

ATLAS Sub-detector Software

James Shank

DOE/NSF Review of LHC Software + Computing Projects

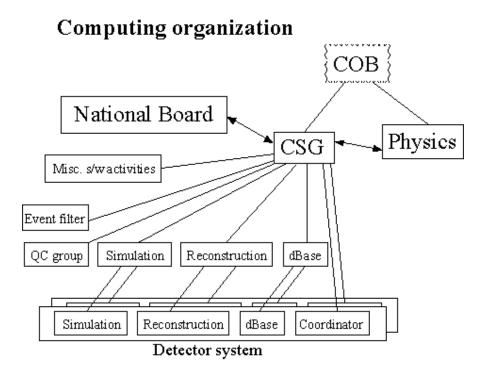
18 – 20 January 2000, DOE Germantown

- US active in all detector subsystems:
 - Silicon, Transition Radiation Tracker, Total Liquid Argon, Tile Calorimeter, Muon.

 Reported by J. Shank, work by many US collaborators as gathered by the US subsystem contacts(in subsystem order):

L. Vacavant, K. Baker, S. Rajagopalan, F. Merrit, B. Zhou

Barrel Toroid


/etector

Hadronic Calorimeters

Shielding

• **Proposed (N. McCubbin):**

• ...still under discussion.

But clearly a strong emphasis on detector systems


ATLAS Computing organization

	Offline Coordinator	Reconstruction	Simulation	Database
Chair	N. McCubbin	D. Rousseau	A. Dell'Acqua	D.Malon/ RD Schaffer
Inner Detector	D. Barberis	D. Rousseau	F. Luehring	J. Pater
Liquid Argon	J. Collot	J. Schwindling	M. Leltchouk	S. Simion
Tile calorimeter	A. Solodkov	F. Merritt	A. Solodkov	T. LeCompte
Muon	G. Poulard	J.F. Laporte	A. Rimoldi	S. Goldfarb
LVL2 trigger		S. Tapprogge		
Trigger/DAQ	S. George		T. Hansl- Kozanecki	H.P. Beck
Event Filter	V. Vercesi	F. Touchard		

- The "legacy software" results for the Physics Technical Design Report
- Detector Description
 DB Û XML Û Generic Model
- GEANT4 Simulation
- Reconstruction
- Test-beam

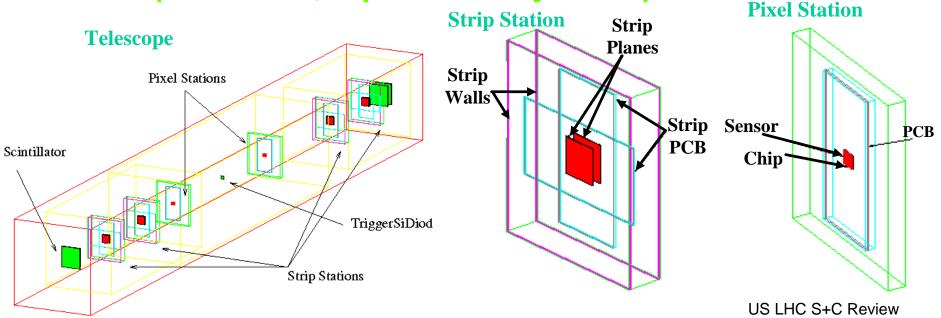
Si Tracker Software

Current activities in the US:

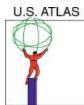
- Pixel Test-Beam Simulation with Geant4 [LBNL, L.Vacavant]
 - redesign of the software (OO)
 - validation of G4
- Visualization for the reconstruction [UC Santa Cruz, A.Litke]
 - involved in the development of ATLANTIS (based on ALEPH's DALI)
 - main goal is to check the pattern recognition in the tracker
- Activities with old legacy software [LBNL, L.Vacavant]
 - No real development activity, some specific studies
 - geometrical acceptance of the pixel endcap layout
 - impact of misalignment of the pixel disks

G4 Pixel test beam simulation

• Goals:

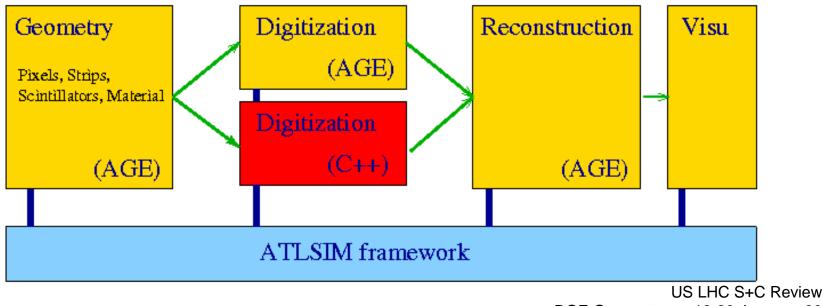

- To gather experience with OO (new paradigm for most of us) and with GEANT4 + validate G4
 - The physics part of G4 is very different from GEANT3.
 The test-beam simulation project allows us to:
 - cross-check G4 vs G3
 - cross-check G4 vs Data
- Test-bed for the ATLAS Pixel System

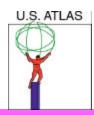
The following parts are currently being developed within the test-beam simulation project and will be re-used directly for the whole pixel system: pixel module geometry, user-defined material management and physics interactions, user-defined tracking and stepping related classes, digitization, infrastructure (histogramming, visualization, GUI).



G4 Pixel test beam simulation

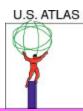
- Status: Current version (0.2) features:
 - As complete as the G3 simulation
 - Design allows easy reconfiguration
 - STL collection of TelescopeElements (insertable, reposition anywhere)

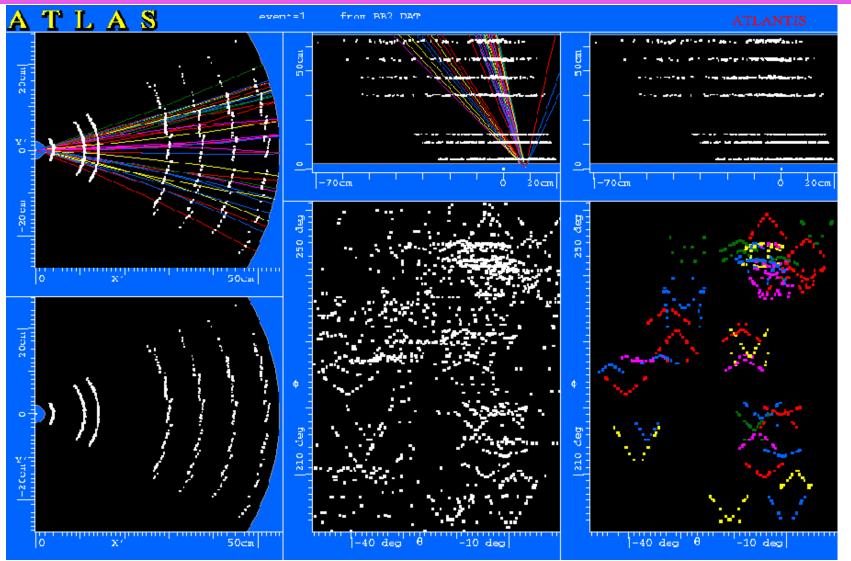

DOE Germantown, 18-20 January, 2000



G4 Pixel test beam simulation

• Development framework


- For testing, the C⁺⁺ digitization is being developed independently of G4 and can be run in 3 modes:
 - Stand-alone for quick checks. Reads in ASCII file of hits.
 - Within ATLSIM for checks against the "old" digitization
 - Within GEANT4

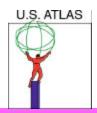


Si Visualization

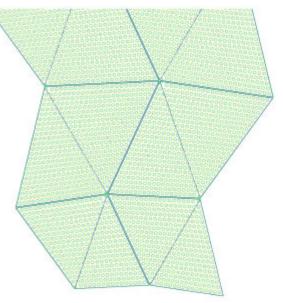
- Status
 - UCSC joined the effort to develop ATLANTIS
 - Working on ID display to check pattern recognition
- Short term plan:
 - Interface to read existing simulated events
 - Use to compare existing tracking packages
 - Work on conversion to OO

Si Event Display

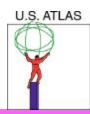
Future Activities in Si


- Pixel test-beam simulation
- Refinements of pixel G4 description
 - Emphasizing correct simulation of the pixel modules
- Design evolution
 whole pixel simulation
 - Integration in the ATLAS framework
 - Database/detector description
- Coordinate with similar efforts for SCT
- Work on visualization with ATLANTIS

TRT Software


• Many GEANT3 studies:

- material budgets
- Pile-up studies
- Results in several ATLAS notes and TDRs
- Test-beam software
 - Comparing G3 with data
 - No TR in G3-added by ATLAS
- Physics simulations
 - With ATLAS fast MC, ATLFAST
 - Results in Physics TDR, ATLAS notes.
 - SUSY Higgs, e.g.



TRT GEANT3 WORK

TRT Barrel Modules Fully Simulated

- TRT SW Liaison Work:
 - Included TRT barrel modules
 - Careful tuning of material
 - Improved straw response and electronics model
 - A fair number of bug fixes
- Fake rate and track finding efficiency studies for the Physics TDR.

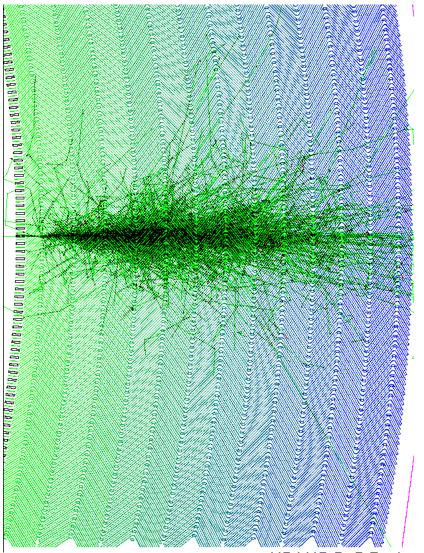
Future TRT effort

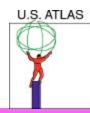
- G3 **P** G4 starting with test-beam
- Improve e-pseparation with neural nets
- Design of the TRT data event model
- Define transient $\hat{\mathbf{U}}$ persistent mapping

Liquid Argon Software

Simulation

GEANT3 in the Physics TDR


- Optimization of strip width based on p⁰ rejection and pointing studies
- Optimal depth and granularity of each of 3 samplings for different Pb thickness
- Simulation of dead material in front of the Cal.
- **DB/Detector description**
- Test beam
- Calibration
- Detector response and physics studies

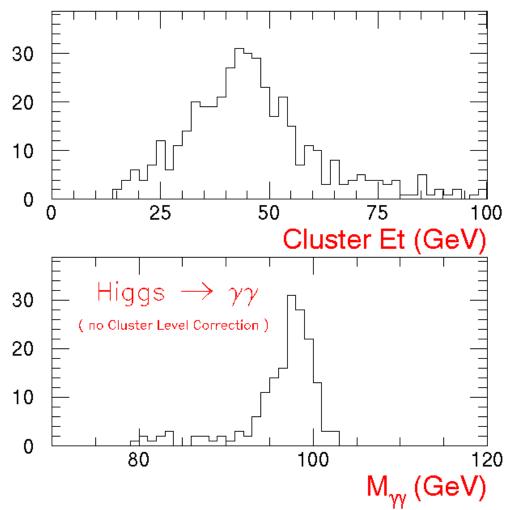

U.S. ATLAS

Liquid Argon Simulation in G4

- Struggling with the accordion geometry in G4
 - no appropriate shape
- Large memory usage vs long tracking time

10 GeV shower **P**

LAr Reconstruction (OO)


• USDP:

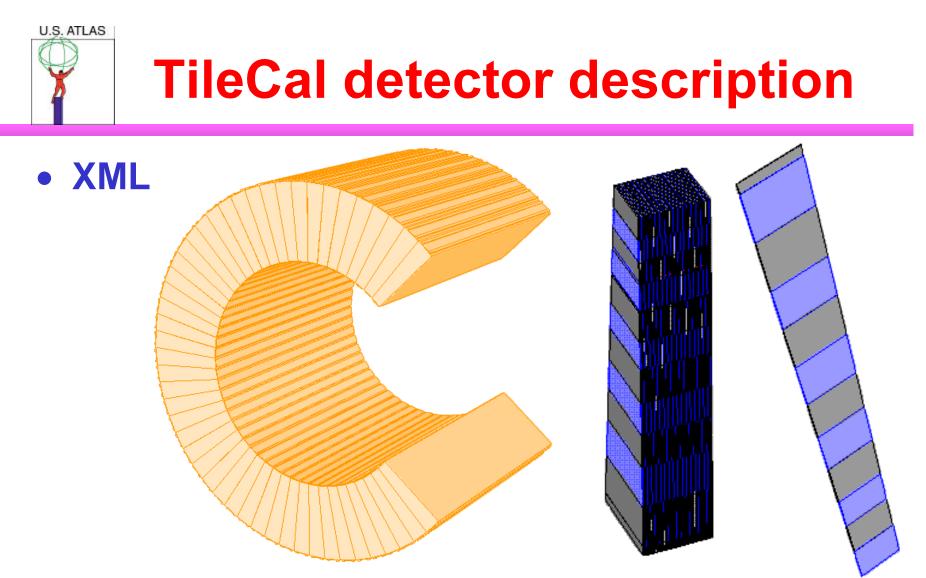
- Use cases have been developed
- Prototype designed with UML
- First implementation in PASO (Provisional Analysis Skeleton for Object oriented software)
- Reads data from the old GEANT3 simulation
- Implements basic cell and cluster finding algorithms and outputs the following:

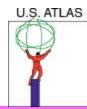
LAr Reconstruction (OO)

LAr Reconstruction, OO Design in Paso

US LHC S+C Review DOE Germantown, 18-20 January, 2000

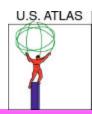
TileCal (Hadron Calorimetry)


- Tilecal Pilot Project: test-beam analysis system using OO/C++ and Objectivity, developed by U.S. groups.
- Present system has full functionality of old Fortran analysis system.
 - All initial Pilot Project goals have been met.
 - Tutorial was presented at CERN in Nov 99, with examples and online documentation.
- Future development
 - Optimal filtering; improvements in structure of code, classes, documentation and user interface
 - Added functionality and new analysis tools (E.g., LHC⁺⁺)
 - Use in other sub detector test-beams


TileCal (Hadron Calorimetry)

• PASO (Provisional Analysis Skeleton in OO)

- This is an off-line analysis framework for the development of OO analysis, able to read Geant3 tapes generated for TDR studies.
- Tilecal work with PASO has begun with development of transient data record for "full ATLAS" Tilecal system.
- Will be able to read Geant3 tapes by Feb 2000.
- Development of cluster-finding techniques during spring 2000.

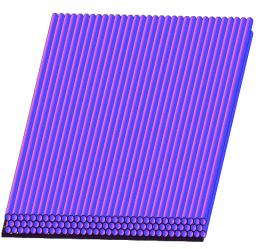


• Work well underway on development of Tilecal detector description using XML (essential for Geant4).

TileCal (Hadron Calorimetry)

- Discussions underway with LAr group concerning:
 - Common data structures for Tilecal and LAr.
 - Common or parallel code structure for clusterfinding.
 - Combined effort on jet reconstruction and energy resolution.
 - To be discussed: combining LAr and Tilecal energies at the cell/tower level, before clusterfinding is carried out.

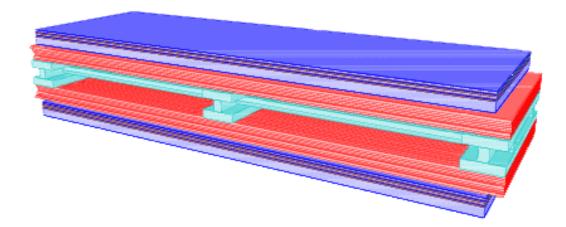
Muon Software

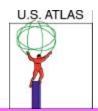

Resistive plate chambers MDT chambers Areas of US involvement: DB Simulation Reconstruction Trigger Cathode Strip Chambers

Muon DB/Detector description

• An MDT1 Multilayer Stack in XML:

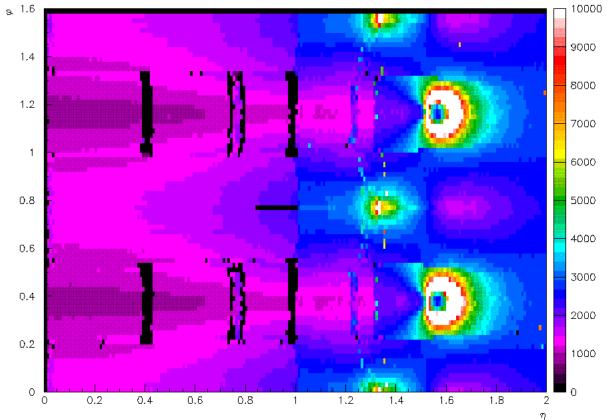
```
<composition name="MU_MDT1_OuterTubes">
    <mposZ volume="MU_MDT1_Tube"
        ncopy="32" Z0="-480." dZ="30.0" rot="0 90 0" index="0 0 0" />
</composition>
</composition name="MU_MDT1_Stack">
    <posXYZ volume="MU_MDT1_OuterTubes" X_Y_Z="0 33.48 0" index="0 2 0" />
    <posXYZ volume="MU_MDT1_InnerTubes" X_Y_Z="0 7.50 0" index="0 1 0" />
    <posXYZ volume="MU_MDT1_OuterTubes" X_Y_Z="0 -18.48 0" index="0 0 0" />
    <posXYZ volume="MU_MDT1_Support" X_Y_Z="0 -40.98 0" />
</composition>
```



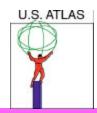

Muon DB/Detector description

• A BMS1 Barrel Station in XML:

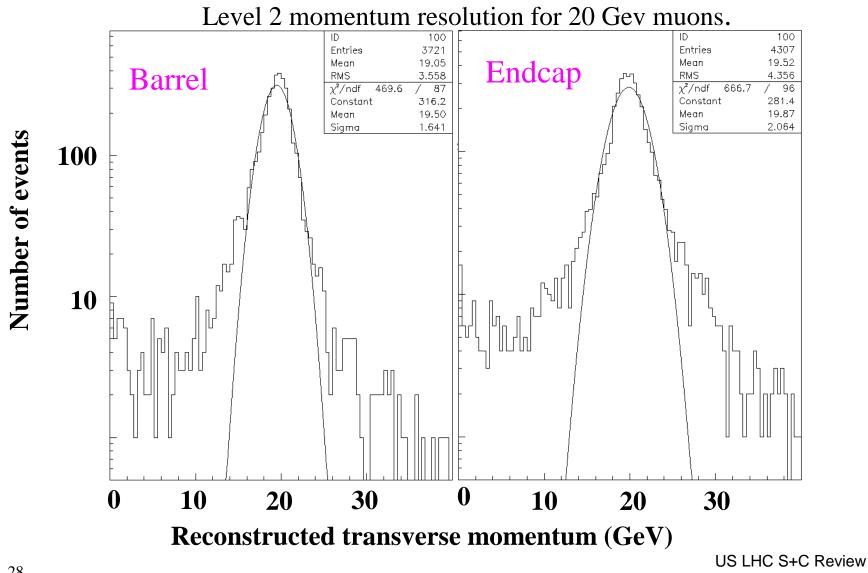
<composition name="MU_BMS1_Station">
 <posXYZ volume="MU_BMS1_UpperRPC" X_Y_Z="0 251.96 0" index="0 1 0"/>
 <posXYZ volume="MU_BMS1_UpperMDT" X_Y_Z="0 133.48 0" index="0 1 0"/>
 <posXYZ volume="MU_BMS1_Spacer" X_Y_Z="0 0 0" />
 <posXYZ volume="MU_BMS1_LowerMDT" X_Y_Z="0 -133.48 0" index="0 0 0"/>
 <posXYZ volume="MU_BMS1_LowerMDT" X_Y_Z="0 -251.96 0" index="0 0 0"/>
 <posXYZ volume="MU_BMS1_LowerRPC" X_Y_Z="0 -251.96 0" index="0 0 0"/>
 <posXYZ volume="MU_BMS1_LowerRPC" X_Y_Z="0 -251.96 0" index="0 0 0"/>
 <posXYZ volume="MU_BMS1_LowerRPC" X_Y_Z="0 -251.96 0" index="0 0 0"/>



See Goldfarb's web site for full details: <u>http://home.cern.ch/muondoc/software/Database/</u>

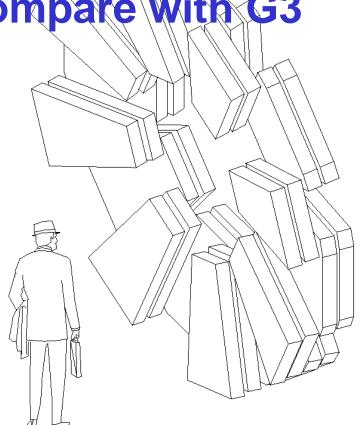


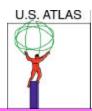
Muon Level 2 Trigger


Radius of curvature map for muons.

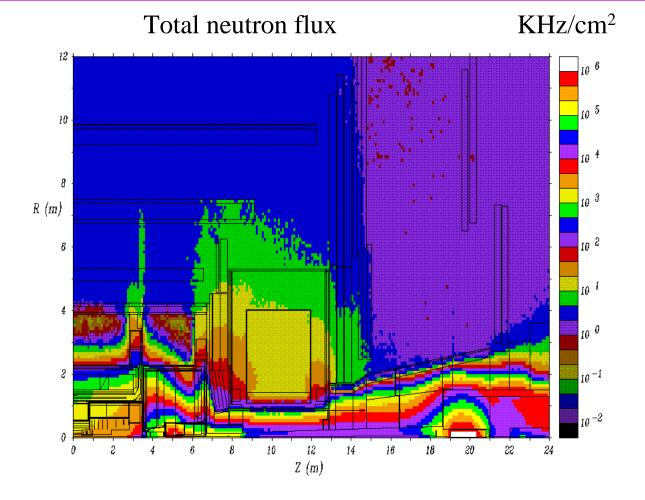
× 10

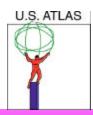
Muon Level 2 Trigger




DOE Germantown, 18-20 January, 2000

- Many studies with GEANT3
- Development in G4, compare with G3
- Reconstruction in OO
- Test beam





Complete GEANT3 geometry

- Incorporating signal simulation based on photo-absorption ionization model.
 - Gas properties and electrode geometry taken into account
 - Tuned with test-beam data for position accuracy and high background rate performance
- Adding more details to the geometry now
 - Details of frames, corners and dead areas.

Neutron Background Studies

- Broad range of activities, well integrated in the whole of ATLAS
- Working closely with US work in core
- Leadership roles in many areas
- Well positioned for future software agreements
 - (we expect subdetector software MOU's to be later than core software MOU's)