of
	Space Flight and by ESA. The ESA Industrial Policy
	Committee authorizes Deloffre to proceed with the IPS con-
	tracts.
March 4–5, 1976	At the Joint Spacelab Working Group meeting, ESA reports
	that 110 engineering change proposals have been resolved with
	ERNO and only 90 are left open. The cost of the changes
	recently approved is 15 million accounting units (approximate-
	ly \$15 million at that time).
March 17, 1976	NASA's Fletcher, Low, Naugle, Mathews, Yardley, McConnell,
	Calio, Culbertson, Frutkin, and Lord deliberate the latest ESA
	proposal on the IPS. They agree to advise ESA that NASA would
	use an ESA IPS that meets the specification requirements and
	that NASA's first potential use would be on Spacelab 2.
March 19, 1976	Deloffre reports that his reserves on the program are down to
	only 5 million accounting units.
March–June 1976	ESA and NASA jointly conduct the Spacelab Requirements
	Assessment and Reduction Review. This review evaluates pro-
	gram needs and eliminates those items that have crept into the
	program but could be deleted with a considerable cost saving.
April 1976	ESA establishes a Software Audit Team to assess the software
	situation and make recommendations.
May 12, 1976	The Software Audit Team presents its preliminary findings to
	the ESA Spacelab Programme and project managers.
May 26, 1976	NASA (Marshall) issues an RFP for a Spacelab integration
	contract to secure a contractor to provide support in developing
	Spacelab hardware that is NASA's responsibility and analytical
	and hands-on support in the integration and checkout of
	Spacelab hardware during the system's operational lifetime.
June 2, 1976	The Software Audit Team makes its final presentation to ESA,
	ERNO, and co-contractors. The group concludes that Spacelab
	software is not in good shape and that there does not seem to
	be a structure for improving the situation.

Table 4–44 continued

Date	Event
June 16, 1976	The third annual meeting of the agency heads (Gibson and
	Fletcher) occurs in Washington, D.C. Discussed is the claim
	that the logistics requirements have been almost totally neglect-
	ed in the agreements and contracts to date. Fletcher signs a let-
	ter to Gibson concurring with ESA's plans to proceed with IPS
	development. Fletcher urges that the delivery schedule provide
	adequate time for integration of payloads and checkout of the
	combined system for the planned launch date in 1980.
June 18, 1976	A NASA Program Director's Review is held, and Luther Powell
,	of the Marshall project team summarizes activities in support of
	Preliminary Design Review-A (PDR-A).
June 24–25, 1976	The technical experts team analyzes its planned reviews with
,	ESA at ESTEC and goes to Bremen for the final reviews
	between ESA and ERNO. By the time the senior NASA repre-
	sentatives arrive on July $1-2$, chaos is reigning. PDR-A is a
	complete disaster. Documentation is inadequate, schedules are
	slipping, the budget cannot be held, the contractor team is out
	of control, and the team morale is at an all-time low.
June 28, 1976	NASA distributes the data packages for the Preliminary
	Operations Requirements Review for ground operations. The
	purpose of this review is to obtain agreement on ground opera-
	tions requirements, including integration at Level I, II, and III,
	logistics, training of ground processing personnel, ground sup-
	port equipment, facilities, contamination control, and safety.
July 7, 1976	Gibson signs a PDR implementation plan with Hans Hoffman
	at ERNO for a simple and straightforward approach to PDR-B.
July 15, 1976	A final CVT simulation to employ a high-energy cosmic ray
	balloon flight experiment is conducted.
July 30, 1976	Further changes are approved to the Programme Requirements
	Document. The most important ones note the addition of
	NASA-furnished utility connectors (from the orbiter to
	Spacelab) and a trace gas analyzer.
Aug. 1976	At the Program Director's Review, John Waters of Johnson
	Space Center presents a plan to procure a simulator to operate
	alone or with the Shuttle Mission Simulator and the Mission
	Control Center at Houston to produce a high-fidelity mission
	simulation.
Sept. 18, 1976	Gibson and Fletcher meet at Ames Research Center to tackle
	Spacelab logistics.
Nov. 1, 1976	ESA selects Michel Bignier as director of the Spacelab
	Programme.
Early Nov. 1976	Bignier and Gibson recognize that Spacelab funding is out of
	hand and propose descoping the program.
Nov. 22–23, 1976	NASA astronauts Paul Weitz, Ed Gibson, Bill Lenoir, and Joe
	Kerwin conduct a walkthrough of the Spacelab module at
	ERNO. They simulate various airlock operations and note fur-
	ther improvements needed.
Dec. 4 and 8, 1976	ESA, ERNO, and NASA hold board meetings, resulting in agree-
	ment that PDR-B represents a major turnaround in the program.
Date	Event
-------------------	---
Jan. 14, 1977	NASA Spacelab Deputy Director Jim Harrington states that
	ESA proposals could save as much as \$84 million in the ESA
	budget but could impose on NASA an additional funding
	requirement of \$26 million to \$33 million. Fletcher and Gibson
	agree on the descoping items for ESA to go to its Spacelab
	Programme Board for approval.
Jan. 20–24, 1977	Gibson receives approval from the Spacelab Programme Board
	for all the proposed changes, with one notable exception. The
	board refuses to accept deletion of the IPS and decides instead
	to postpone decisions on this part of the program.
Feb. 23, 1977	The Spacelab module, which is produced by the Italian firm
	Aeritalia, successfully completes a series of limit, proof, and
	ultimate pressure testing.
March 1977	After many discussions and studies of various options, the
	NASA administrator decides to proceed with the development
	of a "hybrid" pallet to be used on several Shuttle orbital flight
	test (OFT) missions and that would also be available if the
	Spacelab system is delayed.
March 9, 1977	NASA announces the selection of McDonnell Douglas for the
	integration effort.
March 16, 1977	The ESA Spacelab Programme Board decides not to cancel the
	IPS as part of the overall program descoping.
April 1977	ESA Headquarters submits a proposal for a Spacelab
	Utilization Programme to its managing council. The report
	addresses three alternative programs for European use of the
	Spacelab.
April 25–29, 1977	The first formal Crew Station Review is held at ERNO and
	includes NASA astronauts Bob Parker, Paul Weitz, and Ed
	Gibson. Working with NASA, ESA, and ERNO specialists in
	crew habitability, they review the Spacelab design.
May 2, 1977	Bignier writes to Lord that only three engineering model pallets
	would be flightworthy, the others having been used in the test
	program in such a manner that they cannot be flown. NASA
	initially requested four pallets that could be flightworthy for
Mar 2 4 1077	OF1 missions.
May 3–4, 1977	The JSWG meets, and Jim Harrington presents a NASA pro-
	posal for six preliminary options to meet the NASA require-
Mov 16 1077	"I supply of the ASSESS II occurs. This mission amphasizes
May 10, 1977	the development and even is of management techniques
	planned for Spacelab using management participants from
	NASA and ESA who would be responsible for the Spacelab 1
	mission then scheduled for 1000
	Infission, then scheduled for 1980.
May 50-	flight visite Hewker Siddeley Dynamics EDNO and Agritalia
June 3, 17//	to review the status of the program and programs on bardware
	for the status of the program and progress on hardware
June 1977	Co-contractor Critical Design Reviews (CCDRs) are held for
June 17/1	electrical and mechanical ground support equipment
	encentear and meenamear ground support equipment.

Table 4–44 continued

Table 4–44 continued

Date	Event
June 16, 1977	ESA signs a fixed-price contract with Dornier for developing
	the IPS, with a delivery date of June 18, 1980. Dornier would
	be solely responsible for managing the IPS/Spacelab interface
	with no subcontract for this function.
June 20–	The Preliminary Requirements Review for the transfer tunnel,
July 12, 1977	which provides crew access to the module from the orbiter, is
	conducted.
July 1977	CCDRs are held for the data management subsystem and mod-
	ule structure. The first Electrical System Integration activity,
	the T800 self-test, is successfully completed. A Preliminary
	Requirements Review of the transfer tunnel is held, and the
	design and development of critical elements are initiated.
Aug. 1–19, 1977	A Preliminary Requirements Review for the Verification Flight
	Instrumentation is conducted.
Sept. 1977	CCDRs are held for crew habitability, system activation and
	monitoring, thermal control, and electrical power distribution
	systems. Testing is completed on the command and data man-
	agement subsystem portion of the Electrical System Integration.
Oct. 1977	NASA drops its idea of using a hybrid pallet as a Spacelab
	backup.
Oct. 7, 1977	After touring several European government and industry facili-
	ties, new NASA Administrator Dr. Robert Frosch meets with
	Gibson in Paris. The target dates for Spacelabs 1 and 2 are now
	December 1980 and April 1981, respectively.
Nov. 1977	Reviews are conducted on the life support system, the igloo
	structure, and the airlock. A subsystem interface compatibility
	test is also completed.
Nov. 15–16, 1977	ESA expresses concern about the Spacetab reimbursement poli-
	cy, particularly the high costs, and that ESA is not given prefer-
L ata 1077	The Speedlah periload planners, resetting to superiment fore.
Late 1977	als for the second mission recommend a change in Specelah 2
	to fly a large cosmic ray experiment that could use its own
	independent structural mount to the orbiter
Dec 1977	A compatibility test between the command and data manage-
D ((, 1)//	ment subsystem and the first set of electrical ground support
	equipment newly arrived from BTM is completed The IPS
	Preliminary Design Review is held. Concurrent reviews are
	held at Marshall and ESTEC: the final phase is held at Dornier.
	Results are encouraging, except for two discrepancies: certain
	structural elements are found to be made of materials suscepti-
	ble to stress corrosion, and IPS software requirements needs
	better definition.
Jan. 23–	The Software Requirements Review is conducted to define the
March 10, 1978	operational software for the Spacelab flight subsystems and the
	ground checkout computers. ESA, NASA, and ERNO reach a
	technical agreement for the first time.

Date	Event
Jan. 30, 1978	After evaluation of the Spacelab Simulator by Johnson Space
	Center, a formal contract agreement is signed, and development
	begins with ERNO to provide the scientific airlock mockup for
	the simulator and data support to Link.
Feb. 1978	Another Crew Station Review allows the astronauts to review
	the scientific airlock hardware at Fokker and the improvements
	to the module at ERNO. Senior NASA and ESA officials meet
	to discuss the trade of one Spacelab for NASA launch services
	for European Spacelab missions. The results of this meeting are
	so encouraging that NASA terminates work related solely to
	contractual procurement in favor of concentrating on a barter
	agreement.
Feb. 7–8, 1978	The NASA preboard meets, and the focus is shifted to ESTEC
	for the joint team meetings starting on February 17.
Feb. 27, 1978	The final phase of the Critical Design Review begins in Bremen.
March 9, 1978	A draft MOU of the barter arrangement is reviewed by NASA
	and ESA representatives.
May 1978	Information on the planned mounting structure of the new
	Spacelab 2 configuration is submitted to ESA.
May 8, 1978	NASA administrator Frosch and ESA director general Gibson
	exchange letters that agree on a set of guidelines and a
	timetable leading to signature of the MOU to formalize the
	barter by the end of 1978.
May 16, 1978	ESA sends an RFP to ERNO for a firm evaluation of the cost
	of the second Spacelab flight unit. A separate request is sent to
	Dornier for a similar proposal on a second IPS.
June 1978	ESA Project Manager Pfeiffer reports that Electrical System
	Integration testing has been completed. T004, an assembly test
	involving the racks and floors of the engineering model of the
	Spacelab, is completed. McDonnell Douglas reports that it is
	having problems in both the design and fabrication for the flex-
	ible transfer tunnel sections. The Preliminary Design Review
	for the Verification Flight Instrumentation is completed, but it
	is not until July and November 1979 that a two-part Critical
	Design Review is completed for the Verification Flight
	Instrumentation for Spacelab 1.
June 12–13, 1978	The JSWG reports on user needs for more power, heat rejection,
	energy, data handling, and a smaller and lighter IPS. Bignier
	accepts the proposed changes to the Spacelab 2 configuration
	during the JSWG meeting.
July–Aug. 1978	A Critical Design Review for the OFT pallet system is conducted.
Aug. 1978	NASA and ESA announce the first selection of potential crew
	members for the early Spacelab missions. Drs. Owen K.
	Garriott and Robert A.R. Parker are named as mission special-
	ists for the first Spacelab mission.

Table 4–44 continued

Table 4–44 continued

Date	Event
Aug. 8, 1978	ESA and NASA introduce their final candidates for the single
	payload specialist to be provided by each side. ESA has selected
	Dr. Wubbo Ockels, a Dutch physicist; Dr. Ulf Merbold, a
	German materials specialist; and Dr. Claude Nicollier, a Swiss
	astronomer. NASA has selected Byron K. Lichtenberg, a doctor-
	al candidate in bioengineering at MIT, and Dr. Michael
	Lampton, a physicist at the University of California at Berkeley.
Sept. 14, 1978	A NASA delegation headed by John Yardley and Arnold
	Frutkin meets with the ESA Spacelab Programme Board to
	propose the mechanism for NASA to obtain the second
	Spacelab flight unit in exchange for Shuttle launch services.
Oct. 1978	The newly developed flexible multiplexer/demultiplexer (from
	the orbiter program) is accepted from Sperry, and the first OFT
<u> </u>	pallet structure is accepted at British Aerospace.
Oct. 7, 1978	Frosch and Gibson meet for a formal review of the overall
	Spacelab program. The meeting results in assignments to the
	Spacelab program directors to prepare a post-delivery change
	control plan, review an ESA proposal for operational support,
	and continue the analysis of European source spares. The
	Spacelab 1 mission is now targeted for June 1981 and Spacelab
0 / 10 11 1050	2 for December 1981.
Oct. 10–11, 1978	European news media representatives attend a 2-day symposium
	at EKNO sponsored by the west German minister of research
	and technology, voiker Hault. His opening remarks strongly
	endorse space enorts, spacetab in particular, and issue an
	activities
Oct. 16 and 27, 1978	FRNO and Dornier submit their proposals for a procurement
Oct. 10 and 27, 1970	contract for the second Snacelab ESA and NASA begin their
	evaluations
Oct. 30, 1978	ERNO proposes a new schedule to ESA, which forecasts deliv-
	erv of the engineering model to NASA in April 1980 and deliv-
	ery of the flight unit in two installments: July and November
	1980.
Nov. 13, 1978	A NASA team joins its ESA counterpart in Europe with the
,	goal to define a procurement contract as early as possible in
	1979.
Dec. 4, 1978	The OFT pallet arrives at Kennedy Space Center.
Jan. 1979	The oft-postponed module subsystems test is finally completed.
	NASA Administrator Frosch formally announces that NASA
	would proceed with both a free-flying 25-kW power module
	and an orbiter-attached power extension package to provide up
	to 15 kW power for a maximum of 20 days. Colin Jones pre-
	sents a detailed progress review of the IPS to the JSWG. The
	delivery to Kennedy is now projected for July 1981.
Jan. 16, 1979	NASA applies to the Bureau of Customs of the Treasury
	Department for duty-free entry of the Spacelab from Europe
	under the Educational, Scientific, and Cultural Materials
	Importation Act of 1966.

Date	Event
March 12, 1979	Bignier and Lord attend the program review at Dornier and
	observe progress in the assembly and testing of all major hard-
	ware elements.
March 29, 1979	A meeting between Frosch and Gibson is held, and NASA pro-
	poses the formation of a joint ESA/NASA working group to
	define the follow-on development program.
By April 1979	Good progress is finally reported in the development of the
	flexible toroidal sections to be placed at each end of the trans-
	fer tunnel, which would minimize the transfer of loads between
	the tunnel and its adjoining structural elements. The develop-
	ment test program of the tunnel "flex unit" is successfully com-
	pleted. Two sets of tests have been completed in at Johnson
	Space Center using European-supplied development compo-
	nents from the Spacelab data system.
May 1979	Preliminary Design Review activities previously terminated
-	because of flex unit development problems are resumed and
	satisfactorily completed.
June 1979	A System Compatibility Review is held to verify the IPS
	design qualifications on the basis of testing already performed.
July 4, 1979	NASA and ESA agree to a letter contract for the procurement
	of essential long-lead items necessary for producing a second
	Spacelab.
Sept. 1979	The total hardware system of the simulator is shipped to
	Johnson Space Center and accepted. This includes the crew sta-
	tion, an instructor operator station from which training opera-
	tions would be controlled, and supporting computer equipment.
Sept. 12, 1979	Bignier writes to Lord expressing serious concern over the
	escalation of cost of the vertical access kit, then under design
	review at SENER.
By Oct. 1979	The ESA Spacelab Programme Board indicates its reluctance to
	approve additional funding for Spacelab improvements in light
	of cost overruns in the current development program.
Nov. 1979	A two-part Critical Design Review is completed for the Verification
	Flight Instrumentation for Spacelab 1. MDTSCO has the complete
	Software Development Facility operational at the IBM Huntsville,
	Alabama, complex. The facility provides a duplication of the
	Spacelab system and simulates all the orbiter interfaces and also
	can model the experiments that would fly on Spacelab. Both pallets
	are ready for Level IV integration of the payload.
Late 1979	During the NASA administrator's review of the 1981 Office of
	Space Science budget, the consolidated Spacelab utilization
	costs raise serious concern about their magnitude. In particular,
	the administrator states that the costs are not in keeping with
	the concept of a walk-on laboratory. He calls for formation of a
	Spacelab Utilization Review Committee to analyze the costs
	and to make recommendations for making the Spacelab a cost-
	effective vehicle for science missions. The pallet for the OSS-1
	payload is transported from Kennedy to Goddard over the road,
	using the Payload Environmental Transportation System.

Table 4–44 continued

Table 4–44 continued

Date	Event
Jan. 1980	A contract is signed by Marshall (as the procurement agent for
	NASA) and ESA to purchase the second flight unit at a cost of
	approximately \$184 million. The first assembly test of the
	racks, floor, and subfloor of the flight unit is completed, a full
	2 weeks ahead of the new schedule.
Feb. 1980	Work starts on the long module integration test of the engineer-
	ing model. Jesse Moore proposes to Lord to modify the
	Spacelab 2 configuration again to change from a three-pallet
	train with igloo to a single pallet with igloo plus a two-pallet
	train. This is accepted as the new configuration for Spacelab 2
	unless later loads analyses show the need for further changes.
Feb. 14, 1980	Agency heads meet to review the Spacelab program in Paris. It
	is noted that, despite considerable progress by both ESA and
	NASA, the date for the first Spacelab flight has slipped to
	December 1982.
April 1980	Part I of the Engineering Model Acceptance Review is held.
	Nine teams evaluated a major portion of the deliverable accep-
	tance data package and some 800 discrepancy notices are
	written.
Late May 1980	ESA and NASA sign an agreement for procurement of a sec-
	ond IPS for approximately \$20 million, scheduled for delivery
T.I. 1000	in the fourth quarter of 1983.
July 1980	The second major test of the flight unit is completed, although
	special test equipment has to be used to replace a faulty divert-
	The October monthly program report from ESA and NASA
000.1700	states that the engineering model and flight unit test (including
	electromagnetic compatibility) was completed on October 1
	and with that test, the engineering model system integration
	program is completed.
Oct. 20, 1980	The Engineering Model Test Review Board gives final approval
	for full disassembly of the engineering model.
Nov. 4, 1980	The Engineering Model Test Review Board gives final approval
,	for the start of the formal acceptance review, also known as the
	Engineering Model Acceptance Review Part II.
Nov. 24–25, 1980	The Engineering Model Acceptance Review Part II is success-
	fully completed, with the final board giving permission to ship
	the hardware to Kennedy.
Nov. 28, 1980	The final segment of the engineering model is rolled out of the
	ERNO Integration Hall and is transported to Kennedy in three
	major shipments.
Late 1980	The first pallet is moved to the cargo integration test equipment
	stand to prepare for a simulated integration with the orbiter.
Dec. 5, 1980	The first shipment of the engineering model is brought to
	Kennedy on a C5A airplane. It contains the core segment, one
	pallet, and miscellaneous electrical ground support equipment
	(EGSE) and mechanical ground support equipment (MGSE),
	with a total weight of 29.9 metric tons.

Date	Event
Dec. 8, 1980	The second shipment of the engineering model arrives at
	Kennedy via a Lufthansa 747 airplane containing two pallets,
	miscellaneous EGSE and MGSE, and documentation, with a
	total weight of 36.3 metric tons.
Dec. 13, 1980	The third shipment of the engineering model arrives at
	Kennedy via a C5A plane containing the experiment segment,
	two pallets, and miscellaneous EGSE and MGSE, with a total
	weight of 33.6 metric tons.
Mid-Dec. 1980	The flight unit racks are accepted by NASA and delivered to
	the SPICE facility in Porz-Wahn.
March 4, 1981	A symbolic turnover of OSTA-1 from Rockwell to Johnson is
	accomplished.
March 10, 1981	A second turnover of OSTA-1 to Kennedy takes place.
April 8, 1981	ESA project manager Pfeiffer writes to John Thomas, the new
	NASA Spacelab program manager at Marshall, advising him of
	the April 3 selection of a new design concept for the IPS. ESA
	concludes that the existing mechanical design would have
	failed at several critical sections from the structural loads. The
	basic electronics concept, however, would be retained.
June 1981	The first part of the Flight Unit 1 Acceptance Review covering
	EGSE servicers, flight software, and spares is successfully
	completed. (Flight Unit 1 contains the module.)
June 15, 1981	The modified igloo is returned to ERNO for SABCA, and, after
	small modifications are made to the igloo support structure,
	work begins on integrating Flight Unit 2 (which contains the
	igloo).
June 26, 1981	The quarterly progress meeting at Dornier is held. Dornier pre-
	sents the details of its new design concept and the results of
	recent hardware testing. Jim Harrington, NASA program direc-
	tor, summarizes the successful first flight of the Space Shuttle.
July 27, 1981	The first set of Flight Unit I hardware is shipped to Kennedy.
July 1981	Dornier's redesign concept of the IPS is given a go-ahead. The
	first set of EGSE is received by Kennedy. Following the suc-
	cessful completion of the tests in the cargo integration test
	equipment stand, a payload Certification Review certifies that
	OSTA-1 is prepared to support the STS-2 Flight Readiness
	Review and that the integrated payload and carrier are ready for
	of the supportion elements of the mission
Arra 21 1091	The supporting elements of the mission.
Aug. 31, 1981	The report from Preiffer states that there are no outstanding
Cam4 1091	technical problems in the first part of Flight Unit 1.
Sept. 1981	A new Fremminary Design Keview is neid of the IPS.
1101. 4, 1981	lounch occurs OSTA 1 provides abundant date. From the
	Speedsh viewpoint OSTA 1 demonstrates the system discussion
	space ad viewpoint, USIA-1 demonstrates the outstanding per-
	formance of the pariet for carrying experiments.

Table 4–44 continued

Table 4–44 continued

Date	Event
Nov. 30, 1981	The second part of the Flight Unit 1 Acceptance Review is com-
	pleted, with the board's decision to approve Flight Unit 1 for
	shipment to Kennedy. A formal Certificate of Acceptance is
	signed by the program directors, project managers, and accep-
	tance managers for the two agencies and for the prime contractor.
Dec. 7, 1981	Testing resumes 3 weeks late on the Flight Unit 2 systems.
Dec. 8, 1981	The OFT Pallet Program Manager's Review is conducted at
	Marshall.
Dec. 15, 1981	The OSS-1 Pallet Pre-Integration Review is conducted at
	Marshall.
Jan. 1982	A Spacelab 2 Interface Review is held of the IPS. By early
	1982, the entire transfer tunnel assemblage is delivered to
	Kennedy, ready for processing for the first Spacelab mission.
Jan. 5, 1982	The Cargo Readiness Review of the OSS-1 Pallet is held at
	Kennedy.
Jan. 26–28, 1982	An OSS-1 simulation is conducted at Johnson.
Feb. 1982	The engineering model is powered up to begin tests simulating
	those to be conducted later with the first flight unit.
March 9, 1982	The Flight Readiness Review for OSS-1 is completed.
March 22, 1982	STS-3 is launched on its successful 7-day mission with the
	OSS-1 payload in the cargo bay.
March-Oct. 1982	It is agreed that NASA would conduct a Design Certification
	Review with support from ESA and its prime contractor ERNO
	to: review the performance and design requirements; determine
	that design configurations satisfied the requirements; review
	substantiating data verifying that the requirements had been
	met; review the major problems encountered during design,
	manufacturing, and verification and the corrective action taken;
	and establish the remaining effort necessary to certify
	flightworthiness.
June 10, 1982	Spacelab 1 faces its first operational review, the Cargo
	Integration Review for the STS-9 mission, conducted at
	Johnson. The board concludes that the hardware, software,
	flight documentation, and flight activities would support the
	planned launch schedule of September 30, 1983.
June 17, 1982	Agency heads meet in Paris. James E. Beggs has replaced Dr.
	Frosch as NASA administrator.
July 3, 1982	The final Flight Unit Acceptance Review for Flight Unit 2 is
	completed with the board meeting.
By July 7, 1982	A new cost review is presented to the administrator by Mike
	Sander and Jim Harrington. Their presentation focuses on three
	areas of Spacelab costs: operations, mission management, and
	instrument development.
July 8, 1982	The second Certificate of Acceptance is signed for Flight Unit 2.
July 29, 1982	The final shipment of large components of Flight Unit 2 is deliv-
-	ered to Kennedy from Hanover. It contains the igloo and the
	final three pallets, carried by C5A.
Aug. 1982	A Critical Design Review of the redesign of the IPS is held.

Date	Event
Dec. 6–9, 1982	The Johnson Mission Integration Office under Leonard
	Nicholson conducts an STS-9 Integration Hardware/Software
	Review to verify the compatibility of the integrating hardware
	and software design and orbiter capability against the cargo
	requirements for STS-9. The overall findings verify that the
	orbiter payload accommodations would meet the cargo require-
	ments and can support the STS-9 launch schedule
Jan. 13, 1983	The final presentations and NASA Headquarters board review
	of the Design Certification Review are held.
Jan.–March 1983	The Spacelab 1 system test is conducted, verifying the internal
	interfaces between the subsystem and the experiment train,
	including the pallet.
March and	The experiments are powered up and total system verified in a
April 1983	mission sequence test simulating about 79 hours of the planned
	215-hour flight, with the orbiter simulated by ground support
	equipment and the high-data-rate recording and playback
	demonstrated.
April 1983	A Design Certification Review on the verification flight tests
	and Verification Flight Instrumentation is completed.
May 1983	Subsystem integration of the new IPS system begins. The
	transfer tunnel is integrated to the module and its interfaces
	verified.
May 17, 1983	The NASA administrator signs a blanket certificate for the
	duty-free entry of Spacelab and Remote Manipulator System
	materials.
May 18, 1983	Spacelab is moved to the cargo integration test equipment stand
	for a higher fidelity simulation of the orbiter interface and use
	of the Kennedy launch processing system. During this test, the
	data link to the Payload Operations Control Center is simulated
	using a domestic satellite in place of the Tracking and Data
	Relay Satellite System. The cargo integration test equipment
Tumo 17 1092	Clump Lyppay manager of the National Space Transportation
Julie 17, 1905	System program at Johnson, issues the plan for the STS 0
	Flight Operations Paview to baseline the operations documen
	tation through this management evaluation of the transportation
	of payload requirements into implementation plans and
	activities
June 30 1983	Lunney chairs the Flight Operations Board meeting at Johnson
June 50, 1705	The meeting includes a "walkthrough" of the STS-9 flight
	operations
	- p

Table 4–44 continued

Table 4–44 continued

Date	Event
July 25, 1983	John Neilon, manager of NASA's cargo projects office, chairs a
	meeting of the Cargo Readiness Review Board. The review ver-
	ifies the readiness of Spacelab 1 and supporting elements for
	on-line integration with the orbiter, verifies the readiness of the
	orbiter to receive Spacelab 1, and reviews the Kennedy cargo
	integration assessment from cargo transfer to the orbiter
	through mission completion, including identification of any
	major problems, constraints, or workarounds. The milestone
	events in the Spacelab program are reviewed, and all objectives
	are accomplished in three key tests at Kennedy: the integrated
	systems test, the cargo/orbiter interface test, and the closed loop
	test from Spacelab to the Mission Control Center and Payload
	Operations Control Center
Aug. 15, 1983	Spacelab is placed in the payload canister, transferred to the
	Orbiter Processing Facility, and installed in the orbiter
	Columbia. Three tests are conducted during the next month: the
	Spacelab/orbiter interface test verifies power, signal, computer-
	to-computer, hardware/software, and fluid/gas interfaces; the
	Spacelab/tunnel/orbiter interface test verifies tunnel lighting, air
	flow, and Verification Flight Instrumentation sensors; and the
	end-to-end command/data link test verifies the Spacelab/orbiter/
	Tracking and Data Relay Satellite System/White Sands/Domat/
	Johnson/Goddard link.
Sept. 23, 1983	The orbiter is moved to the Vehicle Assembly Building.
Sept. 28, 1983	The Shuttle assembly is rolled out to the launch pad, with
	launch scheduled for September 30.
Sept. 29, 1983	The Shuttle assembly returns to the Vehicle Assembly Building
	because of a suspect exhaust nozzle on the right solid rocket
	booster.
Nov. 4, 1983	The orbiter is moved to the Vehicle Assembly Building for a
	second time.
Nov. 8, 1983	The Shuttle is rolled out again to the pad.
Nov. 28, 1983	Spacelab 1 flies on Shuttle mission STS-9.

Source: Douglas R. Lord, Spacelab—An International Success Story, NASA Scientific and Technical Division, NASA, Washington, DC, 1987.

		Table 4–4.	5. Spacelab 1 Experiments		
Experiment/	Principal	Class	Purpose/Objective	Success	Result
Number	Investigator				
Solidification of	H. Ahlborn,	Materials	Study alloys immiscible on Earth	Yes (Y)	100% of the planned objectives
Immiscible Alloys,	Federal Republic	Science and	in a near-zero gravity environment to		were accomplished using the
1ES301	of Germany	Technology	provide knowledge that may apply		isothermal heating furnace in
			to industrial processes on Earth		the Materials Science Double
					Rack (MSDR).
Solidification of	D. Poetschke,	Materials	Study technical alloys and the	No (N)	This experiment was not
Technical Alloys,	Federal Republic	Science and	solidification process in near-zero		performed in orbit because of
1ES302	of Germany	Technology	gravity to provide knowledge		the isothermal heating facility
			that may apply to industrial		failure.
			processes on Earth		
Skin Technology,	H. Sprenger,	Materials	Study the casting of metals and	Z	This experiment was not
1ES303	Federal Republic	Science and	composites in a near-zero		performed in orbit because of
	of Germany	Technology	gravity environment to provide		the isothermal heating facility
			knowledge which may apply to		failure.
Vacuum Brazing.	E. Siegfried.	Materials	Study vacuum brazing in near-zero	Y	100% of the planned objectives
1ES304	Federal Republic	Science and	gravity to provide knowledge that		were accomplished using the
	of Germany	Technology	may apply to industrial processes on		isothermal heating furnace in
			Earth		the MSDR.
Vacuum Brazing,	R. Stickler,	Materials	Study vacuum brazing in near-zero	Y	100% of the planned objectives
1ES305	Austria	Science and	gravity to provide knowledge that		were accomplished using the
		Technology	may apply to industrial processes on		isothermal heating furnace in
			Earth		the MSDR.

		Tai	ble 4–45 continued		
Experiment/	Principal	Class	Purpose/Objective	Success	Result
Number	Investigator				
Emulsions and	H. Ahlborn,	Materials	Study the influence of surface	Υ	100% of the planned objectives
Dispersion Alloys,	Federal Republic	Science and	tension on the separation process		were accomplished using the
1ES306	of Germany	Technology	in immiscible alloys in a near-zero		isothermal furnace in the
			gravity environment to provide		MSDR. Fourteen samples of
			knowledge that may apply to		zinc-lead-bismuth alloys were
			industrial processes on Earth		processed.
Reaction Kinetics	H.G. Frischat,	Materials	Study reaction kinetics of glass in	Z	This experiment was not
in Glass, 1ES307	Federal Republic	Science and	near-zero gravity to provide knowledge		performed in orbit because of
	of Germany	Technology	that may apply to industrial processes		the isothermal heating facility
			on Earth		failure.
Metallic Emulsions	P.D. Caton,	Materials	Investigate stability and properties,	Partial	Approximately 25% of the
of Aluminum-Lead,	United Kingdom	Science and	effects of cooling rates, and alloy	(P)	planned objectives were
1ES309		Technology	composition on particle size and		accomplished. The objectives
			distribution in an aluminum-lead		not accomplished were
			system in near-zero gravity to provide		attributed to the isothermal
			new knowledge that may be applied		heating furnace failure.
			to industrial processes on Earth		
Bubble Reinforced	P. Gondi,	Materials	Study bubble-reinforced materials	Y	100% of the planned objectives
Materials, 1ES311	Italy	Science and	in a near-zero gravity environment to		were accomplished using the
		Technology	provide knowledge that may apply		isothermal heating furnace in
			to industrial processes on Earth		the MSDR.

		Tab	le 4–45 continued		
Experiment/	Principal	Class	Purpose/Objective	Success	Result
Number	Investigator				
Nucleation Behavior	Y. Malmejac,	Materials	Study the nucleation behavior of	Р	Approximately 33% of the
of Silver-Germanium,	France	Science	silver-germanium in a near-zero		planned objectives were accom-
1ES312		and Technology	gravity environment to provide		plished. The objectives not
			knowledge that may apply to		accomplished were attributed
			industrial processes on Earth		to the isothermal heating fur-
					nace failure.
Solidification of Near	H. Fischmeister,	Materials	Study the lead content, size and	Y	100% of the planned objectives
Monotetic Zinc-Lead	Austria	Science and	distribution of lead particles,		were accomplished using the
Alloys, 1ES313		Technology	temperature and time of the		isothermal heating furnace in
			solidification process, and structure		the MSDR.
			of immiscible zinc-lead alloys in a		
			near-zero gravity environment		
			to provide knowledge that may		
			apply to industrial processes on Earth		
Dendrite Growth	H. Fredriksson,	Materials	Study dendrite growth in near-zero	Y	100% of the planned objectives
and Microsegregation,	Sweden	Science and	gravity to provide knowledge that		were accomplished using the
1ES314		Technology	may apply to industrial processes on		isothermal heating furnace in
			Earth.		the MSDR.

		Tał	ole 4–45 continued		
Experiment/	Principal	Class	Purpose/Objective	Success	Result
Number	Investigator				
Composites with	A. Deruyttere,	Materials	Melt and allow solidification of	Р	Approximately 50% of the
Short Fibers and	Belgium	Science and	various metallic composites to		planned objectives were accom-
Particles, 1ES315		Technology	investigate the casting process in a		plished. The objectives not
			near-zero gravity environment and to		accomplished were attributed to
			study the behavior of solid particles		the isothermal heating furnace
			dispersed in a liquid metal		failure. Several different alum-
					inum and copper composites
					were used. Resultant enhanced
					bonding characteristics were
					observed because of the
					near-zero gravity environment.
Unidirectional	C. Potard,	Materials	Study the homogenous distribution	Υ	100% of the planned objectives
Solidification of	France	Science and	of aluminum-zinc emulsions and the		were accomplished in the low-
Aluminum-Zinc		Technology	solidification process in space to		temperature gradient furnace in
Emulsions, 1ES316			determine the structural properties		the MSDR.
			of the solidified alloy		
Unidirectional	Y. Malmejac,	Materials	Study the homogenous distribution	Υ	100% of the planned objectives
Solidification of	France	Science and	of aluminum-aluminum II copper		were accomplished in the low-
Aluminum-		Technology	and silver germanium eutectics and		temperature gradient furnace in
Aluminum II Copper,			the solidification process in space to		the MSDR.
and Silver-Germanium			determine the structural properties of		
Eutectics, 1ES317			the solidified alloy		

		Ta	ble 4–45 continued		
Experiment/	Principal	Class	Purpose/Objective	Success	Result
Number	Investigator				
Growth of Lead	H. Rodot,	Materials	Study the homogenous distribution	Υ	100% of the planned objectives
Telluride, 1ES318	France	Science and	of lead telluride and the solidification		were accomplished in the low-
		Technology	process in space to determine the struc-		temperature gradient furnace in
			tural properties of the solidified alloy		the MSDR.
Unidirectional	K.L. Muller,	Materials	Study the growth and distribution of	Υ	100% of the planned objectives
Solidification of	Federal Republic	Science and	tellurium, doped indium antimonide,		were accomplished in the low-
Eutectics, 1ES319	of Germany	Technology	and nickel antimonide alloy in a near-		temperature gradient furnace in
			zero gravity environment		the MSDR.
Thermodiffusion in	Y. Malmejac,	Materials	Study the homogenous distribution	Υ	100% of the planned objectives
Tin Alloys, 1ES320	France	Science and	of tin alloys and the solidification		were accomplished in the low-
		Technology	process in space to determine the		temperature gradient furnace in
			structural properties		the MSDR.
Zone	R. Nitsche,	Materials	Study the thermodiffusion effects	Υ	100% of the planned objectives
Crystallization of	Federal Republic	Science and	on silicon crystal growth and the		were accomplished in the mir-
Silicon, 1ES321	of Germany	Technology	composition changes resulting from		ror heating facility in the MSDR.
			the near-zero gravity environment		This experiment produced the
					first floating zone silicon
					crystal grown in space.
Traveling Solvent	H. Jager,	Materials	Study the thermodiffusion effects	Υ	100% of the planned objectives
Growth of Cadmium	Federal Republic	Science and	on cadmium telluride crystal growth		were accomplished in the mir-
Telluride, 1ES322	of Germany	Technology	and the composition changes resulting		ror heating facility in the
			from the near-zero gravity environment		MSDR.
Traveling Heater	K.W. Benz,	Materials	Study the thermodiffusion effects of	Υ	100% of the planned objectives
Method of	Federal Republic	Science and	indium-antimony crystal growth and th	0	were accomplished in the mir-
III-V Compounds,	of Germany	Technology	composition changes resulting from		ror heating facility in the
Indium-Antimony,			the near-zero gravity environment		MSDR.
1E3323					

		Ta	ble 4–45 continued		
Experiment/	Principal	Class	Purpose/Objective	Success	Result
Number	Investigator				
Crystallization of	Dr. Kolker,	Materials	Study the thermodiffusion effects	Υ	100% of the planned objectives
Silicon Spheres,	Federal Republic	Science and	on silicon spheres and the composition		were accomplished in the mir-
1ES324	of Germany	Technology	changes resulting from the near-zero		ror heating facility in the
			gravity environment		MSDR.
Unidirectional	T. Luyendijk,	Materials	Study cast iron solidification in a	Y	100% of the planned objectives
Solidification of	The Netherlands	Science and	near-zero gravity environment to		were accomplished using the
Cast Iron, 1ES325		Technology	provide knowledge that may		isothermal heating furnace in
			apply to industrial processes on Earth		the MSDR.
Oscillation Damping	H. Rodot,	Materials	Study the phenomena of natural	Υ	100% of the planned objectives
of a Liquid in	France	Science and	levitation of a liquid, oscillation		were accomplished in the fluid
Natural Levitation,		Technology	damping of the liquid, and		physics module in the MSDR.
1ES326			hydrodynamics of floating liquid zones		
Kinetics of Spreading	J.M. Haynes,	Materials	Study the phenomena of spreading	Υ	100% of the planned objectives
of Liquids on Solids,	United Kingdom	Science and	liquids on solids and the kinetics of		were accomplished in the fluid
1ES327		Technology	spreading in a near-zero gravity		physics module in the MSDR.
			environment		
Free Convection in	L.G. Napolitano,	Materials	Study the phenomena of free	Υ	100% of the planned objectives
Low Gravity,	Italy	Science and	convection in a near-zero gravity		were accomplished in the fluid
1ES328		Technology	environment		physics module in the MSDR.
					Other data were also
					successfully collected.

. Table A AS

		Tai	ble 4–45 continued		
Experiment/	Principal	Class	Purpose/Objective	Success	Result
Number	Investigator				
Capillary Surfaces	J.F. Padday,	Materials	Study the phenomena of capillary	Υ	100% of the planned objectives
in Low Gravity,	United Kingdom	Science and	surfaces in near-zero gravity and the		were accomplished in the fluid
1ES329		Technology	hydrodynamics of floating liquid zones		physics module in the MSDR.
Coupled Motion of	J.P.B. Vreeburg,	Materials	Study the phenomena of coupled	Υ	100% of the planned objectives
Liquid-Solid Systems	The Netherlands	Science and	motion of a liquid-solid system in		were accomplished in the fluid
in Near-Zero Gravity,		Technology	near-zero gravity and the hydro-		physics module in the MSDR.
1ES330			dynamics of floating liquid zones		
Floating Zone	I. Da Riva,	Materials	Study the phenomena of floating	Υ	100% of the planned objectives
Stability in Zero-	Spain	Science and	zone stability of a liquid in near-		were accomplished in the fluid
Gravity, 1ES331		Technology	zero gravity		physics module in the MSDR.
					Other data were also success-
					fully collected.
Organic Crystal	K.F. Nielsen,	Materials	Study organic crystal growth in	Υ	Approximately 100% of the
Growth, 1ES332	Denmark	Science and	near-zero gravity and the effect of		planned objectives were
		Technology	weightlessness on the crystals		accomplished.
Growth of	A. Authier,	Materials	Study the growth of manganese	Υ	Approximately 100% of the
Manganese Carbonate,	France	Science and	carbonate in near-zero gravity and		planned objectives were
1ES333		Technology	the effect of weightlessness on the		accomplished.
			manganese carbonate		
Crystal Growth	W. Littke,	Materials	Study crystal growth of proteins	Υ	Approximately 100% of the
of Proteins, 1ES334	Federal Republic	Science and	in near-zero gravity and the effects		planned objectives were
	of Germany	Technology	of weightlessness on the crystals		accomplished.

	Inn I	C T TO COMMING		
Principal	Class	Purpose/Objective S	Success	Result
Investigator				
rr. Kraatz,	Materials	Study self-diffusion and inter-	Υ	Approximately 100% of the
ederal Republic	Science and	diffusion in liquid metals exposed		planned objectives were
f Germany	Technology	to near-zero gravity and the effect		accomplished.
		of weightlessness on the liquid metals		
. Belouet,	Materials	Study crystal growth of mercury	Υ	Approximately 100% of the
rance	Science and	iodide by physical vapor transport in		planned objectives were
	Technology	near-zero gravity and the effect of		accomplished.
		weightlessness on the mercury iodide		
		crystals		
M. Haynes,	Materials	Study interfacial instability and	Υ	100% of the planned objectives
^r nited Kingdom	Science and	capillary hysteresis in a near-zero		were accomplished in the fluid
	Technology	gravity environment		physics module in the MSDR.
. Ghersini,	Materials	Study adhesion of metals in an	Y	Approximately 100% of the
aly	Science and	ultrahigh vacuum chamber in a near-		planned objectives were
	Technology	zero gravity environment		accomplished.
.H.T. Pan,	Materials	Study the wetting and spreading	Υ	100% of the planned objectives
. Whitaker and	Science and	phenomena and fluid distribution pattern	IS	were accomplished. Other data
.L. Gause,	Technology	in a near-zero gravity environment		were also successfully
nited States				collected.
	Investigator T. Kraatz, ederal Republic f Germany . Belouet, rance M. Haynes, mited Kingdom inted Kingdom M. Haynes, inted Kingdom M. Haynes, inted Kingdom L. Chersini, aly L. Cause, inted States	InvestigatorTr. Kraatz,Materialsederal RepublicScience andf GermanyTechnology. Belouet,MaterialsranceScience andTechnologyTechnologyM. Haynes,Materialsnited KingdomScience andTechnologyTechnology. Haynes,MaterialsM. Haynes,MaterialsM. Haynes,MaterialsM. Haynes,MaterialsM. Haynes,MaterialsM. Haynes,MaterialsM. Haynes,MaterialsM. Haynes,Science andTechnologyTechnologyJ. Gause,TechnologyL. Gause,TechnologyIted StatesTechnology	InvestigatorTr. Kraatz,MaterialsStudy self-diffusion and inter-ederal RepublicScience anddiffusion in liquid metals exposedf GermanyTechnologyto near-zero gravity and the effectof weightlessness on the liquid metalsranceStudy crystal growth of mercuryranceScience andiodide by physical vapor transport inTechnologynear-zero gravity and the effect ofweightlessness on the mercury iodideveightlessness on the mercury iodideranceScience andiodide by physical vapor transport inTechnologynear-zero gravity and the effect ofweightlessness on the mercury iodidecrystalsM. Haynes,MaterialsM. Haynes,MaterialsStudy interfacial instability andnited KingdomScience andcapillary hysteresis in a near-zerodyScience andalyScience anddyBruky environmentH.T. Pan,MaterialsMitaker andScience andultrahigh vacuum chamber in a near-Technologyzero gravity environmentH.T. Pan,MaterialsWhitaker andScience andUhaker andScience andUhaker andScience andUtaker andScience andUtaker andScience andUtaker andScience andUtaker andScience andUtaker andScience andUtakerTechnologyUtakerTechnologyUtakerTe	InvestigatorTr Kraatz,MaterialsStudy self-diffusion and inter-Yederal RepublicScience anddiffusion in liquid metals exposedYederal RepublicScience anddiffusion in liquid metalsYGermanyTechnologyto near-zero gravity and the effectYranceScience andiodide by physical vapor transport inYranceScience andiodide by physical vapor transport inYnited KingdomScience andcapillary hysteresis in a near-zeroYalyTechnologygravity environmentYalyScience andultrahigh vacuum chamber in a near-YalyScience andultrahigh vacuum chamber in a near-YH.T. Pan,MaterialsStudy the wetting and spreadingYH.T. Pan,MaterialsStudy the wetting and spreadingYH.T. Pan,Science andphenomena and fluid distribution patternsYH.T. Pan,Science andphenomena and fluid distribution patternsYH.T. Pan,Technology

tit 15 r $T_{\alpha}h_{lo}$

SPACE SCIENCE

487

		Ta	ble 4–45 continued		
Experiment/	Principal	Class	Purpose/Objective	Success	Result
Number	Investigator				
An Imaging	M.R. Torr,	Atmospheric	Measure the airglow spectrum in	Ь	Approximately 75% to 80% of
Spectrometric	United Sates	Physics and	wavelengths ranging from extreme		the planned objectives were
Observatory,		Earth	ultraviolet to infrared		accomplished. The Imaging
1NS001		Observations			Spectrometric Observatory
					(ISO) obtained the first broad-
					band spectrum of dayglow
					from 300 to 12,800 angstroms.
					It also obtained a database for
					a detailed assessment of the
					Shuttle environment for optical
					remote sensing in the visible,
					ultraviolet, and near-infrared
					ranges. The ISO obtained addi-
					tional data concurrent with the
					electron beam firings and neu-
					tral releases. All science func-
					tional tests were run and the
					data were recorded. Because of
					RAU21, HDRR, and TDRSS
					coverage problems, some data
					were lost.

		Tal	ble 4–45 continued		
Experiment/	Principal	Class	Purpose/Objective	Success	Result
Number	Investigator				
Grille Spectrometer.	M. Ackerman,	Atmospheric	Study, on a global scale, the	Р	The low percentage of planned
1ES013	Belgium; A. Girard,	Physics and	atmosphere between 15 km and		objectives accomplished (16%)
	France	Earth	150 km altitude		was from the large beta angle
		Observations			constraint caused by the launch
					delay from October to
					November. The first observa-
					tions of CO2 in the thermosphere
					and water and methane in the
					mesosphere were made. Other
					gases were also observed. Solar
					absorption spectra of the atmos-
					pheric Earth limb in infrared
					light at sunset and sunrise were
					taken with a spectral resolution
					better than 10.0. Atmospheric
					absorptions were observed from
					12 km to 130 km.
Waves in the	M. Herse,	Atmospheric	Photograph a layer of the high	Υ	100% of the planned objectives
Oxygen-Hydrogen	France	Physics and	atmosphere to examine cloudlike		were accomplished. In addition
Emissive Layer,		Earth	structures that were observed		to the planned photography,
1ES014		Observations	within that layer		other measurements were
					taken.

	Deitoite	Ta	ble 4-45 continued	C	D14
nu r	rrıncıpaı Investigator	Class	rurpose/Objecuve	Success	Result
n on c Hydrogen um through sment of n-Alpha ES017	J.L. Bertaux, France	Atmospheric Physics and Earth Observations	Study various sources of Lyman- Alpha emission in the atmosphere, in interplanetary space, and possibly in the galactic medium	م	Approximately 80% of the planned objectives were accom- plished. Deuterium was discov- ered in the upper atmosphere between 100 km and 150 km. This discovery would allow for determination of the atmospher- ic eddy diffusion coefficient. The atomic hydrogen vertical profile between 80 km and 250 km was determined, and observations of interplanetary Lyman-Alpha emission were successful.
r tera	M. Reynolds, Federal Republic of Germany	Atmospheric Physics and Earth Observations	Test the mapping capabilities of high-resolution photography from space	<u>م</u>	Approximately 80% of the planned objectives were accom- plished. Although the metric camera experienced a jammed film advance mechanism, an in- flight maintenance procedure was developed to correct the problem. In addition to the planned observations, several targets of opportunity were photographed.

		Tał	ole 4–45 continued		
Experiment/	Principal	Class	Purpose/Objective	Success	Result
Number	Investigator				
Microwave Remote	G. Dieterle,	Atmospheric	Develop an all-weather microwave	Р	Approximately 20% of the
Sensing Experiment,	Federal Republic	Physics and	remote-sensing system		planned objectives were accom-
1EA034	of Germany	Observations			plished because of primary
					experiment equipment malfunc-
					tions. Measurements were taken
					over the planned target areas
					using the backup radiometer
					mode. In addition to the planned
					objectives, other data were
					obtained.
Atmospheric Emission	S.B. Mende,	Space	Observe faint optical emissions	Р	The AEPI operated with the
Photometric Imaging	United States	Plasma	associated with natural and		camera in the stowed position
(AEPI), 1NS003		Physics	artificially induced phenomena		because of a hardware failure,
			(such as auroras) in the upper atmosp	here	but as a result of orbiter
					maneuvers, the payload spe-
					cialists were able to successful-
					ly complete approximately
					65% to 70% of the planned
					objectives. Principal investiga-
					tors gathered significant diag-
					nostic data during joint
					operations with SEPAC. Infor-
					mation was also gathered about
					the double-layer airglow phe-
					nomena.

	Result	م مستحد استخدام مع قلم من مع قلم م	Approximiatery ou% of the	planned objectives were accom-	plished. Vehicle charge neutral-	ization was accomplished by	the Magnetoplasma Dynamic	Arcjet (MPD). A suspected-but-	never-proven beam plasma dis-	charge phenomenon was	observed. Scientific experiments	were successful except those	requiring high-power electron	gun firings. At the start of the	SEPAC electron beam high-	power firing test, the electron	beam accelerator shut down and	did not come back on-line for the	remainder of the flight. Testing	determined that vehicle neutral-	ization was only partially achiev-	able using the neutral gas plume.	The planned coordination with	the Phenomena Induced by	Charged Particle Beams experi-	ment (see below) was successful.
	Success	¢	ц																							
Table 4–45 continued	Purpose/Objective	Dougsons active and internative		perturbation experiments in Earth's	ionosphere and magnetosphere																					
	Class	Canon	opace	Plasma	Physics																					
	Principal	T Oberrach:	1. UDayaSIII,	Japan																						
	Experiment/	Cance Evaniments	space experiments	With Particle	Accelerators	(SEPAC), 1NS002																				

		Ta	ble 4–45 continued		
Experiment/	Principal	Class	Purpose/Objective	Success	Result
Number	Investigator				
Low Energy Electron	K. Wilhelm,	Space	Use artificially accelerated electrons	Р	Approximately 90% of the
Flux and Its Reaction to	Federal Republic	Plasma	as tracer particles for electric fields		planned objectives were
Active Experimentation	of Germany	Physics	parallel to Earth's magnetic field		accomplished. Principal inves-
on Spacelab,					tigators detected detailed high-
1ES019A					resolution auroras when oper-
					ating with SEPAC. However,
					failure of the SEPAC high-
					power electron beam limited
					the results.
Direct Current	R. Schmidt,	Space	Determine the magnetic field	Р	Approximately 90% of the
Magnetic Field	Austria	Plasma	surrounding the orbiter during the		planned objectives were
Vector Measurement,		Physics	Spacelab 1 mission		accomplished. Only the failure
1ES019B					of the SEPAC high-power
					electron beam limited the
					results.
Phenomena Induced	C. Beghin,	Space	Study the effects of charged particle	Ρ	All primary independent objec-
by Charged Particle	France	Plasma	beam injections into Earth's upper		tives were met. The planned
Beams, 1ES020		Physics	atmosphere		coordination experiment with
					SEPAC was completed suc-
					cessfully. Loss of some data
					was experienced because of a
					gas bottle failure and the AEPI
					camera lock problem. This
					resulted in 60% of all planned
					objectives being accomplished.

		Tal	ble 4–45 continued		
Experiment/	Principal	Class	Purpose/Objective	Success	Result
Number	Investigator				
Isotopic Stack-	R. Beaujean,	Space	Measure heavy cosmic ray nuclei	Υ	100% of the planned objectives
Measurement of	Federal Republic	Plasma	with a nuclear charge of 3 or more		were accomplished.
Heavy Cosmic Ray	of Germany	Physics			
Isotopes, 1ES024					
Far Ultraviolet	S. Bowyer,	Astronomy	Observe faint ultraviolet emissions	Р	Approximately 96% of the
Astronomy Using	France	and Solar	from various astronomical sources with		planned objectives were
the FAUST Telescope,		Physics	higher sensitivity than previously		accomplished. Other targets
1NS005			possible		were photographed in addition
					to the planned objective.
Very Wide Field	G. Courtes,	Astronomy	Make a general ultraviolet survey	Υ	100% of the planned objectives
Camera, 1ES022	France	and Solar	of the celestial sphere in a study of		were accomplished. All prima-
		Physics	large-scale phenomena		ry targets were photographed,
					plus additional targets and
					spectra.
Spectroscopy in	R. Andresen,	Astronomy	Study detailed features of cosmic	Υ	100% of the planned objectives
X-Ray Astronomy,	The Netherlands	and Solar	x-ray sources and their variations		were accomplished. Measure-
1ES023		Physics	in time		ments of the iron emission
					from the supernova remnant
					Cassiopeia A and the iron
					emission from Cygnus X-3
					were taken. Additional mea-
					surements were obtained from
					other targets.

Experiment/	Principal	Class	Purpose/Objective	Success	Result
Number	Investigator				
Active Cavity	R.C. Wilson,	Astronomy	Measure the total solar irradiance	Ρ	Approximately 90% of the
Radiometer,	United States	and Solar	and its variation through time with		planned objectives were
1NA008		Physics	state-of-the-art accuracy and precision		accomplished.
Measurement of	D. Crommelynck,	Astronomy	Measure the absolute value of the	Р	Solar constant measurements
the Solar Constant,	Belgium	and Solar	solar constant with improved accuracy		were made with undetermined
1ES021		Physics	and to detect and measure long-term		results. 90% of the planned
			variations		objectives were completed.
Solar Spectrum from	G. Thuillier,	Astronomy	Measure the energy output in the	Υ	100% of the planned objectives
170-3200 Nanometers,	France	and Solar	ultraviolet-to-infrared range of the		were accomplished. All of the
1ES016		Physics	solar spectrum		scheduled observations were
					completed, and additional data
					were obtained.
Effects of Rectilinear	R. von Baumgarten,	Life Sciences	Investigate the vestibular functions	Ρ	Approximately 75% of the
Accelerations,	Federal Republic		of the inner ear, particularly the otolith		planned objectives were
Optokinetic, and	of Germany		organs that help maintain balance		accomplished. Results were
Caloric Stimulations					highly successful in the linear
in Space, 1ES201					threshold, oscillopcia, and
					caloric operations.

		Tal	ble 4–45 continued		
Experiment/	Principal	Class	Purpose/Objective	Success	Result
Number	Investigator				
Vestibular Experiments,	L.R. Young,	Life Sciences	Study the causes of space motion	Ρ	Approximately 90% of the
1NS102	United States		sickness and to study sensory-motor		planned objectives were
			adaptation to weightlessness		accomplished. Several experi-
					ments were performed, includ-
					ing the rotating dome, "hop
					and drop," and provocative
					testing. Data quality was excel-
					lent. Additional exploratory
					investigations were also done.
Vestibulo-Spinal Reflex	M.F. Reschke,	Life Sciences	Observe changes in spinal reflexes	Ρ	Approximately 85% of the
Mechanisms, 1NS104	United States		and posture during sustained		planned objectives were
			weightlessness		accomplished.
The Influence of	C.S. Leach,	Life Sciences	Measure changes in the circulating	Υ	100% of the planned objectives
Space Flight on	United States		red blood cell mass of people exposed		were accomplished.
Erythrokinetics in			to weightlessness		
Man, 1NS103					
Measurement of	K. Kirsch,	Life Sciences	Collect data on changes in the	Υ	100% of the planned objectives
Central Venous	Federal Republic		distribution of body fluids and in the		were accomplished. Excellent
Pressure and	of Germany		balance of water and minerals in the		television coverage of blood
Determination of			blood		work and venous pressure
Hormones in Blood					activity was downlinked.
Serum During					
Weightlessness,					
1ES026 and 1ES032					

		Tab	<i>le</i> 4–45 continued		
Experiment/	Principal	Class	Purpose/Objective	Success	Result
Number	Investigator				
Effects of Prolonged	E.W. Voss, Jr.,	Life Sciences	Determine the effect of	Y	100% of the planned objectives
Weightlessness on the	United States		weightlessness on the body's immune		were accomplished.
Humoral Immune			response or ability to resist disease		
Response of Humans,					
1NS105					
Effect of Weightlessness	A. Cogoli,	Life Sciences	Study the effect of weightlessness	Υ	100% of the planned objectives
on Lymphocyte	Switzerland		on lymphocyte activation		were accomplished.
Proliferation, 1ES031					
Three-Dimensional	A. Scano,	Life Sciences	Record a three-dimensional	Υ	100% of the planed objectives
Ballistro-cardiography	Italy		ballistrocardiogram under a unique		were accomplished. Several
in Weightlessness,			condition and to compare the results		additional runs were completed.
1ES028			with tracings recorded on the same		
			subject on the ground		
Personal Miniature	H. Green,	Life Sciences	Collect physiological data on a	Y	100% of the planned objectives
Electro-physiological	United Kingdom		normal man in an abnormal environmer	it	were accomplished.
Tape Recorder, 1ES030			as a basis for future studies		
Mass Discrimination	H. Ross,	Life Sciences	Compare the perception of mass in	Р	Approximately 90% of the
During Weightlessness,	United Kingdom		space with the perception of weight		planned objectives were
1ES025			on Earth		accomplished. The crew's
					performance of mass discrimi-
					nation was significantly poorer
					in near-zero gravity than in a
					one-gravity environment.

497

		Tab	<i>le</i> 4–45 continued		
Experiment/	Principal	Class	Purpose/Objective	Success	Result
Number	Investigator				
Nutation of Helianthus	A.H. Brown,	Life Sciences	Observe the growth movements of	Р	Approximately 60% of the
Annuus in a	United States		plants in a near-zero gravity		planned objectives were
Microgravity			environment		accomplished. Experiment
Environment, 1NS101					camera synchronization
					problems might have
					caused some loss of data.
Preliminary	F.M. Sulzman,	Life Sciences	Compare the growth of plants	Y	100% of the planned objectives
Characterization of	United States		cultured in Spacelab and on the ground		were accomplished. The
Persisting Circadian			to test whether circadian rhythms		implanted fungus demonstrated
Rhythms During			persist in space		circadian growth within a
Spaceflight: Neurospora					24-hour period.
as a Model System,					
1NS007					
Microorganisms and	G. Horneck,	Life Sciences	Measure the influence of the space	Υ	100% of the planned objectives
Biomolecules in	Federal Republic		environment on various biological		were accomplished.
Hard Space	of Germany		specimens		
Environment, 1ES029					
Radiation Environment	E.V. Benton,	Life Sciences	Measure the cosmic radiation	Υ	100% of the planned objectives
Mapping, 1NS006	United States		inside Spacelab		were accomplished.
Advanced Biostack	H. Bucker,	Life Sciences	Determine the radiobiological	Υ	100% of the planned objectives
Experiment, 1ES027	Federal Republic		importance of cosmic radiation		were accomplished.
	of Germany		particles of high charge and high		
			energy		

		Table 4–4	6. Spacelab 3 Experiments		
Experiment/ Number	Principal Investigator	Class	Purpose/Objective	Success	Result
Solution Growth of Crystals in Zero- Gravity, Fluid Experiment System (FES)	R. Lal, United States	Materials Science	Develop a technique for solution crystal growth in a near-zero gravity environment, to characterize the growth environment under orbital conditions and its influence on crystal growth behavior, and to evaluate the properties of the resultant crystal	Yes (Y)	During the first flight of the new fluid experiment system, two triglycine sulfate crystals were successfully grown from a liquid. For the first time, scientists could see in detail the crystal growth process in a microgravity environment and determine the differences between crystal growth on the ground and growth in microgravity where con- vection effects are negligible. Visual observations by the crew provided real-time descriptions of the crystal and aided investigators on the ground as they controlled the progress of the investigation.
Mercuric Iodide Growth, Vapor Crystal Growth System (VCGS)	W.F. Schnepple, United States	Materials Science	Grow higher quality mercuric iodide crystals in a near-zero gravity environment and to gain an improved understanding of crystal growth by a vapor process	X	A mercury iodide crystal mea- suring 14 mm x 8 mm x 7 mm was successfully grown from a seed crystal 20 times smaller in this new facility by a vapor transport process. The crystal grew at a carefully controlled rate, vary- ing from 1 mm to 3 mm per day.

		П	able 4–46 continued		
Experiment/ Number	Principal Investigator	Class	Purpose/Objective	Success	Result
Mercury Iodide Crystal Growth (MICG)	R. Cadoret, France	Materials Science	Grow near-perfect single crystals of mercury iodide in a near-zero gravity environment at different pressures to analyze the effects of the environment on vapor transport	×	Six cartridges of mercury iodide material without seed crystals were processed for up to 70 hours at a time, each under different growth conditions.
Dynamics of Rotating and Oscillating Free Drops, Drop Dynamics Module (DDM)	T. Wang, United States	Fluid Mechanics	Perform fundamental experiments to verify that the new facility can acoustically manipulate drops, to test theoretical predictions of drop behavior, and to observe any new phenomena encountered	Y	After initial startup difficulties, this facility underwent signifi- cant in-flight maintenance and operated successfully for research in the behavior of free floating drops. For the first time, a principal investigator oper- ated and repaired his own experi- ment in space as a Spacelab crew member. Interaction between the ground team and flight crew result- ed in investigation recovery and the accomplishment of virtually all the intended research.

continued	
1–46	
7	

		L	able 4–46 continued		
Experiment/	Principal	Class	Purpose/Objective	Success	Result
Number	Investigator				
Geophysical Fluid	J. Hart,	Fluid	Study fluid motions in a near-zero	Y	The GFFC facility performed nom-
Flow Cell (GFFC)	United States	Mechanics	gravity environment to understand fluid		inally and obtained excellent data.
			flows in oceans, atmospheres, and stars and		All planned scenarios were per-
			test an elaborate new facility for laboratory		formed during an 84-hour period,
			experiments on geophysical flows		and the mission added 13 unsched-
					uled scenarios in 18 hours of extra
					operations. Approximately 46,000
					shadow-graph images, which per-
					mitted the fluid density gradients
					to be observed, were recorded on
					film for postflight analysis.

		Ĺ	able 4–46 continued	ł	
Experiment/ Number	Principal Investigator	Class	Purpose/Objective	Success	Result
Ames Research Center	P. Callahan,	Life Sciences	Perform engineering tests to ensure that	Υ	The new Research Animal Holding
Life Sciences Payload	J. Tremor,		the Research Animal Holding Facility was a		Facility provided a suitable animal
(ARCLSP)	United States		safe and adequate facility for housing and		habitat. However, there were some
			studying animals in the space environment,		difficulties with food and waste
			observe the animals' reactions to the space		containment. Food, water, and
			environment, and evaluate the operations		activity monitors provided good
			and procedures for in-flight animal care		engineering data about the facility
					and the status of the animals; they
					adjusted well to spaceflight and
					demonstrated their suitability for
					research in orbit. One of the two pri-
					mates developed symptoms of space
					adaptation syndrome but recovered in
					a manner analogous to human experi-
					ence. This suggests that nonhuman
					primates may be good models for

vestibular research pertinent to human adaptation of microgravity. The Biotelemetry System provided data on physiological functions of four rodents.

Principal ivestigator	Class	Purpose/Objective	Success	Result
	Life Sciences	Test a treatment for space adaptation syndrome and to test a technique for training people to control bodily processes voluntaril	Y	In general, the hardware performed nominally and did not interfere with other crew activities.
	Life Sciences	Verify the operation of the UMS in collecting and sampling urine, perform in-flight measurement system calibration, develop and utilize a procedure for monitoring crew water intake using existing orbiter facilities, and verify the system for preparing urine samples for postflight analy.	Y	All planned calibrations and dead volume measurements were per- formed, but urine samples were collected for only one rather that two crew members as planned.
	Atmospheric Science and Astronomy	Make an ultraviolet survey of the celestial sphere in a study of large-scale phenomena, such as clouds, within our galaxy	Partial (P	The VWFC operated nominally on its first deployment but could not be subsequently deployed when the bent latch handle on the scien- tific airlock precluded further air- lock operations. Ground teams assessed the airlock malfunction but determined that in-flight main- tenance was inappropriate. During the initial extension into space, the camera acquired its first target and made a 1-minute exposure. However, the five subsequent oper- ations were suspended.
	Atmospheric Science and Astronomy	Observe and record the visual characteristics of pulsating and flickering auroras	ď	Of the 21 scheduled opportunities for auroral observations, 18 were accomplished, with auroras clearly visible on each.

iment/	Principal Investigator	Class	Purpose/Objective Succes	s Result
	C.B. Farmer, United States	Atmospheric Science and Astronomy	Obtain fundamental information related Y to the chemistry and physics of Earth's upper atmosphere using infrared absorption spectroscopy, determine, on a global scale, the compositional structure of the upper atmosphere and its spatial variability, and provide the high-resolution, calibrated spectral information essential for the detailed design of advanced instrumentation for future global monitoring of species critical to atmospheric stability	Although the ATMOS instrument was deactivated earlier than planned, the investigation was one of the most successful of the mis- sion. In 19 3-minute operations, ATMOS obtained 150 independent atmospheric spectra, each of which contained at least 100,000 individual spectral mea- surements. During five solar calibrations, detailed infrared spectra of the Sun were obtained. Initial examination of the data indi- cated unexpected evidence about molecular constituents there.
ioi	S. Biswas, India	Atmospheric Science and Astronomy	Use a newly designed detector system to Y determine the composition and intensity of energetic ions emitted from the Sun and other galactic sources toward Earth's atmosphere	IONS provided data on the arrival time and directions in space of cosmic ray particles and hence the magnetic rigidity. During the mis- sion, the instrument initially did not respond to commands to rotate the detector stack. After in-flight maintenance was performed, the instrument operated nominally. The investigation accomplished two- thirds of its operational timeline.

		Table 4–47	7. Spacelab 2 Experiments		
Experiment/ Number	Principal Invoction to r	Class	Purpose/Objective	Success	Result
Iadiimu	IIIVesugatui				
Vitamin D Metabolites	H.K. Schnoes,	Life Sciences	Measure quantitatively the blood levels of	Yes (Y)	100% of the planned objectives
and Bone Demineralizatio	n, United States		biologically active vitamin D metabolites of		were accomplished.
2SL-01			the Spacelab 2 flight crew members		
Interaction of Oxygen	J.R. Cowles,	Life Sciences	Determine the effect of weightlessness	Y	100% of the planned objectives
and Gravity Influenced	United States		upon lignification and to establish the		were accomplished. The real-time
Lignification, 2SL-02			overall effect of oxygen on lignin formation		downlinked video from this experi-
			independent of any gravity effects		ment exceeded expectations in
					both quantity and quality.
Ejectable Plasma	L.A. Frank,	Plasma Physics	Study natural plasma processes,	Partial (P)	Approximately 82% of the objec-
Diagnostics Package	United States		orbiter-induced plasma processes,		tives were accomplished. Some of
(PDP), 2SL-03			and beam plasma physics		the attached operations on the
					Remote Manipulator System (RMS)
					arm and one orbiter fly-around
					were lost because of low propellant
					levels. However, the PDP per-
					formed flawlessly on the pallet,
					with the RMS, and as a free-flyer.
Plasma Depletion	M. Mendillo and	Plasma Physics	Study the ionospheric depletions and	Ь	50% of the planned objectives
Experiments for	A.V. DaRosa,		related effects caused by the exhaust		were accomplished. Only four of
Ionospheric and Radio	United States		gases from the orbiter Orbital		eight planned OMS burns were
Astronomical Studies,			Maneuvering System (OMS) burns		performed because of low OMS
2SL-04					propellant. The Millstone Hill and
					Arecibo burns created ionospheric
					holes deeper and wider than
					expected.
		T.	able 4–47 continued		
---------------------	---------------	-----------	--	---------	--------------------------------------
Experiment/	Principal	Class	Purpose/Objective S	Success	Result
Number	Investigator				
Small Helium-Cooled	G.G. Fazio,	Infrared	Study the diffuse emission and extended	Р	The infrared telescope operated
Infrared Telescope,	United States	Astronomy	sources in the infrared sky, the measurement		well throughout the mission but
2SL-05			of the natural and spacecraft-induced infrared		did not achieve its primary
			background, and the determination of suitable		objective of an all-sky survey.
			procedures and techniques for the in-space use		During the first viewing period,
			of superfluid helium and cryogenic telescopes		many of the detectors were quick-
					ly saturated by a strong source of
					mysterious origin. A survey of the
					instrument with the RMS camera
					before payload deactivation
					revealed apparent debris within the
					sun shade. A section of the galaxy
					was mapped in shorter wave-
					lengths. These few minutes of data
					represent a new and valuable com-
					plement to the infrared astronomi-
					cal satellite data. Evaluations were
					also made of the dewar system,
					and several attempts were made to
					alter the state of the superfluid
					helium to observe the fluid dynam-
					ic behavior.

		Ta	ble 4–47 continued		
Experiment/ Number	Principal Investigator	Class	Purpose/Objective	Success	Result
Elemental Composition and Energy Spectra of Cosmic Ray Nuclei, 2SL-06	P. Meyer and D. Muller, United States	High-Energy Physics	Determine the abundance distributions of elements and isotopes in the cosmic radiation study the composition of cosmic rays at high energies, investigate the role of a galactic halo in particle confinement, and determine whether the relative abundancies of different source nuclei change with energy	Y, Y	100% of the planned objectives were accomplished.
Hard X-Ray Imaging of Clusters of Galaxies and Other Extended X-Ray Sources, 2SL-07	A.P. Willmore, United Kingdom	High-Energy Physics	Use x-ray measurements to observe a component of galaxies and study their temperatures and mass distribution, understand the properties of intergalactic gas emitted from clusters of galaxies, use the x-ray observations to determine the spectrum and distribution of gigaelectron volt electrons in the clusters of galaxies, and use x-ray observations to demonstrate the differences between clusters of galaxies	م	Approximately 90% of the planned objectives were accomplished. The dual x-ray telescope operated well throughout the mission with very good image quality, detector sensi- tivity, and stability. Images of point sources and extended sources were successfully reconstructed from downlinked data.

Experiment/	Principal	Class	Purpose/Objective	Success	Result
Number	Investigator				
Solar Magnetic and Velocity Field	A.M. Title, United States	Solar Physics	Measure magnetic and velocity fields in the solar atmosphere, follow the evolution	Υ	The Solar Optical Universal Polarimeter started its observations
Measurement System,			of solar magnetic structure over several days,		late in the mission after an unex-
2SL-08			study magnetic field changes associated		plained shutdown on the first day
			with transient events, and provide a test of		and an equally unexplained startup
			the pointing accuracy and stability of the IPS		on the next-to-the-last day of the
					mission. (See the "Mission
					Anomalies" section.) Thereafter,
					the instrument performed almost
					perfectly to observe the strength,
					structure, and evolution of magnet-
					ic fields in the solar atmosphere.
Solar Coronal Helium	A.H. Gabriel and	Solar Physics	Determine accurately the abundance of	Р	Approximately 66% of the objec-
Abundance Spacelab	J.L. Culhane,		helium in the solar atmosphere		tives were accomplished. Early
Experiment, 2SL-09	United Kingdom				mission observing time was lost
					because of difficulties with the
					IPS. However, spectral scans of the
					limb of the solar disc were
					achieved. In addition, the instru-
					ment was used in a mapping mode
					to study and make images of the
					structure of the Sun's corona.

508

		Tal	ble 4–47 continued		
Experiment/ Number	Principal Investigator	Class	Purpose/Objective	Success	Result
Solar Ultraviolet High Resolution Telescope and Spectrograph, 2SL-10	G.E. Brueckner, United States	Solar Physics	Make spectral scans and images of the solar disc and, particularly, record rapidly changing solar features	<u>م</u>	Approximately 60% of the objec- tives were accomplished. The reso- lution of the telescope was very good, but IPS pointing difficulties compromised the early data. Downlink television from the instrument revealed the birth of a spicule, which was never wit- nessed before.
Solar Ultraviolet Spectral Irradiance Monitor, 2SL-11	G.E. Brueckner, United States	Atmospheric Physics	Improve the accuracy of knowledge of the absolute solar fluxes, provide a highly accurate traceability of solar fluxes, and measure the variability of solar fluxes	ď	Approximately 50% of the planned objectives were accomplished. The experiment made spectral scans of the Sun with excellent accuracy, verified by calibration and align- ment checks.
Vehicle Charging and Potential, 2SL-14	P.M. Banks, United States	Plasma Physics	Investigate electron beam interactions in space plasma, vehicle charging processes, and electromagnetic wave generation processes	<u>م</u>	Approximately 72% of the objec- tives were accomplished. Television images of beam and aurora activities were not permitted because of bright moonlight. Joint operations and observations were accomplished, primarily with the PDP and with the nearby Dynamics Explorer satellites. The electron generator was fired more than 200 times. Instrument perfor- mance was nearly perfect.

ti, Ľ ۲ Tabla

SPACE SCIENCE

		Tal	ole 4–47 continued		
Experiment/ Number	Principal Investigator	Class	Purpose/Objective	Success	Result
Propertus of Superfluid Helium in Zero-Gravity, 2SL-13	F.V. Mason, United States	lechnology	Determine the fluid and thermal properties that are required for the design of planned space experiments using superfluid helium as a cryogen, advance scientific understanding of the interactions between superfluid and normal liquid helium, and demonstrate the use of superfluid helium as a cryogen in zero-gravity	2.	Approximately 85% of the objec- tives were accomplished. The dewar or cryosat performed as expected during the mission. The existence of quantized surface waves in thin films of helium was clearly established, and several hundred recordings were made across a range of temperatures. Bulk thermal dynamics measure- ments of temperature variations within the dewar were quite suc- cessful. However, bulk fluid dynamics measurements were pre- vented by sensors, which remained frozen throughout the mission.

ļ , .

		Π	able 4–4/ continued		
Experiment/ P	Principal vestigator	Class	Purpose/Objective	Success	Result
Protein Crystal Growth C. Ur	.E. Bugg, nited States	Technology	Develop hardware and procedures for growing proteins and other organic crystals by two methods in the orbiter during the low-gravity portion of the mission	¥	Generally, hardware for both meth- ods worked as planned. Postflight analysis showed minor modifica- tion in the flight hardware was needed, and a means of holding the hardware during activation, crystal growth, deactivation, and photog- raphy was desirable. The dialysis method produced three large tetragonal lysozyme crystals with average dimensions of 1.3 mm x 0.65 mm x 0.65 mm. The solution growth methods produced small crystals of lysozyme, alpha-2 inter- feron, and bacterial purine nucleo- side nhoshorvlase

bouring Ļ * T_{abl}

Table .	4–48. Spacelab D-1 Experiments	
Experiment/Number	Investigator/Sponsor	Class
Floating Zone Hydrodynamics, FPM 04	J. Da Riva, U. Madrid, Spain	Fluid Physics
Capillary Experiments in Low Gravity Fields, FPM 06	J.F. Padday, Kodak, Ltd., Harrow, United Kingdom	Fluid Physics
Forced Liquid Motions, FPM 08	J.P.B. Vreeburg, NAL, Amsterdam, The Netherlands	Fluid Physics
Oberflachenspannung (Surface Tension Studies), HOL 03	D. Neuhaus, DFVLR, Koln, Germany	Fluid Physics
Maragonikonvektion Im Offenen Boot	D. Schwabe, U. Gieben, Germany	Fluid Physics
(Marangoni Convection), MKB 00		
Marangoni Flows, FPM 07	L. Napolitano, U. Neapel, Italy	Fluid Physics
Marangoni Convection in Gas-Liquid Mass Transfer,	A.A.H. Drinkenburg, U. Groningen, The Netherlands	Fluid Physics
FPM 01		
Convection in Nonisothermal Binary Mixture Presenting a	J.C. Legros, U. Brussels, Belgium	Fluid Physics
Surface Tension Minimum as a Function of Temperature,		
FPM 05		
Blasentransport (Bubble Transport), HOL 01	A. Bewersdorff, DFVLR, Koln, Germany	Fluid Physics
Selbst- und Interdiffusion (Self- and Inter-Diffusion),	K.H. Kraatz, H. Wever, G. Frohberg, TU Berlin, Germany	Fluid Physics
HTT 00		
Thermal Diffusion, GHF 01	J. Dupuy, U. Lyon, France	Fluid Physics
Interdiffusion, IDS 00	W. Merkens, TH Aachen, Germany	Fluid Physics
Homogenitat von Glasern (Homogeneity of Glasses),	Chr. Frischat, TU Clausthal, Germany	Fluid Physics
IHF 05		
Diffusion of Liquid Zinc and Lead, GPRF 2	R.B. Pond, Marvalaud Inc., United States	Fluid Physics
Thermomigration of Cobalt in Tin, GHF 07	J.P. Praizey, CEN, Grenoble, France	Fluid Physics
Warmekapazitat am Kritischen Punkt	J. Straub, TU Munchen, Germany	Fluid Physics
(Heat Capacity Near Critical Point), HPT 00		
Phasenbildung am Kritischen Punkt	H. Klein, DFVLR, Koln, Germany	Fluid Physics
(Phase Separation Near Critical Point), HOL 02		
GETS, HOL 04	A. Ecker, TH Aachen, Germany	Solidification

512

	Table 4–48 continued	
Experiment/Number	Investigator/Sponsor	Class
Al-Cu, Phasengrenzflachendiffusion	H.M. Tensi, TU Munchen, Germany	Solidification
(Aluminum-Copper Phase Boundary Diffusion), GFQ 01		
Erstarrungskonvektion (Solidification Dynamics), GFQ 02	S. Rex, TH Aachen, Germany	Solidification
Dendritic Solidification of Aluminum-Copper Alloys,	J.J. Favier, D. Camel, CEN, Grenoble, France	Solidification
GHF 04		
Cellular Morphology in Lead Thallium Alloys, GHF 02	B. Billia/I. Favier, U. Marseilles, France	Solidification
InSb-NiSb-Eutektikum	G. Muller, U. Erlangen-Nurnberg, Germany	Solidification
(Indium Antimonide-Nickel Antimonide Eutectics),		
Containerless Melting of Glass, SAAL	D.E. Day, U. Missouri-Rolla, United States	Solidification
Suspensionserstarrung (Solidification of Suspensions),	J. Potschke, Krupp-Forschungsinst Essen, Germany	Solidification
IHF 02		
Teilchen vor Schmelz und Erstarrungsfront	D. Langbein, Battelle-Inst., Frankfurt, Germany	Solidification
(Particle Behavior at Solidification Fronts), IHF 06		
Stutzhauttechnologie (Skin Technology), IHF 03	H. Sprenger, MAN, Munchen, Germany	Solidification
Liquid Skin Casting of Cast Iron, IHF 07	H. Sprenger, MAN, Munchen, Germany	Solidification
Erstarrung eutsktischer Legierungen	Y. Malmejac, CEN, Grenoble, France	Solidification
(Solidification of Eutectic Alloys), IHF 09		
Erstarrung von Verbundmaterialien	A. Deruyttere, U. Leuven, Germany	Solidification
(Solidification of Composite Materials), IHF 08		
Shmelzzonenzuchtung Si	R. Nitsche, A. Croll, U. Freiburg/Br., Germany	Solidification
(Silicon-Crystal Growth by Floating Zone Technique),		
MHF 01		
Si-Kugel (Melting of Silicon Sphere), MHF 04	H. Kolker, Wacker-Chemie, Munchen, Germany	Solidification
Doped Indium Antimonide and	C. Potard, CEN, Grenoble, France	Solidification
Califum Indium Anumonide, CHF U3		
Traveling Heater Method (GaSb), MHF 02	K.W. Benz, U. Stuttgart, Germany	Solidification

SPACE SCIENCE

	Table 4–48 continued	
Experiment/Number	Investigator/Sponsor	Class
Traveling Heater Method (CdTe), MHF 03	R. Schonholz, R. Freiburg/Br., Germany	Solidification
Traveling Heater Method (InP), ELI 01	K.W. Benz, U. Stuttgart, Germany	Solidification
Traveling Heater Method (PbSnTe), ELI 02	M. Harr, Battelle-Inst, Frankfurt, Germany	Solidification
Gaszonenzuchtung CdTe (Vapor Growth of Cadmium),	M. Bruder, U. Freiburg/Br., Germany	Solidification
ELI 03		
Ge/Gel4 Chemical Growth, GHF 05	J.C. Launay, U. Bordeaux, France	Solidification
Ge-I2 Vapor Phase, GHF 06	J.C. Launay, U. Bordeaux, France	Solidification
Vapor Growth of Alloy-Type Crystal, GPRF 4	H. Wiedemeier, Rensalear Polytechnic Institute,	Solidification
	Troy, New York, United States	
Semiconductor Materials, GPRF 5	R.K. Crouch, Langley R.C., United States	Solidification
Proteinkristalle (Protein Crystals), CRY 00	W. Littke, R. Freiburg/Br., Germany	Solidification
Separation Nichmischbarer Legierungen	H. Ahlborn, U. Hamburg, Germany	Solidification
(Separation of Immiscible Alloys), IHF 01		
Separation of Immiscible Liquids, FPM 03	D. Langbein, Battelle-Inst., Frankfurt, Germany	Solidification
Separation of Fluid Phases, FPM 02	R. Naehle, DFVLR, Koln, Germany	Solidification
Liquid Phase Miscibility Gap Materials, GPRF 3	H.S. Gelles, Columbus, Ohio, United States	Solidification
Ostwaldreifung (Ostwald Ripening), IHF 04	H. Fischmeister, MPI, Stuttgart, Germany	Solidification
Human Lymphocyte Activation, BR 32CH	A. Cogoli, ETH Zurich, Switzerland	Biology
Cell Proliferation, BR 21 F	H. Planel, U. Toulouse, France	Biology
Mammalian Cell Polarization, BR 48 F	M. Bouteille, U. Paris, France	Biology
Circadian Rhythm, BR 27 D	D. Mergenhagen, U. Hamburg, Germany	Biology
Antibacterial Activity, BR 58 F	R. Tixador, U. Toulouse	Biology
Growth and Differentiation of Bacillus Subtilis,	H.D. Mennigmann, U. Frankfurt, Germany	Biology
BR 28 D		
Effect of Microgravity in Interaction Between Cells,	O. Ciferri, U. Pavia, Italy	Biology
BR 07 I		
Cell Cycle and Protoplasmic Streaming, BR 16 D	V. Sovick, DFVLR, Koln, Germany	Biology

514

Investigator/Sponsor	Class
H. Bucker, DFLVR, Koln, Germany	Biology
J. Neubert, DFVLR, Koln, Germany	Biology
G. Ubbels, U. Utrecht, The Netherlands	Biology
R. Marco, U. Madrid, Spain	Biology
H. Bucker, DFVLR, Koln, Germany	Biology
D. Volkmann, U. Bonn, Germany	Biology
J. Gross, U. Tubingen, Germany	Biology
R.R. Theimer, U. Munchen, Germany	Biology
G. Perbal, U. Paris, France	Biology
R.V. Baumgarten, U. Mainz, Germany	Medicine
L. Young, MIT, Cambridge, Massachusetts, United States	Medicine
K. Kirsch, FU Berlin, Germany	Medicine
J. Draeger, U. Hamburg, Germany	Medicine
F. Baisch, DFVLR, Koln, Germany	Medicine
H.E. Ross,	
Medicine	
A.D. Friederici, MPI, Nijmegen, The Netherlands	Medicine
A.D. Friederici, MPI, Nijmegen, The Netherlands	Medicine
M. Hoschek/J. Hund, Muhltal, Germany	Medicine
S. Starker, DFVLR, Oberpfaffenhofen, Germany	Navigation
D. Rother, SEL, Stuttgart, Germany	Navigation
	Investigator/Sponsor H. Bucker, DFLVR, Koln, Germany G. Ubbels, U. Utrecht, The Netherlands R. Marco, U. Madrid, Spain H. Bucker, DFVLR, Koln, Germany H. Bucker, DFVLR, Koln, Germany D. Volkmann, U. Bonn, Germany D. Volkmann, U. Bonn, Germany J. Gross, U. Tubingen, Germany S. R. Theimer, U. Munchen, Germany G. Perbal, U. Paris, France R. V. Baumgarten, U. Mainz, Germany G. Perbal, U. Paris, France R. V. Baumgarten, U. Mainz, Germany G. Perbal, U. Paris, France R. V. Baumgarten, U. Mainz, Germany L. Young, MIT, Cambridge, Massachusetts, United States K. Kirsch, FU Berlin, Germany J. Draeger, U. Hamburg, Germany H.E. Ross, Medicine A.D. Friederici, MPI, Nijmegen, The Netherlands M. Hoschek/J. Hund, Muhtal, Germany S. Starker, DFVLR, Oberpfaffenhofen, Germany D. Rother, SEL, Stuttgart, Germany D. Rother, SEL, Stuttgart, Germany

SPACE SCIENCE

515

Investigation	Principal	Institution
	Investigator	
Contamination Monitor Package	J. Triolo	Goddard Space Flight
measured the buildup of molecular		Center/U.S. Air Force
and gas contaminants in the orbiter		
environment to determine how		
molecular contamination affects		
instrument performance.		
Microabrasion Foil Experiment	J.A.M. McDonnell	University of Kent,
measured the numbers, chemistry,		England
and density of micrometeorites		
encountered by spacecraft in near-		
Earth orbit.		
Vehicle Charging and Potential	P. Banks	Utah State University
Experiment measured the		
electrical characteristics of the		
orbiter, including its interactions		
with the natural plasma environment		
of the ionosphere and the distur-		
bances that result from the active		
emission of electrons.		
Shuttle-Spacelab Induced	J. Weinberg	University of Florida
Atmosphere provided data on the		
extent that dust particles and volatile		
materials evaporating from the		
orbiter produced a local "cloud" or		
"plume" in the "sky" through which		
astronomical observations could be		
made.		
Solar Flare X-Ray Polarimeter	R. Novick	Columbia University
measured x-rays emitted during		
solar flare activities on the Sun.		
Solar Ultraviolet Spectral	G. Brueckner	Naval Research
Irradiance Monitor was designed to		Laboratory
establish a new and more accurate		
base of solar ultraviolet irradiance		
measurements over a wide		
wavelength region.		
Plant Growth Unit demonstrated	J.R. Cowles	University of Houston
the effect of near weightlessness		
on the quantity and rate of lignin		
formation in different plant species		
during early stages of development		
and tested the hypothesis that, under		
microgravity, lignin might be reduced	,	
causing the plants to lose strength and	1	
droop rather than stand erect.		

Table 4–49. OSS-1 Investigations

Investigation	Princinal	Institution
	Investigator	mstitution
Thermal Canister Experiment	S. Ollendorf	Goddard Space Flight
determined the ability of a device		Center
using controllable heat pipes to		
maintain simulated instruments at		
several temperature levels in thermal		
loads.		
Plasma Diagnostics Package	S. Shawhan	University of Iowa
studied the interaction of the		
orbiter with its surrounding		
environment, tested the capabilities		
of the Shuttle's Remote		
Manipulator System, and carried		
out experiments in conjunction		
with the Fast Pulse Electron		
Generator of the Vehicle Charging		
and Potential Experiment, also on		
the OSS-1 payload pallet. The		
package was deployed for more		
than 20 hours and was maneuvered		
at the end of the 15.2-meter RMS.		
(See also Table 4–40.)		

Table 4–49 continued

Date	Event			
1940	Astronomer R.S. Richardson speculates on the possibility of a			
	300-inch telescope placed on the Moon's surface.			
1960/1961	The requests for proposal (RFP) for the Orbiting Astronomical			
	Observatory spacecraft and the astronomical instruments to			
	flown aboard them are issued.			
1962	The National Academy of Sciences recommends the construc-			
	tion of a large space telescope.			
1965	The National Academy of Sciences establishes a committee to			
	define the scientific objectives for a proposed large space tele-			
	scope.			
1968	The first astronomical observatory, the Orbiting Astronomical			
	Observatory-1, is launched.			
1972	The National Academy of Sciences again recommends a large			
	orbiting optical telescope as a realistic and desirable goal.			
1973	NASA establishes a small scientific and engineering steering			
	committee headed by Dr. C. Robert O'Dell of the University of			
	Chicago to determine which scientific objectives would be fea-			
	sible for a proposed space telescope.			
1975	The European Space Agency becomes involved in the project.			
1977	NASA selects a group of 60 scientists from 38 institutions to			
	participate in the design and development of the proposed			
	space telescope.			
June 17, 1977	NASA issues the Project Approval Document for the space			
	telescope. The primary project objective is to "develop and			
	operate a large, high-quality optical telescope system in space which is unique in its usefulness to the international science community. The overall scientific objectivesare to gain a sig-			
	nificant increase in our understanding of the university—past, present, and future—through observations of celestial objects			
	and events"			
Oct. 19, 1977	NASA awards the contract for the primary mirror to Perkin-			
	Elmer of Danbury, Connecticut.			
1978	Congress appropriates funds for the development of the space			
	telescope.			
April 25, 1978	Marshall Space Flight Center is designated as the lead center			
	for the design, development, and construction of the telescope.			
	Goddard Space Flight Center is chosen to lead the development			
Dec. 1079	Of the scientific instruments and ground control center.			
Dec. 1978	Connecticut			
1070	Connecticut.			
In 20 1070	Money requests for space science program increase 20 percent			
Jan. 20, 1777	(\$100 million) which includes money for the space telescope			
Feb 1979	Debate over which institute NASA should choose to develop			
100.1777	the space telescope takes place (John Honkins University is			
	chosen)			
	C1103C11. /			

Table 4–50. Hubble Space Telescope Development

Table 4–50 continued

Date	Event			
May 29, 1979	The decision is made to have Fairchild Space & Electronics			
	Company modify the communications and data handling mod-			
	ule it developed for NASA's Multimission Modular Spacecraft			
	for use on the space telescope.			
June 1979	Marshall Space Flight Center decides that the alternative sensor			
	was receiving little management attention at the Jet Propulsion			
	Laboratory and the space telescope was unlikely to be ready for			
	a 1983 launch.			
July 1979	Marshall Space Flight Center compiles its Program Operatin			
	Plan for fiscal year 1980; Lockheed and Perkin-Elmer overshot			
	the cost for the space telescope by millions of dollars of the			
	original budgeted adjusted program's reserves.			
Nov. 18, 1979	Five states compete for the space telescope: Maryland, New			
	Jersey, Illinois, Colorado, and California. Competing groups			
	include University Research Association, Associated			
	Universities, Inc. (AUI), and Association of Universities for			
	Research and Astronomy (AURA). AUI wants the project at			
	Princeton; AURA wants it at Johns Hopkins University.			
Dec. 14, 1979	Goddard Space Flight Center releases the Space Telescope			
	Science Institute RFP. Proposals are due March 3,1980.			
1980				
Feb. 13, 1980	Dr. F.A. Speer, manager of the High Energy Astronomy			
	Observatory program at Marshall Space Flight Center, is named			
	manager of the space telescope project for Marshall.			
Feb. 21, 1980	NASA Associate Administrator Dr. Thomas A. Mutch infor			
	Congress that the space telescope can be completed within its			
	originally estimated costs. NASA estimates space telescope			
	development costs at \$530 million, with another \$600 million			
	allotted for operation of the system over a 17-year period.			
	Mutch says progress toward faunch in December 1985 contin-			
May 20, 1080	NASA approvinces the selection of Ford Aerospace to perotiate			
Way 29, 1980	a contract for overall system design engineering on preliminary			
	operations requirements and the test support system for the			
	space telescope			
Sept 18 1980	NASA officials admit to space telescope cost and schedule			
50pt. 10, 1900	problems in hearing before the House Science and Technology			
	subcommittee.			
1981				
Jan. 6. 1981	A.M. Lovelace, NASA associate administrator/general manag-			
	er, submits a revised space telescope cost and schedule esti-			
	mate. The launch period is revised to the first half of 1985, and			
	the estimated development cost at launch is \$700 million to			
	\$750 million (in 1982 dollars).			
	· · · ·			

Date	Event				
Jan. 16, 1981	NASA selects AURA for final negotiation of a contract to				
	establish, operate, and maintain the Space Telescope Science				
	Institute. It will be located at Johns Hopkins University. The				
	contractor's estimate of the cost of the 5-year contract is				
	\$24 million, plus additional funds to support a guest observer				
	and archival research program.				
April 29, 1981	Perkin-Elmer completes polishing of the 2.4-meter primary				
1 , , ,	mirror (see events dated November 1990).				
April 30, 1981	Goddard Space Flight Center awards the contract for the man-				
1,	agement of the Space Telescope Science Institute to AURA.				
	The period of performance for the \$40.4 million contract				
	extends through 1986. The institute will be located at Johns				
	Hopkins University.				
Oct. 23, 1981	Space telescope's "main ring" is delivered to Perkin-Elmer				
	Corp. from Exelco Corp., which fabricated the ring over a peri-				
	od of 18 months.				
Dec. 10, 1981	Perkin-Elmer finishes putting an aluminum coating 3 millionths				
2000 10, 1901	of an inch thick on the primary mirror.				
1982					
Jan. 26, 1982	Congress increases space telescope funding by \$2 million to				
	\$121.5 million.				
March 1982	The Critical Design Review of the space telescope's support				
	systems module is completed, and the design is declared ready				
	for manufacturing				
March 28, 1982	A report from the House Appropriations Committee states that				
	the space telescope would cost \$200 million more and reach				
	orbit a vear later than expected because of difficulties in devel-				
	opment. The report blames delays and cost overruns on NASA				
	for understaffing the program by 50 percent in its early devel-				
	opment and on Perkin-Elmer for failing to properly plan for a				
	project of the technical and manufacturing difficulty of the				
	space telescope. Also, unremovable dust on the primary mirror				
	after 15 months in a Perkin-Elmer "clean room" had lowered				
	its reflecting power by 20 to 30 percent.				
1983					
Feb. 4, 1983	NASA Administrator Beggs tells the House Science and				
···· , · · ·	Technology Committee that technical problems in developing				
	the electronics and guidance and pointing system of the optical				
	telescope assembly of the space telescope will delay the launch				
	of the telescope and increase costs.				
March 24, 1983	NASA Administrator Beggs tells House subcommittee that the				
	space telescope has problems in a number of areas—the latch-				
	ing mechanism the fine guidance sensor system and the pri-				
	mary mirror—that are likely to result in cost overruns of				
	\$200 million or more and at least a 12- to 18-month delay.				
	Beggs says that the primary mirror is coated with dust after sit-				
	ting in a clean room for a year and may not be able to be				
	cleaned without harming its surface. Its canability could be lim-				
	ited to 70 or 80 percent.				

Table 4–50 continued

Table 4–50 continued

Date	Event
March 25, 1983	The preliminary report by the Investigations and Survey Staff of the House Appropriations subcommittee states that the space
	telescope will overrun its costs by \$200 million, boosting its overall cost to \$1 billion.
April 13 1983	NASA names James B. Odom as manager of Marshall Snace
ripin 15, 1965	Flight Center's space telescope project
April 26, 1983	James Welch, NASA's director of space telescope development.
<u>r</u> , ->	states that NASA may accept the dirty primary mirror because
	a current study indicates that the mirror would be within the
	acceptable range and would meet the original specifications in
	the contract. Also, NASA has decided to coat the sticking latch-
	ing mechanism with tungsten carbide rather than redesign it.
June 15, 1983	Dr. William Lucas, Marshall Space Flight Center director, tells
	the House Space subcommittee that NASA estimates that tele-
	scope project costs will increase \$300 million to \$400 million
	to approximately \$1.1 billion to \$1.2 billion, and it expects to
	be able to launch in June 1986. He states that technical prob-
	lems "are now understood and resolution is in hand."
June 15, 1983	Administrator Beggs acknowledges that, in retrospect, NASA
	made some errors in planning and running the space telescope
0-4 5 1092	The arrow to be a set of the second day of the program.
001. 5, 1985	Space Telescope is officially relianed the Edwin P. Hubble
Nov 17 1983	NASA submits a report to Congress on proposed action that
1101.17, 1905	would augment efforts planned for the space telescope develop-
	ment by \$30.0 million above the authorized and appropriated
	amount, for a revised FY 1984 level of \$195.6 million.
Dec. 22, 1983	Space telescope officials are cautiously optimistic that the seri-
	ous problems that surfaced on the space telescope over the last
	year have been solved and that the instrument can be launched
	on schedule in 1986.
1984	
April 2, 1984	The estimated cost of the space telescope has risen to \$1.1/5
	million. NASA Administrator Beggs states that Lockheed will
	lose some of its award fees because of poor workmanship prob-
April 30, 1984	NASA reports that tests of the fine guidance sensors have
April 50, 1904	demonstrated that the telescope will meet stringent pointing
	and tracking requirements.
May 14, 1984	The idea surfaces of refurbishing the space telescope in space.
May 31, 1984	The five science instruments to fly on the space telescope com-
	plete acceptance testing at Goddard Space Flight Center: high-
	resolution spectrograph, faint-object spectrograph, wide-field/
	planetary camera, faint-object camera, high-speed photometer.
July 12, 1984	Technicians at Perkin-Elmer clean the primary mirror. NASA
	states that cleaning of the primary mirror has confirmed that the
	observatory will have the very best optical system possible.

Date	Event			
Dec. 6, 1984	Goddard Space Flight Center's Telescope Operations Control Center satisfactorily conducts command and telemetry tests			
	with the Hubble Space Telescope at Lockheed Missile and			
	Space Corporation. This is the first of seven assembly and ver			
	fication tests.			
1985				
Jan. 17–18, 1985	A workshop by the Space Telescope Science Institute is held to			
	give scientists an opportunity to present their recommendations			
	for key projects for the space telescope.			
Feb. 1, 1985	The National Society of Professional Engineers presents an			
	award to Perkin-Elmer Corp. for its development of the Hubble			
	Space Telescope's optical telescope assembly.			
July 8, 1985	Lockheed Missiles and Space Co. reports that it has completed			
	assembly of the primary structure for the Hubble Space			
	Telescope.			
July 19, 1985	Goddard Space Flight Center releases the RFP for design and			
	fabrication of an Imaging Spectrograph for the space telescope.			
	Proposals are due September 17.			
Dec. 5, 1985	NASA selects three scientific investigations for the space tele-			
	scope to lead to the development of one or two advanced scien-			
1007	tific instruments for Hubble.			
1986				
Jan. 26, 1986	The destruction of <i>Challenger</i> delays the launch of Hubble and other missions.			
Feb. 27, 1986	Hubble completes acoustic and dynamic and vibrational			
	response tests. The tests indicate that it can endure the launch			
	environment.			
May 2–	Thermal-vacuum testing is conducted.			
June 30, 1986				
May 21, 1986	The last elements of Hubble—the solar arrays—are delivered to			
	Lockheed Missiles and Space Co. (Sunnyvale, California) for			
	integration into the main telescope structure.			
May 27, 1986	Hubble successfully completes the thermal-vacuum testing in			
1 7 1006	the Lockheed thermal-vacuum chamber.			
Aug. 7, 1986	NASA and the Space Telescope Science Institute in Baltimore			
	announce that 19 U.S. amateur astronomers will be allowed to			
	make observations with Hubble. This decision is to show grati-			
	for the last 400 years			
Aug 9 1096	Hubble successfully completes 2 months of rigorous testing			
Aug. 8, 1980	Hubble successfully completes 2 months of figorous testing.			
	Hubble starts a 3-day ground system test involving the five			
Waten 17, 1967	instruments that will be carried on board; wide field and plane.			
	tary camera high-resolution spectrograph faint object spectro-			
	graph, high-speed photometer, and faint object camera			
Aug. 31–	Goddard Space Flight Center's Space Telescope Operations			
Sept. 4, 1987	Control Center, Marshall Space Flight Center, and the Space			
Sept. 1, 1907	Flight Telescope Science Institute conduct a joint orbital verifica-			
	tion test.			

Table 4–50 continued

Table 4–50 continued

Date	Event		
Sept. 9, 1987	Hubble completes the reevaluation of Failure Mode and Effects Analysis (FMEA). This reevaluation of the FMEA/Critical		
	Items List/hazard analysis is directed by the Space Telescope		
	Development Division as part of NASA's strategy to return the		
	Space Shuttle to flight status.		
1988			
Feb. 10, 1988	Fred S. Wojtalik is appointed manager of the Hubble project at Marshall Space Flight Center.		
March 31, 1988	The draft Program Approval Document for Hubble is complet ed. The draft contains the objectives of Hubble, the technical plan, including the experiments and descriptions, and the sys- tems, performance requirements		
June 20, 1988	NASA begins the fourth ground system test (GST-4) of Hubble.		
	This will be the longest ground test to date, lasting 5 1/2 days,		
	monte will be used in their various operational modes: the new		
	instrument is the fine guidence estremeter		
July 24 1088	Hubble completes the GST 4 tests successfully except for a tim		
July 24, 1988	ing incompatibility between the science instruments and the com-		
	nuter. The problem is to be corrected by adjusting the software		
Δυσμετ 31 1988	NASA delays launch of Hubble from June 1989 to February		
August 51, 1900	1990.		
1989			
July 19, 1989	The Space Telescope Science Institute completes its selection		
-	of the first science observation proposals to be carried out using		
	Hubble. Among the 162 accepted proposals (out of 556 submit-		
	ted) are plans to search for black holes in neighboring galaxies,		
	to survey the dense cores of globular star clusters, to better see		
	the most distant galaxies in the universe, to probe the core of		
	the Milky Way, and to search for neutron stars that may trigger		
	bizarre gamma-ray bursts.		
Oct. 1989	A modified Air Force C-5A Galaxy transports the Hubble		
	Space Telescope from Lockheed in California to its launch site		
	at the Kennedy Space Center in Florida.		
1990			
Jan. 19, 1990	NASA delays the Hubble launch to replace O-rings.		
Feb. 5–7, 1990	Confidence testing is held.		
Feb. 10, 1990	End-to-end communications test run using Tracking and Data		
	Relay Satellite-East is concluded to interconnect the payload		
	interfaces of <i>Discovery</i> in its hangar, Hubble in the Vertical		
	Processing Facility, and the Space Telescope Operations		
E 1 12 1000	Control Center at Goddard Space Flight Center.		
Feb. 13, 1990	The final confidence test is held.		
Feb. 15, 1990	Closeout operations begin.		
Feb. 17, 1990	runctional testing of Hubble's science instruments is		
March 20, 1000	Hubble is installed in the Space Shuttle orbiter Discovery's		
Watell 27, 1790	navload bay		
April 24 1990	Hubble is launched on STS-31		

Date	Event	
June 21, 1990	Hubble's project manager announces the telescope's inability to	
	focus properly.	
July 2, 1990	The Hubble Space Telescope Optical Systems Board of	
	Investigation is formed under the chairmanship of Dr. Lew	
	Allen of the Jet Propulsion Laboratory.	
Oct. 16, 1990	Responsibility for the Hubble project (except for the optical	
	system failure questions) is transferred from Marshall to	
	Goddard.	
Nov. 1990	The Board of Investigation releases findings, which conclude	
	that a spherical aberration was caused by a flawed measuring	
	device that was used to test the primary mirror at the manufac-	
	turer's facility.	
Dec. 2, 1993	The Hubble Repair Mission on STS-61 installs corrective lens-	
	es and replaces solar panels.	

Table 4–50 continued

	Spacecraft	Launch Vehicle/	Launch Date
		Upper Stage	
October 1978	1 NASA spacecraft	Single STS/IUS	1983 launch
Project Start	1 ESA spacecraft	(3-stage launch)	
April 1980		Split launches: 1 NASA, 1 ESA	Launch deferred to 1985
February 1981	NASA spacecraft "slowdown"	Launch vehicle changed to STS/Centaur	Launch deferred to 1986
September 1981	U.S. spacecraft canceled		
January 1982		Launch vehicle changed	
		to STS/IUS (2-stage)	
July 1982		Launch vehicle changed	
		to STS/Centaur	
January 1986		Challenger accident	Launch deferred indefinitely
June 1986		STS/Centaur program	
		canceled	
November 1986		IUS/PAM-S upper stage	
		procurement decision	
			Launch date
			selected:
			October 1990

Table 4–51. Ulysses Historical Summary