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Abstract

The New Millennium Remote Agent (NMRA)
will be the �rst on-board AI system to con-
trol an actual spacecraft. The spacecraft do-
main raises a number of challenges for planning
and execution, ranging from extended agency
and long-term planning to dynamic recover-
ies and robust concurrent execution, all in the
presence of tight real-time deadlines, changing
goals, scarce resource constraints, and a wide
variety of possible failures. NMRA is one of the
�rst systems to integrate closed-loop planning
and execution of concurrent temporal plans. It
is also the �rst autonomous system that will be
able to achieve a sustained, multi-stage, multi-
year mission without communication or guid-
ance from earth.

1 Introduction

We are developing the �rst on-board AI system to con-
trol an actual spacecraft. The mission, Deep Space One
(DS-1), is the �rst in NASA's New Millennium Program
(NMP), an aggressive series of technology demonstra-
tions intended to push Space Exploration into the 21st
century. DS-1 will launch in mid-1998 and will navi-
gate and y by asteroids and comets, taking pictures and
sending back information to scientists on Earth. One key
technology to be demonstrated is spacecraft autonomy,
including on-board planning and plan execution. The
spacecraft will spend long periods without the possibil-
ity of communication with ground operations sta� and
will, in fact, plan how and when it will communicate
back to Earth. It must maintain its safety and achieve
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high-level goals, when possible, even in the presence of
hardware faults and other unexpected events.

This paper describes our approach to planning and
plan execution in the context of spacecraft autonomy.
Our approach is being implemented as part of the New
Millennium Remote Agent (NMRA) architecture [Pell et
al., 1997]. This architecture integrates traditional real-
time monitoring and control with constraint-based plan-
ning and scheduling [Muscettola, 1994], robust multi-
threaded execution [Gat, 1996], and model-based diag-
nosis and recon�guration [Williams & Nayak, 1996].

The paper is organized as follows. Section 2 discusses
the spacecraft domain and requirements which inuence
our design. Section 3 describes our approach to planning,
execution, and robustness, and illustrates the top-level
loop of our system. Section 4 addresses the issues in-
volved in generating plans to support robust execution,
and Section 5 shows how such plans are executed. We
then consider related work and conclude.

2 Domain and Requirements

The autonomous spacecraft domain presents a number
of challenges for planning and plan execution. Many de-
vices and systems must be controlled, leading to multiple
threads of complex activity. These concurrent processes
must be coordinated to control for negative interactions,
such as vibrations of the thruster system violating stabil-
ity requirements of the camera. Also, activities may have
precise real-time constraints, such as taking a picture of
an asteroid during a narrow window of observability.

Virtually all resources on spacecraft are limited and
carefully budgeted. The system must ensure that they
are allocated e�ectively to goal-achievement. Some re-
sources, like solar panel-generated power, are renewable
but limited. Others, such as total propellant, are �-
nite and must be budgeted across the entire mission.
The planner reasons about resource usage in generating
plans, but because of run-time uncertainty the resource
constraints must also be enforced as part of execution.

The planner and plan execution system must reason



about and interact with external agents and processes,
such as the on-board navigation system and the attitude
controller. These external agents can provide some infor-
mation at plan time and can achieve tasks and provide
more information at run-time but are never fully control-
lable or predictable. For example, the attitude controller
can provide estimates of turn durations at plan time,
but the completion of turns during execution is not con-
trollable and can only be observed. Plans must express
compatibilities among activities, and the plan execution
system must synchronize these activities at run-time.
In addition, planning and the information necessary

to generate plans are also limited resources. Because of
the limited on-board processing capabilities of the space-
craft, the planner must share the CPU with other critical
computation tasks such as the execution engine, the real-
time control loops and the fault detection, isolation and
recovery system. While the planner generates a plan,
the spacecraft must continue to operate. Moreover, the
plan often contains critical tasks whose execution can-
not be interrupted in order to install newly generated
plans. Thus inserting a planning activity means many
other activities must be suspended or postponed. Since
planning is expensive, plan failure is costly. Thus plan
execution must be robust in the face of a wide variety of
hardware faults and delays.

3 Approach

Our approach separates an extensive, deliberative plan-
ning phase from the reactive execution phase, executing
infrequently generated plans over extended time peri-
ods. How frequently and how far in advance the system
should plan is constrained by several factors, including
uncertainty about the results of execution. For example,
uncertainty about how much thrust has accumulated af-
ter a thrusting maneuver means the system can't reliably
plan how many thrusts will be needed to reach the tar-
get, thus reducing how far in advance it is productive to
plan such thrusting activities. While uncertainty moti-
vates frequent planning with short scheduling horizons,
the cost of planning motivates plans with long horizons.
In our approach the generation of the next plan is ex-

plicitly represented in the current plan as a task. By
considering the costs and constraints of planning, the
planner automatically optimizes future planning activi-
ties. When the executive reaches this task in the current
scheduling horizon, it asks the planner to generate a plan
for the next scheduling horizon while it continues to exe-
cute the activities remaining in the current plan. When
the executive reaches the end of the current horizon, the
plan for the next horizon will be ready and the executive
will then install it and continue execution seamlessly.
Ideally, we would like to have the planner represent

the spacecraft at the same level of detail as the execu-

tive. This approach is taken by [Bresina et al., 1996],
and by [Levinson, 1994]. The approach, when feasible,
has a number of bene�ts. First, it enables the planner
to simulate the detailed functioning of the executive un-
der various conditions of uncertainty, and to produce a
plan which has contingencies (branches) providing quick
responses for important execution outcomes. Second,
it enables the use of one language rather than two for
expressing action knowledge, which simpli�es knowledge
engineering and helps maintain consistency of interfaces.
Third, it enables the planner to monitor execution in
progress and project the likely course of actions, and
then provide plan re�nements which can be patched di-
rectly into the currently executing plan.

Unfortunately, in our domain this single representa-
tion approach is not practical because the complexity
of interactions at the detailed level of execution would
make planning combinatorially intractable. Thus, we
have found it necessary to make the planner operate on
a more abstract model of the domain. Examples of ab-
stractions are:

� hiding details of subsystem interactions controlled
by the executive

� merging a set of detailed component states into ab-
stract states

� not modeling certain subsystems

� using conservative resource and timing estimates

These simpli�cations have several consequences which
impact our design. One important consequence is that
the planner can no longer model or predict intermediate
execution states. Since the executive is managing mul-
tiple concurrent activities at a level of detail below the
planner's visibility, it is di�cult to provide a well-de�ned
initial state as input to the infrequent planning process.
Also, a newly generated plan may be invalidated by exe-
cution activities that occur during or even after planning
but prior to execution of the new plan, since the initial
conditions of that plan may no longer be consistent with
the state of the spacecraft.
We address the problem of generating initial states

for the next planning round di�erently depending on the
status of the currently-executing plan. Plans normally
include an activity to plan for the next horizon. At this
point, the executive sends to the planner the current
plan in its entirety, with annotations for the decisions
that were made so far in executing it. The current plan
serves as its own prediction of the future at the level
of abstraction required by the planner. Thus, all the
planner has to do is extend the plan to address the goals
of the next planning horizon and return the result to the
executive. The executive must then merge the extended
plan with its current representation of the existing plan.



The net result is that, from the executive's perspective,
executing multiple chained plans is virtually the same as
executing one long plan. This has the useful consequence
that it enables the executive to engage in activities which
span multiple planning horizons (such as a 3-month long
engine burn) without interrupting them.

In the event of plan failure, the executive knows how
to enter a stable state (called a standby mode) prior to
invoking the planner, from which it generates a descrip-
tion of the resulting state in the abstract language un-
derstood by the planner. Note that establishing standby
modes following plan failure is a costly activity, as it
causes us to interrupt the ongoing planned activities and
lose important opportunities. For example, a plan fail-
ure causing us to enter standby mode during the comet
encounter would cause loss of all the encounter science,
as there is no time to re-plan before the comet is out of
sight. Such concerns motivate a strong desire for plan
robustness, in which the plans contain enough exibility,
and the executive has the capability, to continue execut-
ing the plan under a wide range of execution outcomes.

4 Planning

A principal goal of the NMRA is to enable a new gener-
ation of spacecraft that can carry out complete, nominal
missions without any communication from ground. This
is a great departure from previous and current missions
(such as Voyager, Galileo or Cassini) which rely on fre-
quent and extensive communications from ground. In
traditional missions, ground operations routinely uplink
detailed command sequences to be executed during sub-
sequent mission phases. Such communications require
costly resources such as the Deep Space Network, which
makes them very expensive. Uplink independence is par-
ticularly important for missions that require fast reaction
times (as it is the case for autonomous rovers, comet lan-
ders and other remote explorers); in this case detailed
ground-based control is infeasible due to long communi-
cation lags. In case of loss of uplink capabilities, previous
spacecraft could carry out a critical sequence of com-
mands stored on board before launch. However, these
sequences were greatly simpli�ed when compared to the
uplinked sequences and could only carry out a small frac-
tion of all mission goals.

Mission Manager

NMRA is launched with a pre-de�ned \mission pro�le"
that contains a list of all nominal goals to be achieved
during the mission. The detailed sequence of commands
to achieve such goals, however, is not pre-stored but is
generated on board by the planner. A special module of
the planner, the Mission Manager, determines the goals
that need to be achieved in the next scheduling horizon

(typically 2 weeks long), extracts them from the mis-
sion pro�le and combines them with the initial space-
craft state as determined by the executive. The result
is a speci�c planning problem that, once solved, yields
detailed execution commands. This decomposition into
long-range mission planning and shorter-term detailed
planning enables NMRA to undertake an extended di-
verse mission with minimal human intervention.

Requirements for Robust Execution

The NMRA must be able to respond to unexpected
events during plan execution without having to plan the
response. Although it is sometimes necessary to re-plan,
this should not be the only option. Many situations re-
quire responses that cannot be made quickly enough if
the NMRA has to plan them.

The executive must be able to react to events in such
a way that the rest of the plan is still valid. To support
this, the plan must be exible enough to tolerate both
unexpected events and the executive's responses without
breaking. This exibility is achieved by (1) choosing
an appropriate level of abstraction for the activities and
(2) generating plans in which the activities have exible
start and end times.

The abstraction level of the activities in the plan must
be chosen carefully. If the activities are at too �ne a level
of granularity, then the plan will impose too many con-
straints on the behavior of the executive, making plan
execution more fragile. However, if the granularity is
too coarse, then there may be interactions among the
sub-actions of activities that the planner cannot rea-
son about. In DS1, activities are abstracted to the
level where there are no interactions among their sub-
activities. This level allows the planner to resolve all of
the global interactions without getting into details that
would over-constrain the executive.

The other mechanism by which the executive can re-
spond to events without breaking the plan is having ac-
tivities with exible start and end times. Plans in DS1
consist of temporal sequences of activities. Each activity
has an earliest start time, a latest start time, an earli-
est end time, and latest end time. The planner uses a
least commitment approach, constricting the start and
end times only when absolutely necessary. Any exibil-
ity remaining at the end of planning is retained in the
plan. This exibility is used by the executive to adjust
the start and end times of activities as needed. For ex-
ample, if the engine does not start on the �rst try, the
executive can try a few more times. To make time for
these extra attempts, the end time is moved ahead, but
not beyond the latest end time.

Changing the start or end time of an activity may also
a�ect other activities in the plan. For example, if the
spacecraft must take science data �ve minutes after shut-



ting down the engine, then changing the end time of the
engine firing activity will change the start time of the
take science data activity. To make the changes, the
executive must know about the temporal constraint be-
tween the fire engine activity and the take science

data activity. The plan therefore contains all of the tem-
poral constraints among the activities.
Although the planner is typically enabled to leave ex-

ibility in the activity start and end times because the
times are under-constrained, it is sometimes required to
provide such exibility in order to operate the space-
craft successfully. For example, when the engine is com-
manded to turn on, it goes through a warm up proce-
dure and turns itself on. The warm up procedure can
take up to ten minutes, but the actual warm up time is
not known at plan time. It is not known until the engine
actually turns on. We currently handle such cases by
providing enough time in activities to handle worst-case
outcomes, although we are developing a method to plan
explicitly about execution-time uncertainty.

5 Execution

From the point of view of the NMRA executive, a plan
is a set of time-lines. Timelines consists of a linear se-
quence of tokens, each of which represents an activity
which should be taking place during a de�ned temporal
period. A token has a start and end window, a set of
pre- and post-constraints. The start and end windows
are intervals in absolute time during which the token
must start and end. The pre- and post-constraints de-
scribe dependencies with respect to the starts and ends
of tokens on other time-lines.
There are three di�erent types of pre- and post-

constraints: before, after, and meets. The semantics
of these constraints is fairly straightforward. A before
constraint speci�es that the start of a token must come
before the start of another token. An after constraint
speci�es that the end of a token must come after the
end of another token. The amount of time that may
elapse between these two related events is speci�ed as
an interval. A meets-constraint speci�es that the start
(end) of a token must coincide with the start (end) of
another token.

Issues

Plan execution would be relatively straightforward were
it not for the fact that di�erent token types have di�erent
execution semantics. In particular, there are di�erent
ways of determining whether or not a particular activity
has ended. Some activities are brought to an end by
the physics of the environment or the control system
(e.g. turns) while others are brought to an end simply by
meeting all its internal plan constraints (e.g. the periods
of constant-attitude pointing between turns).

The situation is further complicated by the fact that
a naive operationalization of these constraints leads to
deadlock. Consider a constant-pointing token A fol-
lowed by a turn token B. Token A (waiting for the turn)
should end whenever token B (the turn) is eligible to
start. However, B is constrained by the planner to fol-
low A, and so B is not eligible to start until A ends.
Thus, A can never end, and B can never start.
Another issue is that some tokens don't achieve their

intended post-conditions until some time after they have
started. For example, consider a time-line for a device
containing a token A of type device-off followed by
token B of type device-on. The intent here is that the
executive should turn the device on at the junction be-
tween A and B, but this cannot be done instantaneously.
Thus, a token on another time-line, constrained to start
after B, may fail if it depends upon the device being
on, since the device may not in fact be turned on until
some time after B starts. One possible solution to this
problem is to change the planner model so that it gener-
ates a plan that includes an intermediate token of type
device-turning-on, but this can signi�cantly increase
the size of the planner's search space, and hence the time
and resources required to generate a plan.
To solve these problems, we separate the execution

of a token into three stages: startup, steady-state, and
ending. The startup stage performs actions to achieve
the conditions that the planner intends the token to rep-
resent. The steady-state stage monitors and maintains
these conditions (or signals failure if the conditions can-
not be maintained). The ending stage allows the token
to perform cleanup actions before releasing control to the
next token on the time-line. Tokens may have null ac-
tions in one or more stages. The algorithm for executing
a token in this three-phase framework is as follows:

1. Wait for the beginning of the token's start window.

2. In parallel

(a) wait for token's pre-constraints to be true, and

(b) check that the end of the start window has not
passed. If it has, signal a failure.

3. Signal that the token has started.

4. Execute the achieve-portion of the token.

5. Spawn the maintain-portion of the token as a par-
allel task.

6. Wait for the start of the token's end window.

7. Wait for the token's post-conditions to be true.

8. Wait for the pre-conditions of the next token to be
true, except those that refer to the end of this token.

9. Stop the maintain thread spawned in step 5, and
execute the cleanup-portion of the token



10. Check that the end of the end window has not
passed. If it has, signal a failure. Otherwise, sig-
nal that this token has ended.

This algorithm allows all the token types to be exe-
cuted within a uniform framework.

6 Related Work

NMRA is one of the �rst systems to integrate closed-loop
planning and execution of concurrent temporal plans. It
is also the �rst autonomous system that will be able
to achieve a sustained, multi-stage, multi-year mission
without communication or guidance from earth.

Bresina et al. (1996) describe a temporal planner and
executive for the autonomous telescope domain. Their
approach uses a single action representation whereas
ours uses an abstract planning language, but their plan
representation shares with ours exibility and uncer-
tainty about start and �nish times of activities. How-
ever, their approach is currently restricted to single re-
source domains with no concurrency.

Drabble (1993) describes the Excalibur system,
which performs closed-loop planning and execution us-
ing qualitative domain models to monitor plan execution
and to generate predicted initial states for planning after
execution failures. The \kitchen" domain involved con-
current temporal plans, although it was simpli�ed and
did not require robust reactions during execution.

Currie & Tate (1991) describe the O-Plan planning
system, which when combined with a temporal scheduler
can produce rich concurrent temporal plans. Reece &
Tate (1994) developed an execution agent for this plan-
ner, and the combined system has been applied to many
real-world problems including the military logistics do-
main. The plan repair mechanism [Drabble, Tate, &
Dalton, 1996] is more sophisticated then ours, although
the execution agent is weaker and does not perform
execution-time task decomposition or robust execution.

The Cypress system [Wilkins et al., 1995] and the 3T
system [Bonasso et al., 1996] also address the closed-
loop integration of planning and execution in the context
of concurrency, although neither of these systems deals
with temporal plans. It is interesting to compare how
these systems di�er from ours concerning the generation
of execution context for the planner and the integration
of new planning information back into execution. Cy-
press shares the same action formalism between plan-
ning and execution. This enables the planner to watch
over execution and simulate the results forward, as dis-
cussed in section 3. The planner can detect problems
in advance and send back a detailed plan re�nement,
and the executive can replace un-executed portions of
its current plan with new portions and continue running
uninterrupted.

In 3T, the planner maintains such tight control over
execution that it does not even send the full plan it has
developed. Instead, it sends directives to the executive
one at a time, and the executive then responds to each
directive in turn. This provides an interesting solution
to the problem of keeping the planner informed about
execution and also to the problem of integrating new
planning information into the execution context. How-
ever, this approach is problematic in our domain as it
places severe time constraints on the planner so that
it can decide what to do before the executive runs out
of activities, and it requires the computational and in-
formational resources to be available for planning on a
continuous basis. This is a luxury we could not a�ord
on a spacecraft, as discussed in section 3.
Other systems integrating planning and execution

in real-world control systems include Guardian [Hayes-
Roth, 1995], SOAR [Tambe et al., 1995], Atlantis [Gat,
1992] and TCA [Simmons, 1990]. These systems invoke
planning as a means to answer speci�c questions dur-
ing execution (like whether a particular treatment would
take e�ect in time to heal the patient, which evasive ma-
neuver will counter the opponents current attack plan,
and which path to take to get to a particular room). This
use of planning contrasts with our approach, in which
the planner coordinates the global activity in the sys-
tem. The local approach has the advantage of making
use of special-purpose planners which can be built to an-
swer narrow questions, but our global approach has the
advantage of ensuring that the di�erent activities un-
dertaken at execution will not interact harmfully. It is
not clear how the local approaches can be extended to
provide similar guarantees.

7 Conclusion

A growing body of work is addressing issues of robust
planning and execution in the face of failures and uncer-
tainty. The Lockheed Underwater Vehicle [Ogasawara,
1991] uses decision-theoretic planning and execution to
select courses of action which maximize utility. CIRCA
[Musliner, Durfee, & Shin, 1993] considers a set of states,
actions, and critical failures to be avoided. It then inserts
a set of sense-act transitions into a real-time controller
to ensure that the controller will never enter the crit-
ical failure states. Cassandra [Pryor & Collins, 1996],
Buridan [Draper, Hanks, & Weld, 1994], O-Plan [Currie
& Tate, 1991] and JIC [Drummond, Bresina, & Swan-
son, 1994] all consider actions with uncertain outcomes
and produce plans that enable execution-time recovery
without having to take time out for replanning.
We are currently working on extending our planning

approach to support such capabilities in the context of
concurrent temporal plans. Our present levels of robust-
ness are achieved using the complementary approach of



exible, abstract, and conservative plans which can be
exploited by a smart executive.
A �nal distinction between NMRA and most other

planning and execution systems is that our planner actu-
ally plans how and when it will plan for the next horizon.
That is, it inserts a \plan next horizon" activity into the
plan and plans other supporting activities around this
goal. Such activities include information-gathering ac-
tivities which will be necessary before another plan can
be built. The executive then achieves these activities to
enable this form of planning over multiple horizons. We
believe this is a necessary capability of extended agency,
and one which will become of growing concern as we de-
sign autonomous agents to achieve goals unassisted over
years or decades of activity.
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