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SUMMARY 

A s e r i e s   r ep resen ta t ion   o f   t he   o sc i l l a to ry   behav io r   o f   i ncompress ib l e  non- 
v i s c o u s   l i q u i d s   c o n t a i n e d   i n   p a r t i a l l y   f i l l e d   e l a s t i c   t a n k s  i s  presented.  By 
se lec t ing   each  t e r m  o f   t he   s e r i e s  on the   bas i s   o f   the   hydroe las t ic   v ibra t ions   in  
c i r cu la r   cy l ind r i ca l   t anks ,   each   t e rm  sa t i s f i e s   t he   gove rn ing   l i qu id   equa t ion  
(Laplace 's   equat ion)   but   does  not   sat isfy  the  l iquid- tank  interface  compat i -  
b i l i t y .  By using a complementary  energy  principle  presented  herein,   the  super- 
pos i t ion   o f   these  terns is  made to   approximate ly   sa t i s fy   the   in te r face   compat i -  
b i l i t y .   T h i s   a n a l y s i s  is  app l i ed   t o   t he   g rav i ty   s lo sh ing   and   hydroe la s t i c  
v ibra t ions   o f   l iqu ids   in   hemispher ica l   t anks   and   in  a t y p i c a l   e l a s t i c   a e r o s p a c e  
propellant  tank.  With  only a few s e r i e s   t e r m s   b e i n g   r e t a i n e d ,   t h e   r e s u l t s  
co r re l a t ed   ve ry   we l l   w i th   ex i s t ing   ana ly t i ca l   r e su l t s  , NASTRANl-generated 
a n a l y t i c a l   r e s u l t s ,   a n d   e x p e r i m e n t a l   t e s t   r e s u l t s .  Hence, although  each term 
is based on  a cyl indrical   tank  geometry,   the   superposi t ion  can  be  successful ly  
app l i ed   t o   noncy l ind r i ca l   t anks .  

INTRODUCTION 

Liquid-fuel  tanks  are  often  large  components  of  aerospace  vehicles and 
s i g n i f i c a n t l y   a f f e c t   t h e   v i b r a t o r y   b e h a v i o r   o f   a n   e n t i r e   v e h i c l e .  I n  t u r n ,  the  
motions of l i q u i d  i n  a fuel   tank  can be expec ted   to   p lay  a s i g n i f i c a n t   r o l e  i n  
tank   v ibra t ions .   Consequent ly ,   v ibra t ion   ana lyses   o f   such   tanks  must  include 
in t e rac t ive   coup l ing  between the   e l a s t i c   she l l   t ank   s t ruc tu re   and   t he   con ta ined  
l i q u i d .  

Ea r ly   ana ly t i ca l   i nves t iga t ions   o f   l i qu id - t ank   v ib ra t ions  were  mostly 
l imi ted   to   s imple   t ank   geometr ies ,   such   as   c i rcu lar   cy l inders .  A thorough sur -  
vey   of   these   ear ly   inves t iga t ions  i s  given i n  re fe rence  1, chapter  9. More 
recently,  computer  programs  have  been  developed  which  treat  the  liquid-tank 
interact ion  problem i n  more general   tank  geometries  found i n  prac t ice .   (See ,  
for   example,   refs .  2 t o  7 . )  The procedure  used i n  t hese   r e f e rences   t o   deve lop  
such  programs was t o  mod i fy   ex i s t ing   she l l   p rog rams   t o   i nc lude   l i qu id - s t ruc tu re  
i n t e r a c t i o n .  The key   e lement   in   these   in te rac t ion   ana lyses  is t h e   s e l e c t i o n  of 
a su i t ab le   r ep resen ta t ion   o f   t he   l i qu id   o sc i l l a to ry   behav io r .  

Since  model ing  the  shel l   tank  a lone may r equ i r e  many degrees  of  freedom, a 
l i q u i d  model  which in t roduces  a minimum number of additional  degrees  of  freedom 
is des i r ab le .   In   r e f e rences  2 t o  5 ,  f in i te -e lement   models   o f   the   l iqu id   a re  
employed.  Such  models  introduce a l a r g e  number of  degrees  of  freedom  into  the 
in te rac t ion   problem  s ince ,   in   genera l ,  a three-dimensional body  of l i q u i d  must  
be  modeled.   Furthermore,   the   dis t r ibut ion  of   f ini te   e lements   throughout   the 
l i q u i d  may pose  modeling  problems.  In  reference 6 ,  t h e   l i q u i d  i s  represented  
by a d is t r ibu t ion   of   s imple   sources  on the   sur face   o f   the   l iqu id .  With t h i s  
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approach,  only  the  liquid  surface is discretized  and,  consequently,  the  number 
of  degrees  of  freedom is drastically  reduced  from  the  number  introduced  by  the 
finite-element  approach. In reference 7, the  liquid  model  involves  a  series 
representation of the  liquid  oscillatory  pressure  with  the  liquid  considered 
incompressible  and  gravity  surface  effects  neglected. In this  model,  the 
degrees  of  freedom  are  the  amplitude  coefficients  of  terms  of  the  series.  The 
series is chosen so that  each  term  exactly  satisfies  the  governing  equation  €or 
the  behavior of the  liquid  (Laplace's  equation).  Using  a  series  composed  of 
these  terms  in  a  complementary  energy  principle  for  the  liquid  produces  surface- 
integral  governing  equations.  Thus, as in  reference 6 ,  only  the  liquid  surface 
is  discretized  for  numerical  solution  of  these  equations.  Furthermore,  the 
individual  terms  of  the  series  capture  the  essence of the  liquid  behavior;  con- 
sequently,  the  total  number of degrees  of  freedom  required  for  the  coupled 
liquid-shell  interaction  problem is only  slightly  greater  than  that  required 
for  the  empty  shell.  In  addition,  this  approach  can  be  applied  successfully  to 
a  wide  variety  of  shell  geometrical  shapes. 

Inasmuch as the  pressure-series  representation  provides  accurate  solutions 
when  gravity  effects  are  neglected,  it  is  reasonable  to  anticipate  that  the 
approach  can  be  successfully  extended  to  include  such  effects.  The  inclusion 
of  gravity  permits  the  analysis  to  be  applied  to  the  physically  important  slosh- 
ing  modes of the  liquid  which  occur  with  little  or  no  interaction  with  the 
elastic  tank. 

The  purpose  of  the  present  paper  is  to  extend  the  analysis  of  reference 7 
to  include  gravity  effects  in  the  liquid.  Further,  since  the  analysis  and 
application  to  incompressible  liquids  were  only  briefly  described  in  reference 7, 
a  more  thorough  description is presented  herein.  A  series  representation of the 
liquid  oscillatory  pressure  is  employed  in  a  complementary  energy  principle 
which is derived  herein  for  incompressible  liquids  in  the  presence  of  gravity. 
The  terms  of  the  series  are  uniquely  selected  to  satisfy  the  governing  liquid 
equation.  Then,  as  in  reference 7, the  liquid  pressure  loading on the  tank  wall 
which  depends on the  wall  deformation  may  be  calculated  without  further  dis- 
cretization  of  the  liquid.  The  deformation-dependent  pressure of the  liquid 
on  the  tank  wall  then  becomes  a  loading  term  in  the  shell  equations,  and  existing 
shell  computer  programs  may  be  easily  modified  to  accommodate  this  loading.  In 
the  present  paper,  the  modification  of  the  shell-of-revolution  program  of  ref- 
erences 8 and 10 is discussed. 

Applications of the  modified  shell  program  are  presented  for  the  following 
problems:  liquid  sloshing  in  a  rigid  hemisphere,  hydroelastic  vibrations of an 
incompressible  liquid  in  an  elastic  propellant  tank,  and  hydroelastic  vibrations 
of  an  incompressible  liquid  in  an  elastic  hemisphere.  Furthermore,  the  conver- 
gence  of  the  series  expansion  is  considered  in  each  application,  and  the  results 
are  compared  with  experiment  and  with  NASTRAN  analyses  to  validate  the  approach. 
Appendixes  to  the  report  provide  a  proof  for  the  complementary  energy  principle 
used  herein  and  descriptions  of  the  NASTRAN  analysis  and  experiment. 
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SYMBOLS 

a radius  of  hemisphere 

Z 1 , i 2 , i 3 , ~  mat r ices  whose e lements   a re   def ined  by equat ions  (32 )  to (35) 

4n mth ampl i tude   coef f ic ien t  of se r ies   expans ion ,   see   equat ions  ( 8 )  
and ( 9 )  

B , B ' , B "  mat r ices  whose elements are def ined i n  equat ions  (51)  , (41)  , and (46) , 
r e spec t ive ly  

C diagonal   matr ix  whose e lements   a re  c, 

- 
F column vec tor   o f   forces   f rom  l iqu id   ac t ing  on the   we t t ed   she l l   su r f ace  

a t  IR noda l   s t a t ions  

G r 9  g r a v i t a t i o n a l   v e c t o r  i n  x -d i rec t ion  and  magnitude,  respectively 

h height  of l i q u i d  

I R  number  of noda l   s t a t ions  on w e t t e d   s h e l l   s u r f a c e   a t  which l i q u i d  
p re s su res  and f o r c e s   a r e   c a l c u l a t e d  

I n  modified  Bessel  function  of f i rs t  k i n d  of  order n 

j = f i  

Jn Besse l   func t ion   of   f i r s t   k ind  of order  n 

Kn modified  Bessel  function  of  second k ind  of  order n 

2 l ength  of tank i n  a x i a l   d i r e c t i o n  

m number of half-waves  along  meridian 

M h a l f   t h e   t o t a l  number of  terms i n  se r ies   expans ion  

MR l iquid  apparent  mass  matrix 

M1,M2,M3 number of s e r i e s   t e rms   a s soc ia t ed  w i t h  p o s i t i v e ,   n e g a t i v e ,  and zero 
va lues  of X,, r e spec t ive ly  

n number of   c i rcumferent ia l  waves 

3 



P 

r 

R 

s 

T 

TC 
- 
u 

W 

WC 

X 

- 
Y 

‘n 

Zmn 

component of N in  x-direction 
- 

outward unit  vector  normal to shell  surface 

liquid  oscillatory  compressive  pressure 

mth  series term in nth  circumferential  trigonometric  harmonic 

series  term  defined  in  equation (61) 

matrices  whose  elements  are  found  from  equation (34) 

radial  coordinate  shown  in  figure 1 

value  of r at shell  wall 

meridional  coordinate of shell  shown  in  figure 1 

shell  surface  area 

free  and  wetted  shell  surface,  respectively, of liquid 

time 

transformation  matrix  defined  by  equation (51) 

complementary  kinetic  energy of liquid 

liquid  displacement  vector 

component of u in x-direction 

gravitational  energy 

liquid  volume 

outward  normal  displacement of shell 

complementary  work of applied  displacements 

axial  coordinate  shown  in  figure 1 

position  vector  of  liquid  particle,  equation (7) 

Bessel  function of second  kind  of  order  n 

defined  in  equation (17) 

-” 
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(SI (c) 
Ym rum defined  by  equations (15) and  (16),  respectively 

r gravitational  load  matrix  defined  by  equation ( 5 3 )  

6 variational  operator 

'ij Kronecker  delta  function  defined in equation ( 3 5 )  

rl = g/w2h 

n* eigenvalue  of  equation (46) 

e circumferential  coordinate  shown  in  figure 1 

Am mth  value of selected  parameter  which  determines  type of series  term 
to  be  used  according  to  equations  (14) to  (17) 

PO mass  density of liquid 

Om defined  by  equation (20) 

($ velocity  potential  for  liquid 

X liquid  load  matrix  defined  by  equation  (52) 

$ angle  between  and r  axis  shown  in  figure  1 

w circular  frequency 

a - derivative  on  shell  wall  parallel  to N 
- 

a N  

A dot over a symbol  denotes  differentiation  with  respect  to  time. 

A prime  denotes  differentiation  with  respect to  x. 

Bars  over  symbols  refer  to  associated  dimensionless  quantities  given  by 
equation  (27). 

GENERAL  THEORY FOR OSCILLATING  LIQUID 

Variational  Principle 

In appendix A ,  the  following  complementary  energy  principle  is  presented 
for a  nonviscous  incompressible  liquid  undergoing  irrotational  oscillations  of 
the  complex  form  ejwt  about an initial  compressed  state: 

b(Tc - uc,g - WC) = 0 (1) 
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where t h e   v a r i a t i o n s   i n d i c a t e d  by the   ope ra to r  6 are on a l l  admissible   pres-  
s u r e   s t a t e s ,  w is  t h e   o s c i l l a t o r y   c i r c u l a r   f r e q u e n c y ,  j i s  q l  , and the  
v a r i a t i o n s  of t h e  complementary k i n e t i c ,   g r a v i t a t i o n a l ,   a n d   e x t e r n a l  work 
ene rg ie s  are given by 

I n  equat ions ( 2 )  t o  ( 4 ) ,  p is  the   o sc i l l a to ry   compress ive   p re s su re   pe r tu rba -  
t i o n   a b o v e   t h e   i n i t i a l   p r e s s u r i z e d   s t a t e  Po; Po i s  the  uniform mass d e n s i t y  
of t h e   l i q u i d ;  -So and Vo a r e   t he   l i qu id   su r f ace   a r ea   and   l i qu id  volume, 
r e spec t ive ly ;  N i s  a vec tor  normal t o  So and pos i t ive   ou tward;  nx i s  the  
component of N i n  t he   pos i t i ve   x -d i r ec t ion  (see f i g .  1) ;  g i s  t h e   g r a v i t y  
vec to r ,  which a c t s   i n   t h e   x - d i r e c t i o n ;  Sw r e f e r s   t o   t h e   w e t t e d   p o r t i o n  of S o ;  
W is the  s h e l l  d isplacement   per turbat ion on Sw p a r a l l e l  to N ;  and $I i s  a 
ve loc i ty   po ten t i a l   €o r   t he   i r ro t a t iona l   nonv i scous   l i qu id   de f ined   such   t ha t  

- -., 

u = grad $ 

where t h e   d o t   r e p r e s e n t s   d i f f e r e n t i a t i o n   w i t h   r e s p e c t  to time and i s  the  
l iqu id   d i sp lacement   vec tor .  

The admiss ib le   p ressure  s ta tes  fo r   equa t ion  (1) m u s t  s a t i s f y   t h e   f r e e  s u r -  
face   condi t ion ,  namely 6, = 0 on S f ,  t h e   f r e e   s u r f a c e   p o r t i o n  of So; and the  
dynamic equ i l ib r ium  o f   t he   l i qu id   (o r   equ iva len t ly   t he   l i nea r i zed   Be rnou l l i  
equat ion as es tab l i shed   in   appendix  A ) ,  namely 

Series  Expansion 

The v e l o c i t y   p o t e n t i a l  i s  approximated by a t runca ted  series: 

2 M  

m= 1 
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where Y is the  position  vector  of 
henceforth,  the  complex  multiplier 
tions ( 5 )  and (7) into  equation (6) 

... 
a liquid  particle  In  equation (7 )  and 
ejwt  is  understood.  Substituting  equa- 
yields  the  series  expansion  for p, 

where  the  prime  denotes  differentiation  with  respect  to x. Equations ( 7 )  
and (8) may  now be  substituted  into  equations  (2)  to (4) and the  results  substi- 
tuted  into  equation (1) to yield 

where  the effects  of  ullage  volume  have 
vanishes,  since 6p vanishes on S f -  

%)6brn aN dSw = 0 

been  neglected  and  the  integral  over Sf 

Since  the  numerical  evaluation of the  volume  integral  occurring  in  equa- 
tion (9) can  be a  tedious  task, it is desirable  to  cause  this  integral  to 
vanish. This can  be  done  by  judiciously  choosing qm. 

Selection of Series  Terms 

From  the  derivation  of  the  complementary  energy  principle  presented  in 
appendix A, the  volume  integrand is equivalent  to a  statement of compatibility 
or  incompressibility,  namely 

Substituting  equation (7) into  equation (10) yields 

v2qm  bm = 0 

m= 1 
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v2qm = 0 

Equation  (12)  is a well-understood  partial  differential  equation,  and  con- 
sequently  the  calculation  of  qm  for  practical  classes of problems is straight- 
forward. In the  next  section,  values  of qm are  selected  for  liquids  con- 
tained  in  arbitrarily  shaped  shell-of-revolution  tanks. 

As a  consequence of equation (12) , equation (9 )  becomes 

W (2, + - -  
gnx a") 6bm  dSw = 0 
,2 a N  

m= 1 m= 1 

Equation (13) is  recognized  as an approximate  statement  of  the  interface  con- 
tinuity  between  liquid  and  shell. 

By  selecting  each  series  term on the  basis of equation (12), each  term 
captures a  facet  of  the  liquid  behavior  observed  in  classical  liquid-shell 
vibration  problems,  such as periodically  supported  cylindrical  shells  contain- 
ing  incompressible  liquid.  (See  also  the  discussion  in  ref. 7.) In other 
words, each  term of the  expansion  may  be  viewed as being  the  exact  modal  pres- 
sure  in a mode of some  classical  liquid-shell  problem. The superposition  of 
these  terms is forced  through  equation (13) to  approximately  satisfy  the  liquid- 
shell  interface  condition of tank  geometries  radically  different  from  the 
classical  problem. 

Liquids  in  Shells  of  Revolution "_ 

General  Solution of Laplace's  Equation 

In  many  practical  problems,  the  liquid is a body of revolution  contained 
in a shell  of revolution, as shown  in figure 1. For  such  cases,  each  term of 
the  series  may  be  further  expanded  into  trigonometric  harmonics  about  the  liquid 
circumference. The deformations  of the shell  may  also  be so expanded, and  the 
expansion  is  uncoupled  for  each  trigonometric  harmonic. Then, all  possible 
solutions  of  equation (12) , when  expressed  in  cylindrical  coordinates, x, r, 
and 8, are  the  superposition of 
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where In, q, J,, and Yn are modified  and  unmodified Bessel func t ions   o f  
t h e   f i r s t  and  second  kinds,   and  for   the  present ,  it s u f f i c e s   t o   c o n s i d e r  x, 
a rb i t r a ry .   Fo r   non to ro ida l   she l l -o f - r evo lu t ion   t anks ,   t he   Besse l   func t ions   o f  
t h e  second  kind, Yn and Kn, and r-n must be dropped  s ince  they are singu- 
lar  a t  t h e   a x i s   o f   r e v o l u t i o n  (r  = 0 ) .  

Of cour se ,   t he   gene ra l   so lu t ions  of equat ion  ( 1 2 )  need  not   be  expressed  in  
c y l i n d r i c a l   c o o r d i n a t e s ,   t h a t  i s ,  as cy l indr ica l   harmonics .   For   example ,   in  
tanks  whose geometry more closely  resembles   spheres   than  cyl inders ,   use   of  
spher ica l   coord ina tes   should  cause the   p re s su re  series expansion  to  converge 
more r ap id ly .   Fu r the rmore ,   i f   t he   l i qu id  is  outs ide   o f   the   t ank ,  it i s  b e s t   t o  
use  spherical   coordinates   and  hence  spherical   harmonics   for  qmn. However, as 
i s  shown i n   t h e   a p p l i c a t i o n s   s e c t i o n s   o f   t h i s   p a p e r ,   c y l i n d r i c a l   h a r m o n i c s   f o r  
qmn p rov ide   accu ra t e   r e su l t s   fo r   sphe r i ca l ly   shaped  t a n k s  with  only a few 
terms  being  used.   Further ,   the   cyl indrical   formulat ion  has   the  decided  advan-  
t a g e   t h a t  computer r o u t i n e s   f o r  Bessel func t ions  are more wide ly   ava i lab le   than  
rout ines   for   the   assoc ia ted   Legendre   po lynomia ls   requi red   i f   spher ica l   harmonics  
are used. 

Sa t i s f ac t ion   o f   In t e r f ace   Con t inu i ty   Re la t ion  (Eq. (13)) 

Subs t i t u t ion   o f   equa t ions  (14 )  t o  (17) i n   e q u a t i o n  ( 8 )  y i e l d s  

M 

where 

(" Jlhml 

cm = i? 
10 



Again,  neglecting  the  effects  due  to  ullage  volume, p = 0 on the  free 
surface (x = 0 ) .  Enforcing this condition  yields  from  equation (18) 

M 

Inasmuch as equation  (21)  must  hold  for  all r 

Substituting  equation  (22)  into  equation (7) yields 

Substituting  equations (22)  and ( 2 3 )  into  equation (6) and  using 
hypothesis of equation (A18) yields  the  oscillatory  pressure, 

M 

= 2 [qmn - 7 qm+M, n go, +"""------) gnx ('qmn gom aqm+M 
,2 , a N  ,2 a N  

m= 1 

the  Tong 

bm 

Finally, substituting  equation  (22)  into  equation  (13)  yields 

[qkn - __ 90k 
,2 qk+M,n 

k= 1 

- 5 6bk)  dS, = 0 
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Since  equation (25) holds for all  variations of bk, 

The following  relations  nondimensionalize  equation ( 2 6 ) :  

- 
r = r/h; x = x/h; = N/h; w = w/h; E = R/h; s = s/h; 

- .  - 

- 
bm = bm/h2; x, = h A,; Om = 

- 2 - - 
ha,;  c, = hc,; = g/hw2 ( 2 7 )  

where h is  the  liquid  height, R is  the  value of r at  the  shell wall, and 
s is a meridional  coordinate as shown  in 

- rl nxok 
2 - aqk+M,n - - 

ai J R(s) ds (x) = 

Following  reference 7, w  is  discretized 
of w between Ip liquid  nodal  stations 

figure 1. Equation ( 2 6 )  now  becomes 

0 

by  assuming a  linear  interpolation 
on the  wetted  shell  wall.  Then 

equation ( 2 8 )  may  be  expressed  in  matrix  notation as 

A 

where  the  elements of A, All A 2 ,  and A3 are  defined as 
A A 
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aqmn aqk+M,n - + nxak 7 ]R d s  
a N  a i  

- 
s (1) 

A3,km = - s, A 

OkOmnx a%+M,n aqk+M,n - R d s  a i  ai (33) 

where 1 = k = M and 1 = m = M .  The elements   of   the   matr ix  Q a r e   de r ived  as  
i n   r e f e r e n c e  7 by d i s c r e t i z i n g   t h e   w e t t e d   s h e l l  w a l l  as 

< <  < <  

where the  Kronecker   del ta  i s  

and is the   ang le  formed  by N and   t he   pos i t i ve  r a x i s  as shown i n   f i g -  
ure  1. Also,   the   notat ion  and ( 6 )  r ep resen t  column v e c t o r s   o f   d i s c r e t e  
normal shel l   d isplacements   and series ampl i tude   coe f f i c i en t s ,   r e spec t ive ly .  

- 

The elements  of G1 and are found  from  equation  (34)  by  replacing - - 

qkn  by ( 'kqk+M, n - "x - ';in) and ( O p x  ai , respect ively.   In   appendix B,  
a qk+M, n 

A 

A, A1, A2 and 
A i3 are shown t o   b e  symmetric matrices. 
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Some i n s i g h t   i n t o   t h e   b e h a v i o r  of equation  (29) may be  revealed by con- 
s i d e r i n g  two l i m i t i n g   c a s e s .   I n   t h e   f i r s t   c a s e  when u2 -+ 0 (hydros t a t i c s )  , 
equat ion  (29)   reduces  to  

Subs t i tu t ing   equat ion  (36) i n t o   e q u a t i o n  (24 )  g ives   t he   vec to r  of p r e s s u r e s   a t  
each   l iqu id   nodal   s ta t ion  on the  

where Kg is a g r a v i t a t i o n a l  s t  

we t t ed   she l l  w a l l ,  

i f f n e s s   m a t r i x   d e f i n e d   a s  

The elements of the   mat r ix  B and the   d iagonal   mat r ix  

B L  = Om - -(xi,Ri) a%+M - - 
a N  

T 

(37) 

a r e  

(39) 

w i t h   x i  and being  the  values  of x and r on t h e   s h e l l   w a l l   a t   t h e   i t h  
l i qu id   noda l   s t a t ion   a s   d i scussed  i n  re ference  7. The negat ive   s ign  i n  equa- 
t ion   (37)   appears   because   pos i t ive   p ressure   ind ica tes   compress ion .  

- - - 

A s  a second  l imit ing  case,   consider   the  high-frequency  osci l la t ions when 
U2 -+ w. Equation ( 2 9 )  then   reduces   to  

Subs t i tu t ing   equat ion  ( 4 1 )  in to   equat ion  ( 2 4 )  g ives   t he   vec to r   o f   p re s su res   a t  
each   l iqu id   nodal   s ta t ion  on the   wet ted   she l l   wal l ,  

1 4  



? 

where MR is a l i q u i d   a p p a r e n t  mass mat r ix   def ined  as i n   r e f e r e n c e  7 t o  be 

where the   e lements  of B" are 

In   gene ra l ,   equa t ion  (29) may be s o l v e d   f o r   t h e   a m p l i t u d e   c o e f f i c i e n t s  as 
 follows : 

provided 0 = n* where Q* is  an  e igenvalue  of   the  t ranscendental   equat ion,  

Most of the  e igenvalues   of   equat ion  (46)   provide  the  s loshing  f requencies   of   the  
l i q u i d   i n  a r i g i d   t a n k ,   t h a t  i s ,  €or  w = 0 .  Thei r   eva lua t ion  i s  d i s c u s s e d   i n  
t h e   a p p l i c a t i o n s   s e c t i o n  of t h i s   p a p e r .  However, equation  (46) by i tself  can 
r e s u l t   i n  a set of   extraneous  e igenvalues .   This   can  occur   because  the  var ia-  
t i ona l   p r inc ip l e   u sed   he re in   and   de r ived   i n   append ix  A r e q u i r e s   t h a t  6p n o t  
be i d e n t i c a l l y   z e r o   f o r  a l l  x and r .  Usua l ly ,   t h i s   poses  no problem; how- 
ever ,   s ince  6p depends   exp l i c i t l y   on   t he   e igenva lue   i n   t h i s   fo rmula t ion ,   t hen  
eigenvalues  which make 6p v a n i s h   i d e n t i c a l l y  may e x i s t .   I n   o t h e r   w o r d s ,   t h e  
roots of the  second  bracketed t e r m  i n   e q u a t i o n  ( 2 8 )  show up as  erroneous  eigen- 
va lues   o f   equa t ion   (46) .   Such   roo ts   occur   on ly  when 

- 

nx = 1 and q2 = __ 
omcm 

1 
(m = 1,2, . . . ,M) (47) 

Hence, erroneous  e igenvalues   can  only  appear  when g r a v i t a t i o n a l  e f f ec t s  are 
included.  These  eigenvalues may be readi ly   recognized   f rom  equat ion   (47)   under  
t h e  rare circumstances  in   which  they  can  occur .  

Subs t i t u t ing   equa t ion   (45 )   i n to   equa t ion  (24) g i v e s   t h e   p r e s s u r e s   o n   t h e  
w e t t e d   s h e l l  w a l l  as 

1 5  



where 

and the  e lements  of [B] a r e  

The fo rces  on t h e   s h e l l  w a l l  may a l s o  be c a l c u l a t e d   a s  

where a s  i n  re ference  7 ,  

CTJ = 

0 0 

A s  a consequence of the  Maxwell-Betti   reciprocal  theorem,  the  matrix 
product T- lX i s  symmetric. 

Convergence  of  Pressure  Series 

The convergence  properties of t h e   p r e s s u r e   s e r i e s  i s  a c r i t i c a l   s u b j e c t .  
A general  proof  showing i t s  convergence i n  a coupled  hydroelastic  problem is  
not   ava i lab le  and may not  be poss ib l e .  However, it i s  poss ib le   to   demonst ra te  
i t s  rap id   convergence   to   accura te   resu l t s   th rough  the   use  of examples.  Such 
examples  are  presented i n  t h e   a p p l i c a t i o n s   s e c t i o n  of t h i s   p a p e r .  
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Hydroelastic  Modes 

Hydroelastic  modes  are  those  modes  in  which  there is significant  coupling 
of the  liquid  and shell motions. In contrast,  slosh  modes  involve  little or no 
shell  motion. Previous  authors have  reported  that  gravity  has  little  effect  on 
the  hydroelastic  modes.  (See  ref. 1, ch. 9, and  ref. 11, for example). In 
other  words n << 1. Consequently,  when  searching  for  the  hydroelastic  modes, 
higher  order  terms  in n may be  dropped  in  equation (46 ) ,  resulting in 

where 

Equation (54) or (55) provides  the  wall-deformation-dependent  loading  terms  in 
the  shell  equations. 

MODIFIED  SHELL  EQUATIONS 

Discretized Form 

If  the  shell  equations  have  been  discretized, as they  would  be  for  a 
finite-element or finite-difference  shell  solution,  the  liquid  loading is 
readily  accounted  €or in the  shell  equations  as, 
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where t h e  K ' s  r e f e r   t o   s t i f f n e s s  and  the M's t o  mass and the   d imens ionless  
v e c t o r   i n c l u d e s   t a n g e n t i a l   s h e l l   d i s p l a c e m e n t s   a s  w e l l  as t h o s e   r a d i a l   o n e s  
no t  on the   we t t ed   she l l   su r f ace ;   i n   de r iv ing   equa t ion   (56 ) ,   t he   app rox ima te  
hydroe las t ic   l iqu id   loading   of   equa t ion   (55)   has   been   used .  The eigenvalues  
and eigenvectors   can  be  extracted  f rom  equat ion (56) by the   s t anda rd  
procedures.  

D i f f e ren t i a l   Equa t ion  Form 

I n  some exis t ing   computer   p rograms  for   she l l   v ibra t ion   ana lys i s ,   the   d i f -  
f e r e n t i a l   e q u a t i o n s  are solved by numer ica l   in tegra t ion .   This  i s  the  case f o r  
the   numer ica l   ana lys i s   o f   re fe rences  8 t o  10. This   ana lys i s   and   the   assoc ia ted  
computer  program  have  been  modified to   incorpora te   the   she l l -wal l -deformat ion-  
dependent   l iqu id   p ressure   loading   deve loped   in   the   p rev ious   sec t ion .  The 
r e s u l t s   p r e s e n t e d   i n   t h e   a p p l i c a t i o n s   s e c t i o n   o f   t h i s   p a p e r  were generated from 
th is   modi f ied   she l l -of - revolu t ion   program.  

The program  uses a generalized  form  of  Novozhilov's  shell   equations  which 
include  the  nonl inear   case  of   moderate   rotat ions.   These  equat ions are t r ans -  
formed i n t o  a s e t  o f   e i g h t   f i r s t - o r d e r   d i f f e r e n t i a l   e q u a t i o n s   i n   e i g h t   b a s i c  
force   and   d i sp lacement   she l l   var iab les  and are so lved   us ing  a Zarghamee vers ion  
of the  forward  integration  method. 

Among o t h e r   f e a t u r e s ,   t h e  program  has  branched s h e l l   c a p a b i l i t y  and  can 
a c c o u n t   f o r   e f f e c t s   o f   p r e s t r e s s i n g   o f   t h e   s h e l l  w a l l s .  The branched   she l l  
c a p a b i l i t y  makes it p o s s i b l e   t o  t reat  assembl ies   o f   t anks   o f ten   found  in  
p r a c t i c e .  Prestress e f f e c t s   i n   s h e l l  walls,  wh ich   e f f ec t ive ly   s t i f f en   t he  
t ank ,   can   r e su l t  from i n i t i a l   p r e s s u r i z a t i c n   o f   t h e  t a n k  o r   t he   we igh t   o f   t he  
l i q u i d   u n d e r   g r a v i t y   o r   o t h e r   l o n g i t u d i n a l   a c c e l e r a t i o n .   ( P r e v i o u s  work f o r  
c y l i n d r i c a l   s h e l l   s t r u c t u r e s ,   s u c h  as t h a t   i n   r e f .  1 2 ,  has  shown t h a t   p r e s t r e s s  
e f f e c t s  can  be  important.) 

The s h e l l   d i f f e r e n t i a l   e q u a t i o n s  as  p r e s e n t e d   i n   r e f e r e n c e  8 a r e  

where s is a mer id iona l   coord ina te .  The force  vector   yn,   d isplacement  
vec tor  z,, and   coe f f i c i en t   ma t r i ces  a ,  b, c ,  and d are d e f i n e d   i n   t h e  
r e fe rence .   In   add i t ion ,   t he   su r f ace   l oad   vec to r   Fn ( s )  i s  given as 
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and 

where  ms  is  the  shell  mass  per  unit of shell  area  and  pn(s,c)  is  the  nth 
trigonometric  circumferential  component of the  pressure  at  some  meridional  lo_ca- 
tion, s, due to  a  unit of displaced  liquid  volume at  meridional  location, 5. 

- 

- 
- 

To evaluate pn(s,<) I w(s) in  equation  (28) is set  equal to a  Dirac  delta 
function  which  vanishes  everywhere  except  at s = 5, where it  goes to  infinity. 
Performing  the  integrations  in  equation  (28)  yield 

- -  

where 

- ‘In, 

(1 = m M) < <  
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Solving for { G )  in equation (61) and  substituting  into  equation (24) result 
in 

n3i-J -l 

A A 

Since  A,  AI,  A2,-and A3 are  symmetric matrices, it  follows  from  linear 

algebra  that  pn(s,<) is symmetric,  that is, pn(s,<) = p,(<,s). (See,  for 

A 

- - 

example,  ref.  12. 

APPLICATIONS OF THEORY 

The  purpose  of  this  section is to  validate  the  pressure-series  theory 
developed  in  this paper and  to  demonstrate  its  rate of convergence  through 
appropriate  examples.  Two sets  of  examples  are  considered. The first  deals 
with  the  sloshing of incompressible  liquids  in  rigid  cylindrical  and  hemisphe- 
rical tanks.  For  the  cylindrical tank,  it is shown  that  the  present  theory 
yields  the  exact  results;  while  €or  the  hemispherical  tank,  correlation  with 
other  approximate  theories  provides  validation. The second set of examples 
deals  with  the  hydroelastic  vibrations of incompressible  liquids  in  a  flexible 
propellant  tank  and  in  a  flexible  hemisphere.  Validation is provided  through 
correlation  with  NASTRAN  analysis  and  experiment. For  the  hydroelastic  results, 
the  modified  shell-of-revolution  program  discussed  in  the  section  entitled 
“Modified  Shell  Equations“  was  used. 

Sloshing  Motion  of  Incompressible Liquids in  Rigid Tanks 

General  Considerations 

From  equation  (46),  the  sloshing  frequencies  €or  incompressible  liquids  are 
given by the roots  of 

Det [A - Q A1 - Q A2 - ~ * ~ i i ~ ]  = 0 
* A  * 2.. 

where  the  elements  of A, Z1, A2 , and A3 depend on the  values  of Am. These 
values  are  arbitrary;  however,  judicious  choices  provide  rapid  convergence  of 
the  solution.  An  examination  of  some  practical cases  illustrates  the  manner  in 
which Am may  be  selected. 

A A 
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Cylindrical  Tanks 

For  cylindrical  tanks,  equation ( 6 3 )  greatly  simplifies  if Am 
(m = 1,2,...,M)  are  the  negative  roots of 

where 5 = Then  from  equations  (30)  to  (33)  and (14) to (17) , the 
integrals  need  only  be  carried out at x = 1 where  nx = 1 to give 

where 

Substituting  equations ( 6 5 )  to ( 6 8 )  into  equation ( 6 3 )  gives 
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Hence, s e t t i n g   t h e  f irst  bracketed term of t h e  l e f t  s i d e  t o  ze ro   g ives  

which are t h e   e x a c t   s l o s h i n g   e i g e n v a l u e s   f o r   c y l i n d r i c a l   t a n k s .   ( S e e   r e f .   1 5 ,  
for  example. ) The roots o'f the  second  bracketed term are, from equat ion (47) , 
assoc ia ted   wi th   the   vanish ing  of 6p  and are thus   ignored .  

Hemispherical  Tanks 

S i n c e   t h e   s e l e c t i o n  of Am on   the  basis of   equa t ion  (64) l e d   t o   e x a c t  
r e s u l t s  €or c y l i n d r i c a l   t a n k s ,  it i s  reasonable  t o  u s e   t h i s  same s e l e c t i o n  basis 
for   geometr ies  of o ther   t anks   and  allow the   supe rpos i t i on   o f   t he  series terms 
to  s a t i s f y   t h e   i n t e r f a c e   c o n d i t i o n   a p p r o x i m a t e d  by equat ion  (13 ) .  To v e r i f y   t h e  
v a l i d i t y  of t h i s   app roach ,   cons ide r  a hemisphe r i ca l   r i g id   t ank   o f   r ad ius  a and 
l i q u i d   h e i g h t ,  h = a. Numerical s o l u t i o n s  €or M = 2 ,  9, and 10 a r e   g i v e n   i n  
table I along  with  corresponding  solut ions f r o m  t h e   l i t e r a t u r e  as compiled i n  
reference  6 .  I t  i s  s e e n   t h a t   t h e  series so lu t ion   ag rees   r ea sonab ly  well with 
p u b l i s h e d   r e s u l t s  and  converges  rapidly.  

Hydroelast ic   Vibrat ions  of   Incompressible   Liquids  

i n  E la s t i c  Tanks 

General  Considerations 

P r e v i o u s   i n v e s t i g a t i o n s   h a v e   c o n c l u d e d   t h a t   g r a v i t y   e f f e c t s  are almost 
a l w a y s   n e g l i g i b l e   i n   t h e   h y d r o e l a s t i c   v i b r a t i o n  modes ( r e f .  1, ch. 9 ,  and 
r e f .  1 2 ,  fo r   example) .  Hence i n   t h i s   s e c t i o n ,   t h e s e   e f f e c t s  are neglected 
( i . e . ,  Q = 0). From equa t ion   (621 ,   t he   p re s su re   l oad ing   on   t he   she l l  i s  
then 

- 
PnCS,S, = POW 

2 

where the   ma t r ix  A ,  as de f ined   i n   equa t ion  ( 3 0 ) ,  depends  on qmn, which i n  
turn   depends   on   the   se lec ted   va lues  of Am (see  eqs. (14) t o  ( 1 7 ) ) .  The 
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terms qmn contain  modif ied or  unmodified Bessel functions  depending  on 
whether x, i s  posi t ive or   nega t ive ,   respec t ive ly ,   and   conta in   powers  of r 
i f  X, = 0 .  

Fol lowing   t he   l i ne   o f   r ea son ing   i n   r e f e rence  7 ,  one selects t h e   p o s i t i v e  
se t  o f  Am as 

2 x, = (y) (1 = m = M )  < <  (73) 

and the   nega t ive  set i s  selected t o  s a t i s f y   e q u a t i o n  ( 6 4 ) .  Subsequent ly ,   the  
number o f   pos i t i ve ,   nega t ive ,   and   ze ro   va lues   o f  x, selected are denoted  by 
M I ,  M2, and M 3 ,  r e s p e c t i v e l y ,  whose sum is  M. 

F lex ib le   Cyl indr ica l   Tanks  

The mot iva t ion   €or   us ing   equat ions   (64)   and   (73)   to  se lec t  x, i s  t h a t  
these   va lues   l ead  t o  a p r e s s u r e  series which   provides   the   exac t   so lu t ion   for  
c y l i n d r i c a l   t a n k s .  (Compare p r e s s u r e  series w i t h   t h a t   o f   r e f .  15 . )  I n   t h e   n e s t  
s e c t i o n ,  it i s  shown t h a t   e v e n   i f   t h e   t a n k   g e o m e t r y  i s  f a r  from c y l i n d r i c a l ,   t h e  
superpos i t ion   o f   these  terms still y i e l d s   a c c u r a t e   r e s u l t s  when appl ied  t o  t h e  
in t e r f ace   con t inu i ty   cond i t ion  of equat ion   (13) .  

F l e x i b l e   P r o p e l l a n t  Tank and  Comparison  With T e s t  

The p rope l l an t   t ank  shown i n   f i g u r e  2 has  been  chosen  €or  the  purposes of 
th i s   pape r   because  it comprises a var ie ty   o f   geometr ies   usua l ly   encountered   in  
aerospace   appl ica t ions .  The tank i s  composed o f   f o u r   d i s t i n c t   s e c t i o n s :  a 
nea r ly   sphe r i ca l   uppe r  dome, a c o n i c a l   s e c t i o n ,  a c y l i n d r i c a l   s e c t i o n ,   a n d  a 
nea r ly   e l l i p so ida l   l ower  dome. A f lange  a t  the   j unc tu re  of t h e  lower dome and 
t h e   c y l i n d r i c a l   s e c t i o n  of t h e   t a n k  i s  clamped t o  a heavy s tee l  f i x t u r e  shown 
i n   f i g u r e  2 ;  t h u s  a f u l l y  clamped  condition w a s  assumed i n   t h e   a n a l y s e s .  The 
1/8-scale tank  approximates a l i q u i d  oxygen  tank  proposed  for   the  space  shut t le .  
Its s p e c i f i c a t i o n s  are g iven   in   appendix  D .  

Nonaxisymmetric  and  axisymmetric  vibrations  of  the  tank were i n v e s t i g a t e d  
both   ana ly t ica l ly   and   exper imenta l ly .   Both   the   p resent   ana lys i s   and   the  NASTRAN 
h y d r o e l a s t i c   a n a l y s i s  w e r e  used. The NASTRAN modeling i s  d i s c u s s e d   i n  appen- 
d i x  C and  the  experimental   procedure is  d i scussed   i n   append ix  D. 

Nonaxisymmetric  modes.-  Experimental  and a n a l y t i c a l   r e s u l t s  for t h e  non- 
axisymmetric modes of t h e   p r o p e l l a n t   t a n k  are compared i n   f i g u r e s   3 ,  4 ,  and 5 .  
Natura l   f requencies  are plot ted as a func t ion   o f   t he   c i r cumfe ren t i a l  wave 
number n i n   f i g u r e s  3 ( a ) ,  4 ( a ) ,   a n d   5 ( a )   f o r  f i l l  conditions  of  empty,  three- 
qua r t e r s   fu l l ,   and   fu l l .   Represen ta t ive   mer id iona l  mode shapes €or a f e w  se lect  
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values  of n are i l l u s t r a t e d   i n   f i g u r e   3 ( b )  for 1 and 2 half-waves  along  the 
she l l   mer id i an  (m = 1, 2 )   a n d   i n   f i g u r e s  4 (b) and 5 (b) for  1, 2 , and 3 ha l f -  
waves a long   t he   she l l   mer id i an  (m = 1, 2 , 3 )  . 

Natu ra l   f r equenc ie s  predicted b y   t h e   p r e s e n t   a n a l y s i s  are i n   e x c e l l e n t  
agreement  with  the  experiment a t  a l l  f i l l  cond i t ions   and ,   i n   gene ra l ,  are some- 
what more a c c u r a t e   t h a n   t h e  NASTRAN resu l t s .   Bo th   t he   p re sen t   ana lys i s   and   t he  
NASTRAN a n a l y s i s   i n c l u d e d   t h e  effects of hydros ta t ic   p ressure   induced   on   the  
s h e l l  w a l l  from the   weight  of t h e   l i q u i d .  The hydros t a t i c   p re s su re   p roduces  a 
s t i f f e n i n g  of t h e   s h e l l  which   increases   wi th   n .   This   e f fec t  i s  d iscussed  more 
f u l l y   i n  a subsequent   sec t ion   of   the   paper .  

For   the empty tank ,   the   curves   o f   f requency   versus   the  number of  circum- 
f e r e n t i a l  waves n f o r  m = 1 and m = 2 cross a t  n = 12,  whereas for  an 
empty c y l i n d r i c a l   t a n k ,   t h e s e   c u r v e s ,  as would be expected,  converge a t  higher  
va lues  of n. The r e a s o n   f o r   t h i s   a t y p i c a l   b e h a v i o r   e x h i b i t e d   i n   f i g u r e   3 ( a )  
becomes a p p a r e n t   i n   f i g u r e   3 ( b ) .  A t  n = 2 ,  t h e  lowest meridional  mode is  
c l e a r l y  m = 1 wi th   nea r ly   equa l   r e sponse   on   t he   cy l ind r i ca l   and   con ica l  sec- 
t i o n s   o f   t h e   t a n k .  A s  n increases ,   however ,   the   response   o f   the   cy l indr ica l  
s e c t i o n   d e c r e a s e s   u n t i l  a t  n = 1 6 ,   v i r t u a l l y  a l l  o f   t he   r e sponse  i s  i n   t h e  
c o n i c a l   s e c t i o n .   S i m i l a r l y ,  a t  m = 2 ,  t h e   r e s p o n s e   o f   t h e   c o n i c a l   s e c t i o n  
d e c r e a s e s   a s  n i n c r e a s e s   u n t i l  a t  n = 16 a l l  the   response  is  i n   t h e   c y l i n -  
d r i c a l   s e c t i o n .  Thus a t  t he   h ighe r   c i r cumfe ren t i a l  wave numbers ,   the   cyl indri-  
ca l  and   con ica l   s ec t ions   o f   t he  empty p rope l l an t   t ank   behave   e s sen t i a l ly  as 
s e p a r a t e   e n t i t i e s .  

The meridional  mode shapes   f rom  the   p resent   ana lys i s ,   which  are v i r t u a l l y  
i d e n t i c a l  t o  those  generated  by NASTRAN, are shown i n   f i g u r e s   3 ( b ) ,   4 ( b ) ,  
and 5 (b ) .   Qua l i t a t ive   expe r imen ta l  mode shapes w e r e  i n  agreement   with  the 
a n a l y t i c a l   r e s u l t s .  

Axisymmetric  modes.-  Variation of the   ana ly t i ca l   and   expe r imen ta l   f r e -  
q u e n c i e s   f o r   t h e   f i r s t   t h r e e   a x i s y m m e t r i c   ( n  = 0) v i b r a t i o n  modes of   the   p ro-  
p e l l a n t   t a n k  are p r e s e n t e d   i n   f i g u r e   6 ( a )  as a func t ion  of t h e   l i q u i d   d e p t h  
r e l a t i v e   t o   t h e   t a n k   l e n g t h   ( h / Z ) .  The agreement of both   ana lyses   wi th   exper i -  
ment i s  g e n e r a l l y  good. The undula t ing   na ture   o f   the   curves   has   been-observed  
by o the r s   ( r e f .   16 )   and  i s  thought t o  be a consequence  of  changes i n   t h e  
meridional  mode shape. 

The f i rs t  t h r e e   a n a l y t i c a l   m e r i d i o n a l  mode shapes are p r e s e n t e d   i n   f i g -  
u r e   6 ( b ) ,   f o r   s e v e r a l   l i q u i d   d e p t h s .   F o r   c l a r i t y ,   o n l y   t h e  mode shapes  from 
t h e   p r e s e n t   a n a l y s i s  are shown. NASTRAN r e s u l t s  are o n l y   s l i g h t l y   d i f f e r e n t  
except  a t  the  apex of the  lower dome. A s  no ted   in   appendix  D, experimental  
axisymmetric  nodal  patterns  could be detected only   on   the  lower dome. These 
experimental  lower dome noda l   pa t t e rns  are i d e n t i f i e d   i n   f i g u r e   6 ( a )  by  the 
d i f f e r e n t   t e s t - p o i n t  symbols and   co r re l a t e  w e l l  w i t h   t h e   a n a l y t i c a l   l o w e r  dome 
mode shapes  of   f igure 6 (b)  . 

H y d r o e l a s t i c   p r e s s u r e   e f f e c t s   i n  1/8-scale tank.-  A s  no ted   p rev ious ly ,   the  
a n a l y t i c a l   r e s u l t s   p r e s e n t e d   i n   f i g u r e s  4 ( a ) ,  5 (a)  , and 6 (a )  i n c l u d e   t h e   e f f e c t  
o f   hydros t a t i c   p re s su re .  The magni tude   o f   th i s   e f fec t   on   the   nonaxisymmetr ic  
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she l l   f r equenc ie s  of t h e  propel lan t   t ank  model may be  observed i n  f i g u r e  7 by 
comparing  the  resul ts  of t he   p re sen t   ana lys i s   i nc lud ing   hydros t a t i c   p re s su re  
(middle  curve)  with  results  from  the same analys is   wi thout   hydros ta t ic   p ressure  
( lower   curve) .   Al though  the   e f fec t   o f   hydros ta t ic   p ressure  becomes s u b s t a n t i a l  
f o r  n > 6, its e f f e c t  is  minimal a t   t h e  lower  values  of n. I f   on ly   the   lower  
modes a r e   o f   i n t e r e s t ,   a s  i s  of ten   the   case ,   the   mathemat ica l  model may be 
s impl i f i ed  by n e g l e c t i n g   t h e   h y d r o s t a t i c   p r e s s u r e   w i t h   l i t t l e  loss of  accuracy. 

Hydrostat ic  . . . . . - pres su re  -. . . - - . e f f e c t s  i n  equiva len t   fu l l - sca le   t ank . -   Repl ica  
scaled  models  are commoniy u t i l i z e d   t o   s t u d y   t h e  dynamic  behavior  of a s t r u c t u r e  
i n  one of two ways. I f   t h e  model i n c l u d e s   s u f f i c i e n t   s t r u c t u r a l   d e t a i l ,  dynamic 
a n a l y s i s  may be   foregone   and   fu l l - sca le   behavior   ex t rapola ted   f rom  subsca le   t es t  
r e s u l t s .  More commonly, dynamic tests of  a s i m p l i f i e d   s t r u c t u r a l  model are   used 
t o   v a l i d a t e  a mathematical  model  which i n  t u r n  is  a p p l i e d   t o   t h e   f u l l - s c a l e  
s t ruc ture .   Caut ion  must  be  exercised i n  us ing   e i ther   approach   to   s tudy   the  
dynamic  behavior   of   ful l -scale   propel lant  t a n k s .  

I n  genera l ,   the   na tura l   f requencies   o f  a r e p l i c a  model a re   i nve r se ly   p ro -  
p o r t i o n a l   t o   t h e   s c a l e   f a c t o r   i f   t h e   i n t e r n a l   p r e s s u r e   o f   b o t h  model  and f u l l -  
s ca l e   coun te rpa r t   a r e   i den t i ca l   a t   co r re spond ing   l oca t ions .  T h i s  r e q u i s i t e  
causes no d i f f i c u l t i e s  i n  t e s t i n g  empty tanks  but  it would  be n e c e s s a r y   t o   t e s t  
a 1 /8 - sca l e   r ep l i ca  model con ta in ing   l i qu id  i n  a simulated 8g g r a v i t y   f i e l d  if 
the   hydros ta t ic   p ressure   o f  a f u l l - s c a l e   t a n k   a t  l g  i s  t o  be s imulated.  

Thus ,  s u b s t a n t i a l   e r r o r s  may r e s u l t   i f   h y d r o s t a t i c   p r e s s u r e  i s  neglected 
i n  app ly ing   t he   p re sen t   ana lys i s   t o   an   equ iva len t   fu l l - s ca l e   t ank   con ta in ing  
l i q u i d .  The magnitude  of   the  effect   of   hydrostat ic   pressure  for   an  equivalent  
f u l l - s c a l e   t a n k   f i l l e d  w i t h  a l i q u i d  i s  shown by the  difference  between  the 
upper  and  lower  curves i n  f i g u r e  7 .  (Due t o   t h e   s c a l i n g   f a c t o r ,   a l l   t h e   f r e -  
quencies   indicated i n  t h i s  f i g u r e   a r e  8 t imes  those of  a f u l l - s c a l e   t a n k . )  
The upper   curve   resu l t s   f rom  the   p resent   ana lys i s   o f   the   subjec t   p rope l lan t  
tank  (1/8-scale) i n  an  8g g r a v i t y   f i e l d .  A s  may be seen,   the   effect   of   hydro-  
s t a t i c   p r e s s u r e  i s  much g rea t e r   fo r   t he   fu l l - s ca l e   t ank   t han   fo r   t he   1 /8 - sca l e  
model.  For n = 6 ,  n e g l e c t i n g   h y d r o s t a t i c   p r e s s u r e   e f f e c t s   r e s u l t s  i n  a f r e -  
quency predic t ion   e r ror   o f   on ly  15  percent   €or   the   1 /8-sca le  model sub jec t ed   t o  
lg   bu t   nea r ly  100  p e r c e n t   e r r o r   f o r  an  e q u i v a l e n t   f u l l - s c a l e   t a n k   a t  l g .  These 
s c a l e   e f f e c t s   o f   h y d r o s t a t i c   p r e s s u r e  would  become even more pronounced i f   t h e  
l o n g i t u d i n a l   a c c e l e r a t i o n   d u r i n g   f l i g h t  was taken   in to   account .  

Free  surface  motion.-   Figure 8 i l l u s t r a t e s   t h e   f r e e   s u r f a c e  mode shapes 
f o r   d i f f e r e n t  numbers  of c i r cumfe ren t i a l  waves n f o r  m = 1, 2 ,  and 3 merid- 
ional  half-waves i n  t h e   f u l l  and t h r e e - q u a r t e r s   f u l l   p r o p e l l a n t   t a n k .  A s  i nd i -  
cated i n  f i g u r e   8 ,   t h e   e n t i r e   f r e e   s u r f a c e  i s  moving when n = 0;  however as 
n increases ,   the   motion becomes l o c a l i z e d   t o   t h e   s h e l l   w a l l  w i t h  l i t t l e  motion 
occur r ing   nea r   t he   cen te r   l i ne   o f   t he   t ank .  T h i s  phenomenon i s  known t o   o c c u r  
i n  p r a c t i c e  and is  read i ly   accoun ted   fo r  i n  t he   p re sen t   ana lys i s  by the  modif ied 
Bessel   funct ions i n  t he   s e r i e s   expans ion .  T h i s  h e l p s   t o   e x p l a i n  why t h e   s e r i e s  
expansion i s  so accura te   for   th i s   type   o f   p roblem.  

I t  i s  a l s o   i n t e r e s t i n g   t o   o b s e r v e  t h a t  the  surface  motion  undergoes l i t t l e  
change w i t h  meridional wave number.  Consequently, mode shapes  must  be  charac- 
t e r i z e d  by the   mot ion   of   the   she l l  w a l l .  
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Convergence of p r e s s u r e  series s o l u t i o n . -   F o r   t h e   f u l l   p r o p e l l a n t   t a n k ,  
ana lyses  were performed  using several combinations of M l ,  M2, and M3 i n  
order t o  s t u d y   t h e   s i g n i f i c a n c e   o f   e a c h   t y p e  of series term i n  such  problems. 

The ana lyses  were performed for t h e   t h r e e  lowest f requencies  a t  n = 6,  
m = 1, 2,  and 3 ;  f r e q u e n c y   r e s u l t s  are presented  as ra t ios  t o  the  corresponding 
converged   va lues   in  table 11. T h e s e   r e s u l t s  show t h a t   w i t h  M1 = 5, converged 
f requencies  are o b t a i n e d   i r r e s p e c t i v e   o f   t h e   v a l u e s   o f  M2 and M3. ( A s  
before, M l ,  M2, and M3 are t h e  number of use r - se l ec t ed   pos i t i ve ,   nega t ive ,  
and zero Am where t h e   p o s i t i v e  Am are given  by  equation (73) and  the  nega- 
t ive  Am by  equation (64).) Hence, o n l y   t h e   p o s i t i v e  set  o f  Am need  be 
selected, a l though   add i t ion  of unnecessary terms d i d   n o t   d e t e r i o r a t e   t h e  
r e s u l t s .  Though n o t  shown i n  table 11, th i s   conc lus ion   has   gene ra l ly   been   t rue  
for a l l  n > 0 (nonaxisymmetric  modes);  however,  for n = 0 (axisymmetric 
modes) , Am = 0 should be r e t a i n e d  (i. e. ,  M3 = 1) . 

I n   f i g u r e  9,  t h e  series convergence a t  n = 6 i s  f u r t h e r  examined f o r  
i nc reas ing   va lues  of M1 with M 2  = M 3  = 0. I t  is  clear from t h e   f i g u r e   t h a t  
the  convergence  of   the series is very  rapid.   Consequently,  it is  concluded   tha t  
a l though  the  Am are se l ec t ed   on   t he  basis o f   h y d r o e l a s t i c   v i b r a t i o n s   i n   c y l i n -  
d r ica l  t anks ,   t he  same s e l e c t i o n  may be sa fe ly   ex tended   t o   o the r   geomet r i e s .  

Note t h a t  €or nonaxisymmetric  modes,  the lower dome has   negl ig ib le   mot ion;  
h e n c e   t h e   v a l i d i t y  of t h e   p r e s e n t   a n a l y s i s  €or such a dome undergoing  nonaxi- 
symmetric motion i s  no t   con f i rmed   by   t he   p rope l l an t   t ank   r e su l t s .  To confirm 
t h e   v a l i d i t y   o f   t h e   p r e s e n t   a n a l y s i s   f o r   s u c h  a dome, a p a r t i a l l y   f i l l e d   e l a s t i c  
hemisphere i s  considered. 

Flexible  Hemisphere 

The first two free  edge modes of a p a r t i a l l y   w a t e r - f i l l e d  aluminum hemi- 
sphere of r a d i u s  a having t w o  c i r c u m f e r e n t i a l  waves (n = 2 )  are shown i n   f i g -  
u re  1 0  f o r   t h e   f u l l   s p e c t r u m   o f   f i l l   c o n d i t i o n s ,  0 s h/a 5 1. Frequencies  and 
mode shapes   p red ic t ed   u s ing   t he   p re sen t   ana lys i s  are  compared with NASTRAN 
r e s u l t s .   F o r   t h i s   c o m p a r i s o n ,   t h e   p r e s s u r e   l o a d i n g   o n   t h e   s h e l l  w a l l ,  generated 
by NASTRAN, w a s  a p p l i e d   t o   t h e   s t r u c t u r a l   p r o g r a m   ( r e f s .  8 t o  10) used  by  the 
present  analysis.   Thus,   any  discrepancy  between  the t w o  r e s u l t s   c a n  be a t t r i -  
buted  only t o  d i f f e rences   be tween   t he   l i qu id   f i n i t e - e l emen t   ana lys i s  employed 
i n  NASTRAN and  the   p ressure  series a n a l y s i s   p r o p o s e d   h e r e i n .   S i n c e   r e s u l t s   f o r  
t h e   p r o p e l l a n t   t a n k ,   p r e v i o u s l y   d i s c u s s e d ,   i n d i c a t e d   t h a t   o n l y   p o s i t i v e   v a l u e s  
of Am s e l ec t ed   on   t he  basis of   equat ion ( 7 3 )  need be considered,   only series 
terms corresponding t o  these   va lues  w e r e  used   for   the   hemisphere .  The conver- 
gence of t h e  series expansion is  i n d i c a t e d   i n   f i g u r e  11. A s  i n   t h e  case o f   t h e  
p r o p e l l a n t   t a n k ,  few terms need be r e t a i n e d .  

I n   f i g u r e  1 0  the   converged   so lu t ions  of the   p re sen t   ana lys i s   fo r   f r equency  
and mode shape   gene ra l ly   co r re l a t e   ve ry  w e l l  with  converged NASTRAN-generated 
so lu t ions .   Th i s   example   fu r the r   i nd ica t e s   t ha t   t he   u se  of a series conta in ing  
products   of   modif ied Bessel €unct ions   and   t r igonometr ic   €unct ions   idea l ly  
applicable t o  l i q u i d s   i n   c i r c u l a r   c y l i n d r i c a l   t a n k s   c a n  be superimposed t o  
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solve  other  geometries  with  adequate  accuracy.  Discrepancies  between  the 
two  solutions  in  the  second  mode at low liquid  height  probably  are  due  to  the 

. scarcity of liquid  finite  elements  in  the  NASTRAN  model  near  the  bottom of the 
tank. 

CONCLUDING REMARKS 

An analysis is presented of hydroelastic  vibrations  of  elastic  tanks  par- 
tially  filled  with  incompressible  nonviscous  liquid  in the  presence of gravity. 
A  complementary  energy  principle  suitable  for  handling  the  liquid is derived, 
and  the  liquid  is  analyzed  by  using  a  series  representation of the  oscillatory 
pressure.  By  selecting  each  term of the  series  to  satisfy  the  liquid  governing 
equation  (Laplace's  equation), the energy  principle  reduces  to an integral 
equation on the  wetted  portion  of  the  tank  wall. This integral  equation 
represents an approximate  statement of the  liquid/elastic-tank  compatibility 
at  the  wetted  tank  wall  and  may be solved  numerically,  without  discretization 
of  the  liquid  volume,  to  yield  the  pressure  loading on the  wall as a  function 
of  wall  motion. 

This  approach  permits  the  wall-motion-dependent  liquid  pressure  loading  to 
be  readily  incorporated  into  existing  shell  analysis  computer  programs.  This 
procedure  was  followed  to  produce  a  modified  shell-of-revolution  program  €or 
hydroelastic  vibrations. In the  modified  program  presented  herein,  the  pressure 
series  terms  (which  must  satisfy  the  governing  liquid  equation)  were  selected on 
the  basis of a  circular  cylindrical  tank  geometry;  that is, each  term is a  pro- 
duct  of  a  modified  (or  unmodified)  Bessel  function  and  a  trigonometric  (or 
hyperbolic)  function. The energy  principle  then  allows  solution of problems 
with  geometries  other  than  cylindrical  by  superposition  of  these  terms.  Appli- 
cation of the  modified  program  to  the  gravity  sloshing or hydroelastic  vibra- 
tions  of  incompressible  liquids  in  tanks of various  geometries  provides  the 
following  conclusions: 

1. Since  cylindrical  functions  are  used  as  series  terms,  exact  solutions 
are  obtained f o r  cylindrical  tanks. 

2. Sloshing  frequencies  €or  rigid  hemispherical  tanks  correlated  very  well 
with  published  frequencies;  and  hydroelastic  vibrations  in  an  elastic  propellant 
tank  and  in  an  elastic  hemisphere  also  agreed  well  with  test  and  finite-element 
(NASTRAN)  results. Thus, the  procedure  can  be  applied  to  a  wide  variety  of  tank 
geometries. 

3 .  Accurate  results  require  retaining  only  a  few  terms in the  series 
expansion. 
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4. Selection of the  series  terms is straightforward  and is readily  incor- 
porated as an  automatic  feature of the  modified  program. 

In addition, it is  found  that  hydrostatic  pressure  from  the  liquid  weight  can 
cause  significant  stiffening of the  tank  wall  and  must  therefore  be  accounted 
for,  especially  in  full-scale  fuel  tanks on large  space  vehicles. 

Langley  Research  Center 
National  Aeronautics  and  Space  Administration 
Hampton, VA 23665 
October 30, 1979 
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APPENDIX A 

LIQUID COMPLEMENTARY  ENERGY  PRINCIPLE 

The purpose of this  appendix is to  formally  state  and  confirm  the  validity 
of the  liquid  complementary  variational  principle  used in the  analysis  presented 
in  this  paper. This  principle is analogous  to  such  principles  in  structures. 
The liquid  pressures  (or  in  structures,  the  stresses)  are  varied  within  a  class 
of  admissible  pressures (or stresses);  the  admissible  variations must satisfy 
Euler's  equations  (or  the  equations of motion)  for  perturbed  motions  about  an 
initial  state.  When  the  variations  are  carried  out,  the  complementary  principle 
yields  a  compatibility  equation  (or  equations)  and  boundary  conditions on veloc- 
ities  (or  displacements). 

This  appendix  proceeds  by  first  stating  the  principle,  then  establishing 
the  admissible  class of variations,  deriving  the  appropriate  variational  comple- 
mentary  energies,  and  finally  proving  the  principle. 

Statement  of  Principle 

Consider  a  nonviscous  incompressible  liquid which.undergoes small  irrota- 
tional  harmonic  oscillations,  with  the  complex  form  elwt,  about  an  initial 
pressurized  state  and  in  the  presence of a  gravitational  field.  The  deformation 
state  satisfies  the  compatibility  relation, 

020 = 0 

in Vo and 

on Sw where fi is  applied. This deformation  state  makes  the  variation of the 
total  complementary  energy,  nc,  vanish,  that is, 

611c = 0 (A3 1 

provided  that  the  variations  satisfy  Euler's  equation  and 

6p = 0 

on Sf. The  next  section  of  this  appendix  shows  that  constraining  the  varia- 
tions  to  satisfy  Euler's  equation  is  equivalent  to  their  satisfying  a  linearized 
form  of  Bernoulli's  equation  for  small  perturbations,  namely, 

6P = -Po6@ + P096U, (A4 1 
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Furthermore, 

= Tc C - uc19 - wc 

where Tcl  Uclgl and  Wc - the  complementary kinetic,  gravitational,  and 
external  work  energies of the  liquid, respectively - are  derived  in  a  subse- 
quent  section of this  appendix. 

Variation  of Euler's Equation  for  Small  Perturbed  Motions 

Euler's  equation  which  expresses  dynamic  equilibrium  for  a  nonviscous 
incompressible  liquid is (see, for  example,  ref. 17, p. 95) 

.. 
Pou + Po(; - div); + grad P - pog  grad X = 0 (-46) 

where  the  local  Eulerian  variables  are as follows: p o l  the  uniform  mass  density 
of the  liquid; U, the  velocity;  and P the  pressure.  Considering  a  small 
perturbation  about  an  initial  pressurized state,  one  can  write 

- 

x = x. + ux J 
In  equations ( A 7 ) ,  subscript o refers  to  the  initial  state  and  it  is  assumed 
that  the  liquid  is  initially at rest.  Substituting  equations ( A 7 )  into  equa- 
tion ( A 6 )  and  neglecting  nonlinear  terms  because  the  perturbations  are  assumed 
small  yield 

pou + grad  p - pog grad  ux + (grad  Po - pog grad xo) = 0 
.. 

( A 8  1 

The  term  in parentheses  vanishes  since it represents  equilibrium in  the  initial 
state  and  equation ( A 8 )  becomes 

- .. 
pou + grad p - pog  grad  ux = 0 ( A 9  1 
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By i n t r o d u c i n g   t h e   v e l o c i t y   g r a d i e n t   f o r   i r r o t a t i o n a l   f l o w ,  as given by equa- 
t i o n  (5 )  of   the main t e x t ,   i n t o   e q u a t i o n  (A9) , 

po grad Cp + grad p - pog grad uX = 0 

T h i s  equation may be   i n t eg ra t ed   spa t i a l ly   t o   p roduce  a l i n e a r i z e d  form  of 
Bernoul l i ’s   equat ion  for   per turbed  l iquid  motion,   namely,  

where the  constant  of i n t e g r a t i o n  may be   sa fe ly   incorpora ted   in to  Cp as d i s -  
cussed  in   reference 1, page 15 and  elsewhere. The v a r i a t i o n  of equat ion (A101 
may  now be  taken  to   yield  equat ion (A4). 

Var ia t iona l  Complementary Forms of   Kine t ic ,   Gravi ta t iona l ,  

and  External  Energies 

-_ Complementary k ine t ic   energy . -  The well-known  complementary k ine t ic   energy  
i s  g iven   as  

where the  i n t e g r a t i o n  may be sa fe ly   ca r r i ed   ou t   ove r   t he  undeformed  volume Vo 
s ince   the  l i q u i d  is assumed incompressible.  

Subs t i t u t ing   equa t ion  (5 )  i n t o  (All) y i e l d s  

vo 
po grad @ - grad @ dVo 

Taking   the   var ia t ion  of bo th   s ides  of equat ion ( A 1 2 )  r e s u l t s  in 

6% = Jvo Po grad @ - grad 6Cp dVo 
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Green's  theorem  then  provides 

where  represents  an  outward  unit  vector  normal to the  undeformed  liquid 
surface So. 

Complementary  gravitational  energy.-  The  variation of the  complementary 
potential  energy  is  found  by  considering  the  perturbed  state of the  liquid  and 
varying  the  gravitational  body  forces  which  are  given  by 

- 
F = pog grad  x 

- 
Taking  the  variation of F and  using  equation ( A 7 )  gives 

Hence  the  variation of complementary  gravitational  energy is 

6; 
dVo = Jvo 

pog  grad 6ux - u dVo 

Substituting  equation  (5)  into  equation  (A15)  yields 

Application of Green's theorem  to  equation  (A16)  gives 
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Some p r e v i o u s   a u t h o r s   ( e . g . ,   r e f s .  18 and  19)  have  used  the Tong hypothesis ,  
which s ta tes  t h a t  

5 -  

ux zz nx(u  - N) = - - 
ju a N  
nx a @  

where n, is  the   cos ine   o f   the   angle   be tween  the  local surface  normal fi and 
the  x-axis.  Under t h i s   h y p o t h e s i s ,   t h e   s u r f a c e   i n t e g r a l  of equat ion (A17) 
becomes 

Subs t i t u t ing   equa t ion  (A19) i n t o   e q u a t i o n  (A17) g i v e s  

Thus equat ion (A20) e s t a b l i s h e s   t h e   g r a v i t a t i o n a l   e n e r g y   v a r i a t i o n   f o r  a per-  
t u r b i n g   o s c i l l a t i o n   a b o u t   a n   i n i t i a l  s t a t e  of an  incompressible   l iquid.  

" Complementary e x t e r n a l  work . -  The v a r i a t i o n  of the   complementary  external  
work i s  

6wc = - S SO w b p  dSo 

w h e r e  w i s  the   per turbed   d i sp lacement  a t  t h e   l i q u i d   s u r f a c e   i n   t h e  N 
d i r e c t i o n .   S u b s t i t u t i n g   f o r  6p from equat ion ( A 4 ) ,  one  has 

?" 

6wc = -Po w(-jw 6@ + g 6ux)dSo 

[Jse of t h e  Tong hypothesis  (eq. ( A 1 8 1  1 y i e l d s  

6Wc = jwp, Is, w E@ + 6 (g)l dSo 
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Proof of t h e   V a r i a t i o n a l   P r i n c i p l e  (Eq. ( A 3 ) )  

S u b s t i t u t i n g   e q u a t i o n s  ( A 1 4 )  , ( A 2 0 )  , and ( A 2 3 )  i n t o   e q u a t i o n  ( A 3 )  r e s u l t s  
i n  

0 = 6r[, = [po V2$ ( - j w  6$ + g dux) dVo 
J w  vo 1 

Use of   equat ion ( A 4 )  i n   t h e  volume in tegrand  of equat ion ( A 2 4 )  g i v e s  

Since  equat ion ( A 2 5 )  mus t   be   va l id   for  a l l  v a r i a t i o n s ,  

= 0 

i n  Vo and 

on Sw and 

on Sf which  from  equation ( A 4 )  i s  s a t i s f i e d  by t h e   c o n s t r a i n t  bp = 0 on S f .  
Hence, t h e   p r i n c i p l e  i s  v e r i f i e d .  
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PROOF OF SYMMETRY OF MATRICES  A, il, A 2 ,  AND A3 
A A 

To prove  the  symmetry of A as defined in equation (32), it  suffices  to 
show  that 

Inasmuch  as q,, for 1 = m = M vanishes on the  free  surface (X = O), the 
integration of equation (Bl)  may  be  carried out over  the  entire  surface, So. 
Green's  second  formula  then  gives 

< <  

But  equation ( B 2 )  is valid  as  a  consequence of equation (11); hence  the  proof  is 
complete. 

Similar  proofs  can be worked  out  for A1, A2, and A3. 
A A A 
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NASTRAN  MODELS OF PROPULSION  TANK  AND  LIQUID 

Finite-element  frequencies  and  mode  shapes  used  for  comparison  with  results 
of  the  analysis  presented in this  paper  were  obtained  using  mathematical  models 
described  in  this  appendix.  These  models  were  developed  within  the  NASTRAN 
hydroelastic  capability  (ref. 4) and  modified  according  to  references  2  and 3 to 
permit  a  symmetric  fluid  matrix  formulation  and  thereby  simplify  computational 
procedures. The  analysis is limited  to  incompressible  fluids,  and  computational 
accuracy  and  efficiency  are  significantly  increased  by  introducing a trigono- 
metric  series  representation of circumferentially  distributed  displacements. 

For the  present purposes, the  modified  NASTRAN  analysis  was  used  only  for 
the case of a  free  liquid  surface,  with  gravity  effects  neglected.  The  analysis 
is valid  also  for  the  more  general  situation of a  pressurized  liquid  level  with 
gravity  effects  included. 

Essentials of Modified  NASTRAN  Analysis  for This Study 

The theoretical  development in reference 2  is  based on the  complementary 
energy  principle  applied  to  systems of discrete  variables. The complementary 
kinetic  energy of the  liquid  is  the  quadratic  function 

written  in  terms  of  generalized  impulsive  pressures  which  are  based  on  the 
pressure  impulse  definition 

or 

A 

P = P  

Since  the  liquid  is  assumed  incompressible,  there is no strain energy.  The 
quantity Lij, an  element of the  symmetric  inverse  mass  matrix  (termed  inertance 
matrix  in  ref.  2), is  defined as 
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The  complementary  virtual  work  for  the  discretized  system is expressed  by 

where  uc is a  discrete  displacement  of  the  liquid  bounding  surface  and Aik 
is  the  corresponding  elemental  generalized  area as defined in reference 2. 

Equations (Cl) to (C4)  are  basic  to  the  derivation of the  Euler-Lagrange 
equations  of  motion  of  the  liquid  in  reference 2. For  the  incompressible  liquid, 
these  equations  are  shown  therein  to  reduce  to  the  partitioned  matrix  equation, 

where s1 ubscripts f , s, and i 

-p: T 0 

denote  free  liquid surface,  liquid-structural 
interface  (or  wetted surface), and  liquid  interior, respectively. As a conse- 
quence of incompressibility, pi may  be  related  to 

pf,ps] so that 

in  terms  of  the  reduced  inertance  matrix 

Dynamic  coupling  of  the  liquid  with  the  tank  structure is accomplished by 
introducing  pressures  determined  from  equation ( C 6 )  into a standard set of 
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structural  dynamic  equations,  which  may  be  written in the  corresponding  par- 
titioned  matrix form 

Since  the  entire  surface is constrained,  that is, 

(Pf) = O 

equation  (C6) is solved to give 

and 

Substitution of equation (C10) into  equation  (C8)  results  in 

which  is  the  equation of free  vibration of a  liquid-loaded tank, with  the  liquid 
loading  given  by  the  liquid  mass  matrix 

For  simple  harmonic  motion,  equation  (C12)  reduces  to  the  familiar  eigenvalue 
equation 

which  gives  the  frequencies  and  mode  shapes of a  liquid-loaded  tank  in  free 
vibration. 
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Computer  Program  Implementation 

The NASTRAN  hydroelastic  computer  program  of  reference 4 is utilized  and 
modified  to  implement  the  analysis of reference 2. As  detailed  in  reference 3, 
the  unsymmetric  matrix  formulation in the  complex  eigenvalue  module  (Rigid 
Format 7) is altered  to  compute  the  symmetric  liquid  mass  matrix of equa- 
tion  (C13). The  combination of this  matrix  with  the  tank  structural  mass  and 
stiffness  matrices, as indicated in equation  (C14), is programmed in the  normal 
vibration  mode  module  (Rigid  Format 3 ) .  The program  modifications  were  made in 
accordance  with  the  NASTRAN  Direct  Matrix  Abstration  Program (DMAP) for  altering 
rigid  formats - 

Harmonic  representations" The liquid  geometry is assumed  to  be  axisym- 
metric, so that  pressure  distributions  can  be  represented  by  a  trigonometric 
series , such as (e  .g. , in ref. 2) 

in  terms  of  circumferential  harmonics (n = 0 , 1 , 2 , .  . .) , where  pk  and pi are 
generalized  pressure  amplitudes of symmetric  and  antisymmetric  distributions, 
respectively.  The  condition of uniform  pressure  is  given  only  for  n = 0 in 
equation  (C15).  Harmonic  pressure  distributions  such  as  equation  (C15)  are  pro- 
grammed  in  reference 4 and  unchanged  in  reference 2. 

A significant  modification  introduced  in  reference 2 is  the  trigonometric 
series  representation  of  structural  grid  displacements  consistent  with  equa- 
tion  (C15).  Relationships  between  discrete-displacement  and  harmonic- 
displacement  amplitudes  are  listed  therein-  for  cylindrical  and  spherical  coordi- 
nate  systems. All rigid-body  motions  are  included  in  these  relations. The 
transformations  from  discrete  to  harmonic  displacements  (in  ref. 2) are  made  by 
including  multipoint  constraints  (MPC) of the  form 

in  the  input  data,  where (u9> is the discrete  grid  displacement  vector, 
is the  harmonic-displacement  vector,  and pgh] is  the MPC transformation  matrix. 
Elements  of p9h] are  trigonometric  functions  evaluated at discrete-variable 
grid  locations  of  the  tank  structure.  Harmonic  displacements  are  oriented  to  a 
set of fictitious  grid  points  distributed  along  the  tank  meridian  and  distinct 
from  physical  grid  points.  At  each  meridian  in  the  physical  grid  system,  physi- 
cal  grid  points  around  the  circumference  are  related  to  the  so-called  harmonic 
grid  points  by  equation  (C16). 

G h >  

This transformation  not  only  makes  displacement  and  pressure  representa- 
tions  consistent  but  can  also  result  in  large  reductions in the  number of 
degrees of freedom  €or  hydroelastic  dynamic  analysis.  For  all  six  degrees  of 
freedom at each  physical  grid  point,  the  maximum  number of degrees of freedom  in 
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the  physical  system is 6 X J X K, where  J  denotes  the  number of meridians  and 
K the  number  of  circumferential  grid  points at each  meridian. This triple 
product is the  dimension of (ug>  (i.e. , number of rows)  in  equation  (C16) . 
If  N  denotes  the  number of harmonics  (or  circumferential  wave  numbers 
n = 0,1,2,.-.) included  in  the  analysis,  the  dimension of (Uh) is 6 X N, and 
since N is usually  much  smaller  than  either  J or K, equation  (C16)  can 
result in a radical  reduction in problem  size,  namely  N/JK. Still further 
reduction  is  possible  by  omitting  generalized  rotation  and  tangential  degrees 
of  freedom  in  a  Guyan  reduction,  with  harmonic  grid  points  referenced  in 
NASTRAN  OMIT  instructions. 

Computations  of  liquid pressures and  masses~.-  Liquid  finite  elements in 
NASTRAN  are  rectangular  and  triangular  solids of revolution  interconnected by 
concentric  rings  comprising  the  liquid  grid  system.  The  liquid  elements 
(CFLUIDi, i=2,3,4) and  their  ring  boundaries  (RINGFL  specifications)  are  analo- 
gous  to  structural  finite  elements  and  grid points, respectively.  Liquid  incom- 
pressibility  is  represented  by  removal  of  internal  pressure  degrees of freedom 
((pi) in eq.  (C5))  by means  of  a  special  OMIT  instruction  in  which  the  con- 
centric  rings  are  referenced  by  a  7-digit  integer  numbering  system.  The  surface 
pressure  constraints  in  equation  (C9)  are  represented  by  special  single-point 
constraints  (SPC),  also  referencing  the  7-digit  ring  identification.  The  wetted 
tank  surface is represented  by  GRIDB  instructions  which  relate  structural  grid 
points  (GRID)  there  with  liquid-element  boundaries.  Since  liquid  pressures 
calculated  by  equation  (C10)  depend  primarily on outward  normal  (or  radial) 
accelerations,  rotations  and  tangential  displacements  are  constrained  (by  SPC 
instructions), and  MPC  relations  between  physical  and  harmonic  degrees of free- 
dom  (eq.  (C16))  are  reduced  by a factor of 6. 

The  symmetric  fluid  mass  matrix  given  by  equation  (C13) is calculated  by 
modifying  the  program  steps of Rigid  Format  7 so that  the  complex  eigenvalue 
routine  (CEAD)  is  not  used.  These  modifications  are  specified  in  reference  3 by 
DMAP  ALTER  instructions  for  matrix  printout,  partitioning,  and  matrix  inversion 
to  form  the  liquid  inertance,  surface  area,  free  surface  accelerations (or  dis- 
placements),  pressure,  and  mass  matrices of equations  (ClO),  (Cll),  and  (C13). 
Along  with  these  types  of  instructions  are  direct  matrix  input  (DMI)  specifica- 
tions  in  the  input  data  in  the  form  of  partitioning  vectors  to  identify  pressure 
and  displacement  degrees  of  freedom.  The  OUTPUT3  DMAP  instruction  causes  the 
liquid  pressure  and  mass  matrices  to  be  punched on cards  in  DM1  format. 

Vibration  modes of liquid-loaded  tank.-  Liquid  pressures  and  masses,  plus 
free  surface  motions  (eq.  (Cll)), as desired,  output in  Rigid  Format  7  are 
input as data  in  Rigid  Format  3  to  obtain  normal  free  vibration  modes.  Liquid- 
structural  coupling  is  directed  by  DMAP  ALTER  instructions  as  shown  in  refer- 
ence 3 prior  to  execution  of  the  real  eigenvalue  routine  (READ).  The  tank 
structure  is  modeled  by  flat  plate  elements  (CQUAD2)  interconnected  by  grid 
points.  Harmonic  grid  points  are  included,  as  in  the  liquid model, and  the  MPC 
relations  include  harmonic  representations  of  all  six  degrees  of  freedom  (three 
displacements  and  three  rotations) at each  physical  grid  point.  Rotations  and 
tangential  displacements,  constrained  by  SPC  instructions  in  Rigid  Format 7, are 
removed  by  OMIT  instructions  in  Rigid  Format 3. 
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NASTRAN  Models 

NASTRAN  finite-element  models of the  liquid-loaded  elastic  propellant  tank 
of  figure  2  are  illustrated in figures 12 and 13. The  model  in  figure 12 is 
similar to that  used in references 2 and  3  except  for  the  liquid  element  bound- 
aries in figure  12(a). A  finer  grid  model is shown  in  figure  13.  Free  surface 
motions,  given  by  equation (Cll), were  not  sought.  Physical  and  harmonic  grid 
points  in  the  upper  and  lower  domes  and  in  the  conical  section  are  oriented  in 
spherical  coordinates,  and  grids in the  cylindrical  section  are  in  cylindrical 
coordinates.  The  closer  spacing  between  concentric  rings  near  the  tank  wall is 
intended  to  simulate  more  accurately  large  pressure  gradients  there,  particu- 
larly  for  higher  circumferential  wave  numbers  (or  harmonics).  The  meridional 
liquid  grid  locations  match  the  meridional  structural  grid  locations  along  the 
wetted  surface. 

Liquid  models.- The coarse  liquid  grid  system  in  figure  12(a)  consists of 
15  meridional  stations  with 4 liquid-element  boundaries  at  each  meridian  except 
3  near  the  tank  bottom  which  have  fewer  boundaries.  The  model  has a total  of 
1386  possible  pressure  and  displacement  degrees of freedom.  The  free  surface 
pressures  are  constrained  by  16  liquid  SPC  statements,  and  all  but  the  radial 
displacements  are  constrained  by 987 structural  SPC's.  Incompressibility 
accounts  for  another 132  pressure  degrees of freedom  being  removed  by  liquid 
OMIT  statements.  Harmonic  representations  of  radial  displacements  through  MPC 
relations  account  for  another  135  degrees of freedom. 

There  are 116  degrees of freedom  remaining, of which  56  are  pressures  and 
60 are  displacements. Four  harmonics (N = 4) are  included  in  this  mode, 
n = 0 to 3, so that  (J-l)N = 56 and JN = 60, where  J  in  this  case is 15. 
These  integer  products  determine  the  matrix  sizes  and  partitions  for  liquid 
pressures  and  masses  on  the  DM1  specifications  for  the  vector P9 in  the  DMAP 
ALTERS  of  reference  3. The  pressure  matrix  (PDU2)  in  reference  3  computed  for 
this  model is rectangular  with  56  rows  and 60 columns, and  the  symmetric  liquid 
mass  matrix  (MFLD)  is 60 X 60. 

The fine  liquid  grid  system  in  figure  13(a)  consists  of  28  meridional  sta- 
tions  with 6 liquid-element  boundaries at each  meridian  except  2  meridians 
closest to  the  tank bottom,  where 4 and  5  rings  bound  5  liquid  elements. The 
maximum  number of degrees of freedom  for  this  model  is  3537.  There  are  2818  SPC 
statements, of which 6 are  fluid SPC's  constraining  free  surface  pressures. 
Liquid  OMIT  statements  account  for  132  degrees  of  freedom  and  MPC  relations  for 
another  532.  In  the  remaining  55  degrees of freedom, there  are  27  pressures  and 
28  displacements.  With one harmonic at  a  time (N = 1) in  this  model,  the  number 
of displacements is the  same  as  the  number of meridians (J = 28, N = l), and 
the  number of pressures is one  less. Thus,  the liquid  pressure  matrix is 
27 X 28 and  the  liquid  mass  matrix 28 X 28. 

For  partially  filled  tanks,  the  number of pressures is reduced,  but  not  the 
number  of  displacements. The reduced  number of pressures is obtained  by  sub- 
tracting  more  than one meridian  from  J  for  the  full  tank;  that is, J-1 
becomes J-2, 5-3,  J-5, and so forth  for  various  reduced  levels of the  liquid. 
Pressures  above  the  liquid  surface  are  constrained  by  liquid  SPC  statements. 
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Structural  models.- The coarse  structural  model of figure 12(b) has 9 phys- 
ical  grid  points  around  half  the  circumference at each  meridian,  with  a 22.5O 
interval  between  circumferential  grid  points.  The  top  and  bottom  domes  are 
modeled  by  triangular plate  elements  (CTRIA2)  which  connect  the  apex  grid  points 
to  the  grid  points at the  full  tank  level  and at the  lowest meridian. The maxi- 
mum  number of degrees of freedom is 1182, including 60 harmonic  displacements. 
Constraints  (SPC)  are  applied  to 72 degrees of freedom, of which 48 satisfy 
boundary  conditions  €or  motions  associated with  n = 0 that  are  symmetric  with 
respect to  the  pitch  plane of symmetry. The  remaining  24  constrained  degrees of 
freedom  simulate  the  tank  mounting  in  the  test  program  (appendix D ) ,  that is, 
the  clamped  ring  modeled  by  beam  elements  (CBAR), at the base of the  cylindrical 
section.  Application of the  Guyan  reduction  accounts  for 240 omitted  degrees  of 
freedom  (on  OMIT  statements), of which  28  are  associated  with  harmonic  n = 0 
and  the  rest  with  harmonics  n = 1, 2, and  3. There are 810 MPC relations  to 
implement  the  harmonic  representation  of  all 6 physical  degrees of freedom at 
each  grid  point.  The  remaining  degrees  of  freedom  number 60. Although  har- 
monics  n = 1, 2, and  3  are  included  in  the  calculations,  vibration  modes  of 
tank  and  fluid  are reported  only  for  variations  in  tank  fullness  associated  with 
the  axisymmetric  mode  n = 0, for  which  the  coarse  liquid  and  structural  grids 
illustrated  in  figure 12 are  considered  adequate. 

The fine  structural  model  of  figure  13(b)  has 19 physical  grid  points 
around  a  quarter of the  circumference  at  each of 30  meridians,  with  a 5O inter- 
val  between  circumferential  grid  points.  Two of these  meridians  lie  above  the 
full  tank  level,  and  apex  grid  points  are  connected  to  the  highest  and  lowest 
meridians  by  triangular  plate  elements.  There  are  a  total  of  3612  physical  and 
harmonic  degrees of freedom  which  reduce  to  28  harmonic  degrees  of  freedom. 
Constraints  specifying  symmetric  boundary  conditions at the  apexes  plus  clamped 
ring  constraints  total  12. The  Guyan  reduction is applied  to  the  apexes,  con- 
sistent  with  symmetric  boundary  conditions,  for  all  harmonic  degrees  of  freedom 
at the  two  meridians  above  the  full  tank  level  and  for  all  but  the  harmonic 
radial  degree  of  freedom  over  the  wetted  tank  surface.  The  number  of  omitted 
degrees of freedom  totals  152.  Harmonic  representation  accounts  €or  3420  degrees 
of  freedom. The  fine  model was used  to  calculate  liquid-loaded  vibration  modes 
for  nonaxisymmetric  modes  ranging  from  n = 2 to 16  for  both  three-quarters 
full  and  full  tanks. 

Hydrostatic  pressure  loading.-  The  effect of hydrostatic  pressure  was 
introduced  into  the  NASTRAN  finite-element  model  by  determining  an  additional 
stiffness  matrix [AK] equivalent to  the  matrix product -[T]-'[r] in  equa- 
tion (56). Static  pressures at a  given  fluid  depth  were  calculated  by  the  pro- 
duct of the  depth  by  the  unit  weight of liquid  and  were  uniformly  distributed 
over  quadrilateral  plate  elements  forming  the  tank  boundary at that  depth. 
These  pressure  loads  were  computed  for  every  row of plate  elements  from  the 
liquid  level  to  the  tank  bottom  and  were  input (on  PLOAD2 statements)  to  the 
structural  model  for  n = 0. This model was then  run  in  the  NASTRAN  differ- 
ential  stiffness  module  (Rigid  Format 4 )  which was instructed  by DMAP ALTER  to 
output [AK] onto  magnetic  tape. This  additional  stiffness  matrix  was  then 
read  (also  by DMAP ALTER)  into  Rigid  Format 3 and  added  to  the  structural 
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stiffness  matrix pss]. The  eigenvalue  equation ((214) was  then  solved  in  the 
usual  manner  to  obtain  the  natural  frequencies  and  mode  shapes of the  liquid- 
loaded  tank  under  hydrostatic  pressure.  The  effect  of  this  hydrostatic  pres- 
sure  loading  was  determined  €or  full  and  three-quarters  full  tanks  for  nonaxi- 
symmetric  modes  using  the  fine-grid  model of figure  13. 
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PROPELLANT TANK TESTS 

This  appendix  contains a b r i e f   desc r ip t ion   o f   t he   p rope l l an t   t ank   r e fe r r ed  
t o  i n  t he  main t e x t  and the  equipment  and  procedure  used  to  obtain  the  data  Pre- 
s en ted   t he re in .  

P rope l l an t  Tank 

The propel lan t   t ank   depic ted  i n  f i g u r e  2 i s  a 1/8-scale  model of  an  early 
vers ion of the   space   shut t le   l iqu id-oxygen  tank .  The tank  is made up of  four 
aluminum s e c t i o n s :  an upper dome of   near ly   spherical   shape,  a c o n i c a l   s e c t i o n ,  
a c y l i n d r i c a l   s e c t i o n ,  and  a  lower dome o f   nea r ly   e l l i p so ida l   shape .  The over- 
a l l   d i a m e t e r  and height   of   the  tank  are  approximately 1 and 2 meters ,   respec-  
t i v e l y .  The wal l   th icknesses   o f   the   var ious   sec t ions   a re   ind ica ted  i n  f i g u r e  2 .  
A f l a n g e   a t  t h e  junc ture  of the  lower dome and cy l ind r i ca l   s ec t ion   o f   t he   t ank  
is  clamped t o  a  heavy s t e e l   t e s t   f i x t u r e  shown i n  f i g u r e  2 .  

Nonaxisymmetric  Tests ( n  # 0 )  

Sinusoida l   exc i ta t ion   o f   the   t ank  was provided by a small   servocontrol led 
e lec t rodynamic   exc i te r   d r iv ing   normal   to   the   sur face   o f   the   cy l indr ica l   o r  
conical  section  of  the  tank  and, where app l i cab le ,  below t h e  l i q u i d   s u r f a c e .  
Maximum fo rce   capab i l i t y   o f   t he   exc i t e r  was 4 . 4  newtons. A fo rce  gage  used t o  
monitor  the  input  force was i n s t a l l e d  between  the  exci ter   and  tank  shel l .  A 
servocontrol  and o s c i l l a t o r  were  employed to   ma in ta in  a cons t an t   s inuso ida l  
e x c i t e r   f o r c e .  

The response   o f   the   she l l  was de t ec t ed  by a motorized  noncontact ing  dis-  
placement  transducer  which  traversed a c i r c u l a r   t r a c k   ( f i g .  2 ) .  The t rack  could 
be pos i t i oned   a t   any   des i r ed   s t a t ion   a long   t he   l eng th   o f   t he   t ank .  A coincident-  
quadrature   analyzer  w a s  used  to  measure t h e  quadra ture  component  of the d i s -  
placement (90° out   of   phase w i t h  t h e   i n p u t   f o r c e ) .  Resonance w a s  determined by 
manual ly   ad jus t ing   the   exc i te r   f requency   a t  a g iven   leve l   o f   input   force  u n t i l  a 
maximum quadrature  component w a s  ob ta ined .  The c i r cumfe ren t i a l  mode shape was 
then  recorded by input t ing   the   quadra ture  component  of the   d i sp lacement   in to  an 
X-y p l o t t e r   a s  t h e  t ransducer   t raversed  the  c i rcumference  of   the  tank.   Qual i -  
t a t i ve   l ong i tud ina l   va r i a t ion   o f   t he  mode shapes was obtained by observing  the 
L i s sa jous   pa t t e rn  on  an osc i l loscope   sc reen   as  a hand-held  veloci ty   t ransducer  
was  moved t o   s e v e r a l   a x i a l   s t a t i o n s   a l o n g   t h e   t a n k .   V i b r a t i o n  modes were mea- 
su red   fo r   l i qu id   (wa te r )   dep ths   o f  0 ,  1 . 2 7 ,  and 1.90 meters  corresponding nomi- 
n a l l y   t o  empty, t h r e e - q u a r t e r s   f u l l ,  and f u l l  condi t ions .  

Axisymmetric  Tests (n  = 0 )  

For  the  axisymmetric  vibration modes, a n a l y s e s   i n d i c a t e   ( f i g .   6 ( b ) )   t h a t  
the   l a rges t   v ibra t ion   ampl i tudes   occur   be low  the   l iqu id   l eve l   and  t h a t  a t  the  
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greater  liquid  depths,  the  vibration  amplitude of the  conical  and  cylindrical 
sections  are  of  magnitude  comparable  with  that on the  lower  dome. In the  labo- 
ratory,  however,  the  response  of  the  cylindrical and conical  tank  sections  in 
the  high-energy  axisymmetric  modes is completely  masked  by  the  large  response in 
the  neighboring  low-energy  nonaxisymmetric  modes. The problem is further  aggra- 
vated  for  this  particular  tank  by  the  high  modal  density of the  nonaxisymmetric 
shell  modes  in  the  same  frequency  range as the axisymmetric  modes.  Axisymmetric 
nodal  patterns  were  identifiable,  however, on the  lower  dome,  and  in  figure  6(a) 
the  resonant  frequencies of the  first  three  lower-dome  n = 0 modes  are  plotted 
as  a  function of the  liquid  depth.  Except  at  the  shallower  liquid  depths, an 
axisymmetric  dome  response  was  always  coupled  to  a  much  larger  nonaxisymmetric 
response  of  the  cylindrical  and  conical  sections;  thus,  most of the  data  points 
of  figure  6(a)  are  in  reality  the  resonant  frequencies of n # 0 shell  modes 
in  proximity  to  the  resonant  frequencies of the  n = 0 dome  modes. In some 
cases,  two  or  more  n = 0 dome  responses  having  the  same  nodal  pattern  were 
present  in  a  small  frequency  band.  If  the  response at one  frequency  was  appre- 
ciably  larger  than  the others, only  one  data  point  was  recorded. If  the 
response  of  two  closely  spaced  resonances  were  of  comparable  magnitude,  both 
frequencies  were  recorded. 

Many  of  the  axisymmetric  modes  did  not  exhibit  classical  characteristics  in 
that  where  one  segment  of  the  lower  dome  contained  only  one  circumferential node, 
another  segment  might  contain  two.  Such  cases  are  designated  in  figure 6(a) by 
the  superposition  of  the  appropriate  nodal  pattern  symbols. 

The  noncontacting  probe  and  track  assembly  used  for  the  nonaxisymmetric 
shell  modes  could  not  be  readily  adapted to measure  responses  on  the  lower  dome. 
The  modal  patterns  on  the  lower  dome  were  detected  either  by  touch or through 
the  use  of  a  movable  vacuum-attached  accelerometer  and  Lissajous  patterns. 
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TABLE I.- S L O S H I N G   F R E Q U E N C I E S   I N   A   R I G I D   H E M I S P H E R I C A L   T A N K  

* 

n 

0 
1 
2 
3 
4 
5 

t I 
. ~ ~ "_ . .. . .~ . " .~ - 

Frequency p a r a m e t e r ,  l/n = w2h/g 
." 

R e s u l t s   c o m p i l e d  i n  ref.  6 

F i n i t e  
e l e m e n t s  

3.96 
1.57 
"" 

"" 

"" 

"" 

Met hod 
re€.  

3.92 
1.68 
3.03 
4.34 
5.62 
6.88 

of 
6 

~ _ ~ _ _  

I n t e g r a l  
s o l u t i o n  
" - - - - . ". .= - 

3.65 
1.56 
"" 

"" 

"" 

"" 

Presen t  s o l u t i o n  
(M1 = M3 = 0 )  

." ~ 

M2 = 2 
-~ ~ ~ 

3.862 
1.620 
2.925 
4.295 
5.370 
6.445 

_ _ _ _ _ ~  . . . ~ 

M2 = 9 
~~ 

3.791 
1.594 
2.889 
4.349 
5.411 
6.473 

. "  . . 

TABLE 11.- E F F E C T S   O F   T H E   T H R E E   T Y P E S   O F   S E R I E S   T E R M S  

ON THE n = 6 PROPELLANT  TANK  FREQUENCIES 

bubscript  c refers t o  converged resu l t s1  

1 and subscripts 1, 
m = 1, 2, and 3. 

2,  and 3 re fer  to 1 

M2 = 10 
. -  

3 - 790 
1.592 
2.887 
4 * 359 
5 -414 
6.475 

. . ." 

M2 

0 
1 
5 
0 
5 

"li 1 1 11 1 

1.01 
7.37 
6.39 
5.12 
1.01 

1.09 
6.47 
5.93 
6.45 
1.09 
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Figure 1.- General  tank geometry  and coordinates. 
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Figure 2.- Experimental  apparatus  and  dimensions 

of propellant tank. 
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(a)  Natural  frequency . 
Figure 3.- Nonaxisymmetric  vibration  modes of empty  propellant tank. 
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n = 2  5 8 12 16 

(b) Analytical  meridional  mode  shapes. 

Figure 3 .- Concluded. 
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(a)  Natural frequency. 

Figure 4.- Nonaxisymmetric  vibration  modes  of 
three-quarters full propellant tank. 
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n =  2 5 8 12 

(b) Analytical  meridional  mode  shapes. 

Figure 4.- Concluded. 
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(a)  Natural  frequency. 

Figure 5.- Nonaxisymmetric  vibration  modes of full propellant tank. 
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(b) Analytical  meridional  mode  shapes. 

Figure 5.- Concluded. 
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F i g u r e  6.-  Axisymmetr ic   (n  = 0)  v i b r a t i o n  modes of p r o p e l l a n t   t a n k .  



w = 1130 HZ 346 244 225  205  187  163  157 14 2  130  115  103 89.4 

W = 896 Hz 255  184  160  14  9  14  3  129  117  89.5  84.9  81.2  78.3  73.4 
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(b) Analytical  meridional  mode  shapes  and  frequencies. 

Figure 6.- Concluded. 
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Figure 7.- E f f e c t   o f   h y d r o s t a t i c   p r e s s u r e   f o r   1 / 8 - s c a l e   l i q u i d - f i l l e d  
propel lant   tank  and for  fu l l - sca l e   equ iva len t .  m = 1. 
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Figure 8.- Normalized  axial  displacements  of  free  surface  (denoted by v) for  full  and 
three-quarters  full  propellant  tanks  in  first  three  meridional  modes  (m = 1,2,3). 
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Figure 9.-  Accuracy  and  convergence of p red ic t ed  
f r equenc ie s   o f   f i r s t   t h ree   mer id iona l  modes 
(m = 1,2,3) f o r   f u l l   p r o p e l l a n t   t a n k .  n = 6 ;  

M 2  = M 3  = 0 .  
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Figure 10.- Analytical  vibration  modes of water-filled  aluminum 
hemisphere. n = 2; radius-to-thickness  ratio = 100. 
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Figure 11.- Accuracy  and  convergence of p r e d i c t e d  
frequencies  of f i r s t   t h r e e   m e r i d i o n a l  modes 
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Figure  13.-   Finer g r id  NASTRAN models of a q u a r t e r  of propellant tank.  
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