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Pharmacokinetics is the study of the time course for the absorption, distribution, 

metabolism, and excretion (ADME) of a chemical substance in a biological system.  Implicit in 

any application of pharmacokinetics to toxicology or risk assessment is the assumption that the 

toxic effects in a particular tissue can be related in some way to the concentration time course of 

an active form of the substance in that tissue.  Moreover, absent pharmacodynamic differences 

between animal species, it is expected that similar responses will be produced at equivalent 

tissue exposures regardless of animal species, exposure route, or experimental regimen 

(Andersen, 1981; Monro, 1992; Andersen et al., 1995a).  Of course the actual nature of the 

relationship between tissue exposure and response, particularly across species, may be quite 

complex.  With pharmacokinetic modeling, we employ established descriptions of chemical 

transport and metabolism to simulate observed kinetics in silico (Andersen et al., 1995b).   

Classic compartmental modeling is largely an empirical exercise, where data on the time 

course of the chemical of interest in blood (and perhaps other tissues) are collected.  Based on 

the behavior of the data, a mathematical model is selected which possesses a sufficient number 

of compartments (and therefore parameters) to describe the data.  The compartments do not in 

general correspond to identifiable physiological entities but rather are described in abstract 

terms.  The advantage of this modeling approach is that there is no limitation to fitting the model 

to the experimental data.  If a particular model is unable to describe the behavior of a particular 

data set, additional compartments can be added until a successful fit is obtained.  Since the model 

parameters do not possess any intrinsic meaning, they can be freely varied to obtain the best 

possible fit, and different parameter values can be used for each data set in a related series of 

experiments.  Once developed, these models are useful for interpolation and limited 

extrapolation of the concentration profiles which can be expected as experimental conditions are 

varied.  They are also useful for statistical evaluation of a chemical’s apparent kinetic complexity 
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(O’Flaherty, 1987).  However, since the compartmental model does not possess a physiological 

structure, it is often not possible to incorporate a description of these non-linear biochemical 

processes in a biologically appropriate context.  Without a physiological structure it is not 

possible to correctly describe the interaction between blood-transport of the chemical to the 

metabolizing organ and the intrinsic clearance of the chemical by the organ.   

Physiologically based pharmacokinetic (PBPK) models differ from the conventional 

compartmental pharmacokinetic models in that they are based to a large extent on the actual 

physiology of the organism (Teorell, 1937a,b).  Figure 1 illustrates the structure of a PBPK 

model for a volatile, lipophilic compound.   
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Figure 1.  Diagram of a physiologically-based pharmacokinetic model for styrene 
(Ramsey and Andersen, 1984).  In this description, groups of tissues are defined 
with respect to their volumes, blood flows (Q), and partition coefficients for the 
chemical.  The uptake of vapor is determined by the alveolar ventilation (QALV), 
cardiac output (QT), blood:air partition coefficient, and the concentration gradient 
between arterial and venous pulmonary blood (CART and CVEN).  Metabolism is 
described in the liver with a saturable pathway defined by a maximum velocity 
(VMAX) and affinity (KM).  The mathematical description assumes equilibration 
between arterial blood and alveolar air as well as between each of the tissues and 
the venous blood exiting from that tissue. 
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Instead of compartments defined solely by mathematical analysis of the experimental 

kinetic data, compartments in a PBPK model are based on realistic organ and tissue groups, with 

weights and blood flows obtained from the literature.  Moreover, instead of compartmental rate 

constants determined solely by fitting data, actual physical-chemical and biochemical properties 

of the compound can often be used to define parameters in the model.  To the extent that the 

structure of the model reflects the important determinants of the kinetics of the chemical, the 

result of this approach is a model which can predict the qualitative behavior of an experimental 

time course without having been based directly on it.  Refinement of the model to incorporate 

additional insights gained from comparison with experimental data yields a model which can be 

used for quantitative extrapolation well beyond the range of experimental conditions on which it 

was based.  In particular, a properly validated PBPK model can be used to perform the high-to-

low dose, dose-route, and interspecies extrapolations necessary for estimating human risk on the 

basis of animal toxicology studies (Clewell and Andersen, 1985; Andersen et al., 1987;1991; 

O’Flaherty, 1989; Reitz et al., 1990; Gerrity and Henry, 1990; Johanson and Filser, 1993; Corley 

et al., 1994; el-Masri et al., 1995; Clewell et al., 1997; 2000; Fisher, 2000; Barton et al., 2000).  

The physiological structure of PBPK models is also useful for examining early life exposure 

(Fisher et al., 1989; 1991; Clewell et al., 2001; Corley et al., 2003; Sarangapani et al., 2003; 

Gentry et al., 2003; 2004; Clewell et al., 2004; Barton, 2005); however, the development and 

evaluation of PBPK models of the developmental period is beyond the scope of this paper.  

The basic approach to PBPK model development is illustrated in Figure 2; a number of 

excellent reviews on the subject are available (Himmelstein and Lutz, 1979; Gerlowski and Jain, 

1983; Fiserova-Bergerova, 1983; Bischoff, 1987; Leung, 1991).  The process of model 

development begins with the definition of the chemical exposure and toxic effect of concern, as 

well as the species and target tissue in which it is observed.  Literature evaluation involves the 

integration of available information about the mechanism of toxicity, the pathways of chemical 

metabolism, the nature of the toxic chemical species (i.e., whether the parent chemical, a stable 

metabolite, or a reactive intermediate produced during metabolism is responsible for the 

toxicity), the processes involved in absorption, transport and excretion, the tissue partitioning 

and binding characteristics of the chemical and its metabolites, and the physiological parameters 

(i.e., tissue weights and blood flow rates) for the species of concern (i.e., the experimental 

species and the human).  Using this information, the investigator develops a PBPK model which 
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expresses mathematically a conception of the animal/chemical system.  In the model, the various 

time-dependent biological processes are described as a system of simultaneous differential 

equations.  The specific structure of the model is driven by the need to estimate the appropriate 

measure of tissue dose under the various exposure conditions of concern in both the experimental 

animal and the human.  Before the model can be used in risk assessment it has to be validated 

against kinetic, metabolic, and toxicity information and, in many cases, refined based on 

comparison with the experimental results.  The model itself can frequently be used to help design 

critical experiments to collect data needed for its own validation.  Perhaps the most desirable 

feature of a PBPK model is that it provides a conceptual framework for employing the scientific 

method: hypotheses can be described in terms of biological processes, quantitative predictions 

can be made on the basis of the mathematical description, and the model (hypothesis) can be 

revised on the basis of comparison with targeted experimental data. 

 

 

 
 Figure 2.  Flow-chart of the PBPK modeling process. 
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Specification of Model Structure 

There is no easy rule for determining the structure and level of complexity needed in a 

particular modeling application.  For example, model elements such as lung ventilation and fat 

storage, which are important for a volatile, lipophilic chemical such as styrene (Ramsey and 

Andersen, 1984), do not need to be considered in the case of a nonvolatile, water soluble 

compound such as methotrexate (Bischoff et al., 1971).  Similarly, while kidney excretion and 

enterohepatic recirculation are important determinants of the kinetics of methotrexate, only 

metabolism and exhalation are significant for the water-soluble 2-butoxyethanol (Johanson, 

1986).  The decision of which elements to include in the model structure for a specific chemical 

and application involves finding a balance between two primary criteria: parsimony and 

plausibility.   

The principle of parsimony simply states that a model should be as simple as possible for 

the intended application (but no simpler).  That is, structures and parameters should not be 

included in the model unless they are needed to support the application for which the model is 

being designed.  The desire for parsimony in model development is driven not only by the desire 

to minimize the number of parameters whose values must be identified, but also by the 

recognition that as the number of parameters increases, the potential for unintended interactions 

between parameters increases disproportionately.  As a model becomes more complex, it 

becomes increasingly difficult to validate, even as the level of concern for the trustworthiness of 

the model should increase.   

Countering the desire for model simplicity is the need for plausibility of the model 

structure.  The credibility of a PBPK model's predictions of kinetic behavior under conditions 

different from those under which the model was validated rests on the correspondence of the 

model design to known physiological and biochemical structures and an accurate description of 

the chemical mode of action.  In general, the ability of a model to adequately simulate the 

behavior of a physical system depends on the extent to which the model structure is 

homomorphic (having a one-to-one correspondence) with the essential features determining the 

behavior of that system.  The trade-off against the greater predictive capability of 

physiologically-based models is the requirement for an increased number of parameters and 

equations.   

The process of model identification is an iterative process that begins with the selection 
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of a model structure based on those elements that the modeler considers to be minimum essential 

determinants of the chemical’s behavior in the animal system, from the viewpoint of the intended 

application of the model.  Comparison with appropriate data can then provide insight into defects 

in the model which must be corrected either by re-parameterization or by changes to the model 

structure.  Selection of a model structure can be broken down into a number of elements 

associated with the different aspects of uptake, distribution, metabolism, and elimination.   These 

mechanistic aspects play a role in most aspects of the model development, including decisions on 

grouping and splitting tissue compartments, level of detail in describing chemical transport and 

metabolism, and inclusion of chemical exposure routes.   

Tissue grouping is generally approached in one of two ways – by lumping or splitting 

model compartments.  In the lumping approach, model development begins with information at 

the greatest level of detail that is practical, and decisions are made to combine tissue 

compartments based on the similarity of their physiological characteristics.  The common 

grouping of tissues into richly perfused and poorly perfused on the basis of their blood perfusion 

rate is an example of this approach.  In contrast, the splitting approach starts with the simplest 

reasonable model structure and increases the model’s complexity only to the extent required to 

reproduce data on the chemical of concern for the application of interest.  Lumping requires the 

greater initial investment in data collection and, if taken to the extreme, could paralyze model 

development.  Splitting, on the other hand, is more efficient but runs a greater risk of 

overlooking chemical-specific determinants of chemical disposition.  Tissues that are typically 

specifically defined in the model structure are the target tissues, those involved in storage, 

metabolism or clearance of the chemical, and those required to simulate chemical exposure 

depending on the dose routes used in simulated experiments. 

Chemical transfer between the blood and tissue compartments may be governed by 

passive diffusion (flow- or diffusion-limited) or active transport.  Many published PBPK models 

are flow-limited; that is, they assume that the rate of tissue uptake of the chemical is limited only 

by the flow of the chemical to the tissue in the blood.  While this assumption is generally 

reasonable, for some chemicals and tissues uptake may instead be diffusion-limited.  Examples 

of tissues for which diffusion-limited transport has often been described include the skin, 

placenta, mammary glands, brain, and fat (McDougal et al., 1986; Fisher et al., 1989; 1990; 

Andersen et al., 2001).  If there is evidence that the movement of a chemical between the blood 
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and a tissue is limited by diffusion, a two-compartment description of the tissue can be used with 

a "shallow" exchange compartment in communication with the blood and a diffusion-limited 

"deep" compartment.  Some chemicals may be transported against the concentration gradient 

through energy dependent processes.  These processes are usually limited by the availability of 

transporter proteins, and such saturable processes are often well-described using Michealis-

Menten type kinetics (Andersen et al., 2006). 

The liver is frequently the primary site of metabolism, though other tissues such as the 

kidney, placenta, and adipose, may be important metabolism sites depending on the chemical.  

Metabolism may be described as occurring through a linear (first-order) pathway using a rate 

constant (kF: hr-1) or a saturable (Michealis-Menten) pathway with capacity Vmax (mg/hr) and 

affinity Km (mg/L).  If desired, the pharmacokinetics of the resulting metabolite may also be 

explicity described in the model.  The same considerations which drive decisions regarding the 

level of complexity of the PBPK model for the parent chemical must also be applied for each of 

its metabolites.  As in the case of the parent chemical, the most important consideration is the 

purpose of the model.  If the concern is direct parent chemical toxicity and the chemical is 

detoxified by metabolism, then there may be no need for a description of metabolism beyond its 

role in parent chemical clearance.  If reactive intermediates produced during the metabolism are 

responsible for observed toxicity, a very simple description of the metabolic pathways might be 

adequate (Ramsey and Andersen, 1984; Andersen et al., 1987; Corley et al., 1990).  On the other 

hand, if one or more of the metabolites are considered to be responsible for the toxicity of a 

chemical, it may be necessary to provide a more complete description of the kinetics of the 

metabolites themselves (Fisher et al., 1991; Gearhart et al., 1993; Clewell et al., 1997; 2000; 

Fisher, 2000).  

Other processes that may have significant impact on the chemical kinetics include protein 

binding and excretion.  Protein binding in the blood reduces the amount of free chemical 

available for distribution into the tissues or clearance via excretion.  Binding within tissues may 

lead to dose- and time-dependent accumulation, and may be described as a saturable process.   

Clearance may occur through urinary or fecal excretion, exhaled air, or even through loss via 

hair.  This loss is most often successfully described using first order clearance terms.  However, 

more elaborate descriptions are sometimes required for chemicals that are substrates for 

transporters, which transfer chemicals against the concentration gradient.   Some transporters in 
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the kidney and bile can increase clearance of xenobiotics, while others, such as those responsible 

for reabsorption, may increase residence time (Andersen et al., 2006). 

 

Specification of Mean Parameters 

Estimates of the various physiological parameters needed in PBPK models are available 

from a number of sources in the literature, particularly for the human, monkey, dog, rat, and 

mouse (Adolph, 1949; Bischoff and Brown, 1966; Astrand and Rodahl, 1970; ICRP, 1975; EPA, 

1988; Davies and Morris, 1993; Brown et al., 1997; Gentry et al., 2004).  Table 1 shows typical 

values of a number of physiological parameters in adult animals.    

 

TABLE 1: “Typical” Physiological Parameters for PBPK Models 
 
Species 

 
 

 
Mouse 

 
Rat 

 
Monkey 

 
Human 

 
Ventilation 

 
 

 
 

 
 

 
 

 
 

 
Alveolar 

 
(L/hr-1kg)a

 
29.b

 
15.b

 
15.b

 
15.b

 
Blood Flows 

 
 

 
 

 
 

 
 

 
 

 
Total 

 
(L/hr-1kg)a

 
16.5c

 
15.c

 
15.c

 
15.c

 
Muscle 

 
(fraction) 

 
.18 

 
.18 

 
.18 

 
.18 

 
Skin 

 
" 

 
.07 

 
.08 

 
.06 

 
.06 

 
Fat 

 
" 

 
.03 

 
.06 

 
.05 

 
.05 

 
Liver (Arterial) 

 
" 

 
.035 

 
.03 

 
.065 

 
.07 

 
Gut (Portal) 

 
" 

 
.165 

 
.18 

 
.185 

 
.19 

 
Other Organs 

 
" 

 
.52 

 
.47 

 
.46 

 
.45 

 
Tissue Volumes 

 
 

 
 

 
 

 
 

 
 

 
Body Weight 

 
(kg) 

 
.02 

 
.3 

 
4. 

 
80. 

 
Body Water 

 
(fraction) 

 
.65 

 
.65 

 
.65 

 
.65 

 
Plasma 

 
" 

 
.04 

 
.04 

 
.04 

 
.04 

 
RBCs 

 
" 

 
.03 

 
.03 

 
.03 

 
.03 

 
Muscle 

 
" 

 
.34 

 
.36 

 
.48 

 
.33 

 
Skin 

 
" 

 
.17 

 
.195 

 
.11 

 
.11 

 
Fat 

 
" 

 
.10d

 
.07d

 
.05d

 
.21 

 
Liver 

 
" 

 
.046 

 
.037 

 
.027 

 
.023 

 
Gut Tissue 

 
" 

 
.031 

 
.033 

 
.045 

 
.045 

 
Other Organs 

 
" 

 
.049 

 
.031 

 
.039 

 
.039 

 
Intestinal Lumen 

 
" 

 
.054 

 
.058 

 
.053 

 
.053 

   a Scaled allometrically: QC = QCC*BW.75

      b Varies significantly with activity level (range: 15 - 40) 
      c Varies with activity level (range: 15 - 20) 
      d Varies substantially (lower in young animals, higher in older animals) 
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Estimates for the same physiological parameter often vary widely, due both to 

experimental differences and to differences in the animals examined (age, strain, activity).  

Ventilation rates and blood flow rates are particularly sensitive to the level of activity (Astrand 

and Rodahl, 1970; EPA, 1988).  Data on some important tissues is relatively poor, particularly in 

the case of fat tissue.   

Many biochemical parameters may be measured directly from in vitro studies.  For 

volatile chemicals, partition coefficients may be measured using a relatively simple in vitro 

technique known as vial equilibration (Fiserova-Bergerova, 1975; Sato and Nakajima, 1979a,b; 

Gargas et al., 1989).  Partition coefficients for non-volatile compounds are not as easily 

measured in vitro (Jepson et al., 1994), and are therefore often estimated by comparing 

tissue:blood levels at steady state from in vivo studies (Lam et al., 1981; King et al., 1983).   

Metabolism parameters can be obtained from parent chemical disappearance (or metabolite 

formation) curves in intact cells, tissue homogenate, or microsomal fractions (Reitz et al., 1989; 

Kedderis and Lipscomb, 2001; Lipscomb and Kedderis, 2002; Lipscomb et al, 2004).  Rapid in 

vivo approaches may also be used to estimate metabolic constants based on steady-state 

extraction (Andersen et al., 1984) or gas uptake experiments (Filser and Bolt, 1979; Andersen, et 

al., 1980; Gargas et al., 1986a, 1990; Gargas and Andersen, 1989), as well as information on the 

total amount of chemical metabolized in a particular exposure situation (Watanabe et al., 1976).  

Determination of stable end-product metabolites after exposure can also be useful in some cases 

(Gargas and Andersen, 1982; Gargas et al., 1986b). 

In many cases, important parameters values needed for a PBPK model may not be 

available in the literature.  In such cases it is necessary to measure them in new experiments, to 

estimate them by quantitative structure-activity relationship (QSAR) techniques (Gargas et al,, 

1988; Poulin and Krishnan, 1999; Beliveau et al., 2005), or to identify them by optimizing the fit 

of the model to an informative data set.  An example of a case where fitting the model to kinetic 

data is the only practical approach for parameter estimation is the attempt to describe 

enterohepatic recirculation (e.g., Clewell et al. 1997, 2000).  The residence time of chemicals 

whose conjugation products are transferred into the bile and subsequently cleaved and re-

absorbed in the intestine depend on a number of processes – such as biliary excretion into the 

duodenum, movement through the intestinal lumen, metabolism by intestinal bacteria, and 

resorption in the lower intestine – that are not easily measured in vitro or in vivo, and therefore 
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the parameters in such a description must be estimated by fitting the overall predictions of the 

model to kinetic data such as blood concentration time-courses as a function of dose.    

Even in the case where an initial estimate of a particular parameter value can be obtained 

from other sources, it may be desirable to refine the estimate by optimization.  For example, 

given the difficulty of obtaining accurate estimates of the fat volume in rodents, a more reliable 

estimate may be obtained by examining the impact of fat volume on the kinetic behavior of a 

lipophilic compound such as styrene.  Of course, being able to uniquely identify a parameter 

from a kinetic data set rests on two key assumptions: (1) that the kinetic behavior of the 

compound under the conditions in which the data was collected is informative regarding the 

parameter being estimated, and (2) that other parameters in the model which could influence the 

observed kinetics have been determined by other means and are held fixed or otherwise 

constrained during the estimation process. 

The actual approach for conducting a parameter optimization can range from simple 

visual fitting, where the model is run with different values of the parameter until the best 

correspondence appears to be achieved, or by a quantitative mathematical algorithm.  The most 

common algorithm used in optimization is the least-squares minimization.  To perform a least-

squares optimization, the model is run to obtain a set of predictions at each of the times a data 

point was collected.  The square of the difference between the model prediction and data point at 

each time is calculated and the results for all of the data points are summed.  The parameter 

being estimated is then modified, and the sum of squares is recalculated.  This process is 

repeated until the smallest possible sum of squares is obtained, representing the best possible fit 

of the model to the data.   

In a variation on this approach, the square of the difference at each point is divided by the 

square of the prediction.  This variation, known as relative least squares, is preferable in the case 

of data with an error structure which can be described by a constant coefficient of variation (that 

is, a constant ratio of the standard deviation to the mean).  The former method, known as 

absolute least squares, is preferable in the case of data with a constant variance.  From a practical 

viewpoint, the absolute least squares method tends to give greater weight to the data at higher 

concentrations and results in fits that look best when plotted on a linear scale, while the relative 

least squares method gives greater weight to the data at lower concentrations and results in fits 

that look best when plotted on a logarithmic scale.   
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When parameter estimation has been performed by optimizing model output to 

experimental data, the investigator must assure that the parameter is adequately identifiable from 

the data (Carson et al., 1983).  Moreover, the practical reality of modeling biological systems is 

that regardless of the complexity of the model there will always be some level of "model error" 

(lack of homomorphism with the biological system) which can result in systematic discrepancies 

between the model and experimental data.  This model structural deficiency interacts with 

deficiencies in the identifiability of the model parameters, potentially leading to mis-

identification of the parameters.  Due to the confounding effects of model error and parameter 

correlation, it is quite possible for an optimization algorithm to obtain a better fit to a particular 

data set by changing parameters to values that no longer correspond to the biological entity the 

parameter was intended to represent.  Estimates of parameter uncertainty obtained from 

optimization routines should be viewed as lower bound estimates of true parameter uncertainty 

since only a local, linearized variance is typically calculated.  In characterizing parameter 

uncertainty, it is probably more instructive to determine what ranges of parameter values are 

clearly inconsistent with the data than to accept a local, linearized variance estimate provided by 

an optimization algorithm. 

As the number of fitted parameters in the PBPK model increases, the level of uncertainty 

in the accuracy of the individual values increases correspondingly.  The ability to limit this 

uncertainty depends on the availability of data under conditions where the parameters being 

estimated would be expected to have an observable impact on the measured concentrations.  

Sensitivity analysis can sometimes be used to determine the appropriate conditions for such a 

comparison (Clewell et al., 1994). The demand that the PBPK fit a variety of data also restricts 

the parameter values that will give a satisfactory fit to experimental data.  

 

Model Evaluation and Revision  

Once an initial model has been developed, it must be evaluated on the basis of its 

conformance with experimental data.  In some cases, the model may be exercised to predict 

conditions under which experimental data should be collected in order to verify or improve 

model performance.  Model success in reproducing measured data supports the validity of the 

mechanistic assumptions, while model failure suggests that revision of the model is needed.  In 

fact, model failure is often more informative to mechanistic investigations than success.  PBPK 
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models can be used to test a variety of hypotheses quickly and inexpensively and, based on 

model results, we can design more efficient experiments to test key mechanistic assumptions.  

The following examples illustrate the role of model development, evaluation and refinement in 

gaining a better understanding of chemical kinetics.  They also demonstrate the use of statistical 

methods (likelihood comparisons) to evaluate alternative model structures on the basis of their 

relative ability to conform with experimental data.   

Suicide Inhibition in Trans-1,2-Dichloroethylene Metabolism.  An effort to characterize 

the metabolism of trans-1,2-dichloroethylene (tDCE) provides an example of how PBPK model 

failure can aid the evaluation of mechanistic hypotheses and inform experimental design.  In this 

case, a PBPK model structure that had been used successfully to describe the in vivo metabolism 

of several volatile chemicals failed to describe tDCE kinetics, and the investigation into the 

model behavior led to insights about the processes governing the chemical’s metabolism.  With 

the development of closed chamber metabolism studies (Gargas et al. 1986; Gargas et al. 1990), 

new and abundant data were made available describing the disappearance of VOCs after 

inhalation.  For chemicals such as methylene chloride, where the metabolism occurred through 

parallel saturable and first-order pathways, this technique provided an efficient method for 

estimating metabolism parameters and the resulting models were able to describe blood time-

course data from separate studies.  However, when the same model structure was applied to 

tDCE (Lilly et al., 1998), it failed to predict the time-dependent behavior of the experimental 

data (Figure 3).   

 
Figure 3.  Failure of methylene chloride PBPK model structure to describe trans-
1,2-Dichloroethylene gas chamber dose-response data in rats (Lilly et al., 1998).   

   12



PreMeeting Draft – Do Not Cite or Quote  Oct 9, 2006 
 

 

This model failure suggested that the metabolic pathway was more complex than had 

been previously assumed.  A revised hypothesis about the mechanism of tDCE metabolism was 

then developed based on the nature of the discrepancy between the predictions of the model and 

the observed data.  Two important observations were made: 1) the decline in tDCE concentration 

slowed over time, and 2) the model consistently over-predicted that time-dependent decline in 

the lower doses.  These observations suggested that the metabolism of the chemical might be 

resulting in the destruction of the metabolic enzyme, and that this decrease in enzyme capacity 

was less severe at lower doses.  Based on these observations, the authors proposed four potential 

mechanisms of suicide inhibition which they incorporated into alternative versions of the model, 

and then tested each model against the existing data.   

Since the equations describing the alternative mechanisms of inhibition each used the 

same number of parameters, the identification of the most succesful model could be 

accomplished by a direct comparison of likelihood estimates.  For each of the alternative models, 

the parameters for metabolism were optimized against the same experimental data using the 

extended least squares method in Simusolv (Dow Chemical), and the resulting log-likelihoods 

were compared. The model that most successfully described the time-course data across doses 

(Figure 4) assumed that the reactive metabolite of tDCE disabled the enzyme-substrate complex.  

By ascertaining the most likely mechanism of enzyme inactivation, it was possible to tailor 

further experiments to test specifically for the occurrence of suicide inhibition.  This hypothesis 

could then be confirmed experimentally (Lilly et al., 1998). 

 
Figure 4.  Revised PBPK model prediction of trans-1,2-Dichloroethylene gas 
chamber dose-response data in rats assuming suicide inhibition (Lilly et al., 1998).   
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Storage of Octamethylcyclotetrasiloxane  in Tissue Lipids.  Modeling of cyclic siloxane 

kinetics permitted the evaluation of lipid storage sites within tissues as well as lipid storage 

depots in blood that are not in communication with the free siloxanes circulating in blood 

(Andersen et al., 2001).  Failure of the typical volatile chemical model to predict the timecourse 

data for the cyclic siloxanes led the authors to reexamine the assumption that lipophilic chemical 

behavior was determined only by metabolism, and describe additional processes that may play a 

role in the distribution of all lipophilic chemicals. Octamethylcyclotetrasiloxane (D4) is a 

common ingredient in a variety of consumer items and cleaning products.  In addition to low-

level consumer exposure, the volatility of this compound raised concerns about occupational 

exposure via inhalation.  In order to aid in assessment of worker risk, Andersen and coauthors 

attempted to analyze the distribution data in rats after inhalation of D4 (Plotzke et al., 2000) 

using a PBPK model.  It was originally assumed that the kinetic behavior of D4 would be similar 

to styrene.  This is based on the fact that D4, like styrene, is a volatile chemical, and also like 

styrene, is dependent on a single, first-step metabolic pathway.  Thus, the same structure that was 

successfully used other volatile chemicals was applied to D4.  Initial model simulations of 

inhalation exposure showed good agreement with the time course data for the pulmonary 

exhalation rate, urinary excretion rate, and plasma concentration.  However, similar data 

following oral and IV dosing were poorly predicted.  In the case of IV dosing, model simulated 

plasma levels more than an order of magnitude lower than measured values.   

 The inability to describe D4 clearance led the authors to reexamine the underlying model 

assumptions.  Firstly, in assuming that all the chemical in the blood was available for exhalation, 

the model was over-predicting the clearance rate as well as exhaled air concentrations.  As 

opposed to the model behavior, measured data showed a slow loss of chemical from the blood 

and lower levels of D4 in the exhaled air, indicating that a portion of the blood D4 was somehow 

bound and therefore unavailable for exhalation.  Additionally, this assumption that all serum D4 

was free, coupled with the high fat:blood partition coefficient, was causing slow redistribution 

after dosing, which also helped to account for the under-predicted serum levels.  Secondly, by 

assuming that the liver and lungs were well-mixed compartments, the authors were forced to use 

large values for the lung:blood and liver:blood partition coefficients in an effort to fit the 

measured data.  Yet, the model still was not able to fit the kinetic behavior; it over-predicted 
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tissue concentrations at early times and under-predicted later time points.   

The original hypothesis was eventually revised to account for the difference between the 

model predicted and experimentally observed values.  The authors proposed that the lipophilic 

D4 was sequestered in tissue lipid stores so that only a portion of the chemical was freely 

available for transport.  This would explain the two-phase clearance, including the initial, rapid 

drop due to loss of the free (unbound) chemical and the secondary, slower decrease resulting 

from the loss of the lipid-bound chemical.  The existence of chylomicron-type transport of D4 

between the liver and plasma lipid compartment was suggested as a biological basis for the 

proposed kinetic construct, based on the work of Roth and colleagues in nonvolatile chlorinated 

biphenyls and dioxins (Roth et al., 1993).  Finally, the revised model structure included two-

separate fat storage compartments in order to account for the multiphasic behavior of D4 in 

exhaled air.  It was thought that the different phases in exhaled D4 concentrations could be due 

to the fact that D4 was stored in various fat depots, and that the rate of exchange between the fat 

and blood was dependent upon the characteristics of the individual fat stores.  When these 

changes were applied to the model structure, they were able to successfully simulate data from 

all dosing routes in both single and repeated dose studies.   

The elaboration of the D4 model was accomplished in such a way that the original and 

revised models were nested structures.  Therefore it was possible to use a likelihood ratio test to 

demonstrate statistically that the additional features of the revised model significantly improved 

the ability of the model to describe the kinetic data (Andersen et al., 2001).   

It is important to note that previous evaluations of both the human (Utell et al., 1998) and 

rat (Plotzke et al., 2000) inhalation data on D4 had not recognized any major discrepancies from 

previous data on other volatile chemicals.  In fact, based on the blood time course curves and the 

exhalation data, the assumption had been that the in vivo kinetics of D4 were similar to those of 

other volatile hydrocarbons.  But when a PBPK model was applied to the problem, it became 

clear that despite the similar shape of the time-course curves, the concentrations were actually 

different from previous expectations by an order of magnitude.  Without a quantitative model 

that could account for the differences in blood:air partition coefficients and other kinetic 

differences (fat partitioning, tissue time course behavior), this discrepancy may well have 

continued to go unnoticed.  Due to the insights obtained with the PBPK model, however, these 

siloxanes became a source of better understanding of the role of lipophilicity in chemical 
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transport and for unraveling pathways for lipid transport of chemicals in the body. 

 

Model Verification and Validation 

Model validation should consider the ability of the model to predict the kinetic behavior 

of the chemical under conditions which test the principal aspects of the underlying model 

structure.  While quantitative tests of goodness of fit may often be a useful aspect of the 

validation process, the more important consideration may be the ability of the model to provide 

an accurate prediction of the general behavior of the data in the intended application (Clark et al. 

2004).   

  The demand that the PBPK fit a variety of data with a consistent set of parameters limits 

its ability to provide an optimal fit to a specific set of experimental data.  For example, a PBPK 

model of a compound with saturable metabolism is required to reproduce both the high and low 

concentration behaviors, which appear qualitatively different, using the same parameter values.  

If one were independently fitting single curves with a model, different parameter value might 

provide better fits at each concentration, but would be relatively uninformative for extrapolation. 

Where only some aspects of the model can be validated, it is particularly important to 

assess the uncertainty associated with the aspects which are untested.  For example, a model of a 

chemical and its metabolites which is intended for use in cross-species extrapolation to humans 

would preferably be verified using data in different species, including humans, for both the 

parent chemical and the metabolites.  If only parent chemical data is available in the human, the 

correspondence of metabolite predictions with data in several animal species could be used as a 

surrogate, but this deficiency should be carefully considered when applying the model to predict 

human metabolism.  One of the values of biologically based modeling is the identification of 

specific data which would improve the quantitative prediction of toxicity in humans from animal 

experiments.   

Model validation is preferably carried out using data that was not used in the 

development of the model and the estimation of its parameters.  In some cases, however, it may 

be considered necessary or preferable to use all of the available data to support model 

development and parameterization.  Unfortunately, this type of modeling can easily become a 

form of self-fulfilling prophecy: models are logically strongest when they fail, but 

psychologically most appealing when they succeed (Yates, 1978).  Under these conditions, 
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model validation can be particularly difficult, putting an additional burden on the investigators to 

substantiate the trustworthiness of the model for its intended purpose.  Nevertheless, a combined 

model development and validation can often be successfully performed, particularly for models 

intended for interpolation, integration, and comparison of data rather than for true extrapolation. 

 

Describing Distributions for Uncertainty and Variability 

In addition to comparing model predictions to experimental data, model evaluation 

includes assessing the plausibility of the model input parameters, and the confidence which can 

be placed in extrapolations performed by the model.  This aspect of model evaluation is 

particularly important in the case of applications in risk assessment, where it is necessary to 

assess the uncertainty associated with risk estimates calculated with the model.  When used in 

the risk assessment process, the output from PBPK models has usually been considered to be an 

exact estimate of dose (i.e., Andersen et al. 1987).  Thus, risk assessment predictions illustrate 

what will happen to an "average" member of the target species.  However, when the results of the 

risk assessment are applied to an entire population, no measure of the effects of intrapopulation 

variability can be made without knowledge of the model output response to parameter 

variability.  Equally important, it is not possible to determine which model parameters have the 

most influence on model predictions or what magnitude of prediction error is associated with 

model parameter errors.   

     It is important in this discussion to distinguish uncertainty from variability.  As it relates to 

the issue of using PBPK modeling in risk assessment, uncertainty can be defined as the possible 

error in estimating the "true" value of a parameter for a representative ("average") animal.  

Variability, however, should only be considered to represent true interindividual differences.  

Understood in these terms, uncertainty is a defect in a particular approach that typically can be 

reduced by experimentation, and variability is a fact of life that must be considered regardless of 

the risk assessment methodology used (Allen et al., 1996).  One of the attractive features of 

PBPK modeling is that it identifies important areas of uncertainty that deserve experimental 

determination.  At the same time, PBPK modeling can be used to examine the effect of 

variability.  The model can be run with different parameter values to simulate interindividual 

differences, such as weight or level of exertion or metabolic status, and the range of individual 

risks corresponding to a given population risk can be estimated (Clewell and Andersen, 1996).   
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 Several investigators have attempted to estimate the impact of parameter uncertainty in 

PBPK models on risk assessment predictions using the Monte Carlo method (Fiserova-

Bergerova et al., 1980; Farrer et al. 1989; Portier and Kaplan, 1989; Bois et al., 1990; Clewell 

and Jarnot, 1994; Clewell, 1995; Allen et al., 1996; Clewell et al., 1999).  Briefly, in the Monte 

Carlo method a probability distribution for each of the model parameters is randomly sampled, 

and the model is run using the chosen set of parameter values.  This process is repeated several 

times until the probability distribution for the desired model output is determined.  The 

sensitivity of the model output to a given input parameter is then represented by the percentage 

contribution to the total model output variability.   

 The chief difficulty in all of these studies is the lack of experimental data on the 

variability of many of the model parameters.  Typical ranges of parameter uncertainties are 

shown in Table 2 (Clewell, 1995).  Physiological parameter variabilities are often based on 

estimates of standard error included in a review of the physiological literature originally 

performed by Lindstedt for the ILSI Risk Science Institute Physiological Parameters Working 

Group (Brown et al. 1997).  Partition coefficient variability has been directly measured for 

perchloroethylene (Gearhart et al. 1993).  Except for ventilation, the experimental data typically 

do not justify use of physiological parameter uncertainties of greater than 30% or of partition 

coefficient uncertainties of greater than 20%; however, variation in metabolism in the human can 

be much greater (Clewell and Andersen,1996).   

 

Table 2: Typical Range of Coefficients of Variation for PBPK Model Input Parameters. 

Parameters CV (%) Distribution 

Tissue Volumes 6 – 30 Truncated normal 

Blood Flows 8 – 30 Truncated normal 

Ventilation 15 – 50 Truncated normal 

Partitions 15 – 20 Truncated lognormal 

Metabolism 30 – 70 Truncated lognormal 

 

 

 Table 2 also displays the distributional forms that are often used for the input parameters 

in PBPK models.  Physiological parameters are usually described with a normal distribution, 
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which is consistent with the available data from the physiological literature.  Partition 

coefficients are obtained as a ratio of the measured concentrations in two media; assuming the 

measurements themselves are normally distributed, the ratio would be expected to be lognormal.  

Finally, metabolism parameters are generally expected to be lognormally distributed, consistent 

with the results of analyses of enzyme activity measurements on the population of hospital 

patients.  In every case, truncated distributions are recommended to avoid physiologically 

implausible values (negative or outside the range of physiological limitations).   It is always 

imortant, however to determine the extent to which the truncation alters the sample distribution, 

particularly for assymetrical truncation (e.g., non-negative bounding of a normal distribution 

with a mean within a small number of standard deviations of zero). 

 There are several reasons why the actual impact of parameter variability on risk estimates 

is likely to be much less than that predicted by a typical simulation analysis.  The most important 

is the high degree of correlation that exists between various parameters.  For example, in the 

Monte Carlo sampling typically performed, the value for the fractional blood flow to a tissue is 

taken to be independent of the fractional tissue volume.  Physiologically, these parameters are 

highly correlated, because their ratio, known as the perfusion ratio, is critical for oxygenation of 

tissues.  Pairing a high blood flow with a low tissue volume (or vice-versa) would exaggerate the 

variation in kinetic behavior of the tissue.  Other correlations that are likely to be important, but 

that the Monte Carlo analyses typically ignore, are between ventilation and perfusion (QPC and 

QCC), between the various partition coefficients, and between some metabolic parameters.  

These correlations can often be directly addressed during the execution of the Monte Carlo 

analysis (Allen et al., 1996).  The impact of neglecting correlations may also be exacerbated by 

the use of lognormal distributions for the metabolic parameters, since the lognormal distribution 

has a significant "tail."   

 

Model Documentation    

 In cases where a model previously developed by one investigator is being evaluated for 

use in a different application by another investigator, adequate model documentation is critical 

for evaluation of the model.  The documentation for a PBPK model should include sufficient 

information about the model so that an experienced modeler could accurately reproduce its 

structure and parameterization.  Usually the suitable documentation of a model will require a 
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combination of one or more "box and arrow" model diagrams together with any equations which 

cannot be unequivocally derived from the diagrams (i.e., Figure 1).  Model diagrams should 

clearly differentiate blood flow from other transport (i.e., biliary excretion) or metabolism, and 

arrows should be used where the direction of transport could be ambiguous.  All tissue 

compartments, metabolism pathways, routes of exposure, and routes of elimination should be 

clearly and accurately presented.  All equations should be dimensionally consistent and in 

standard mathematical notation.  Generic equations can help to keep the description brief but 

complete.  The values used for all model parameters should be provided, with units.  If any of the 

listed parameter values are based on allometric scaling (Dedrick, 1973; Dedrick and Bischoff, 

1980; EPA, 1992), a footnote should provide the body weight used to obtain the allometric 

constant as well as the power of body weight used in the scaling. 

 

“Best Modeling Practices” 

The process of PBPK model development described in this paper is intentionally 

iterative.  Physiological and biochemical systems are highly complex, and it is foolhardy to 

expect a successful description on the first try.  Too often, model developers propose a single 

model structure and then struggle to parameterize it, without attempting to seriously consider 

alternative structures.  The two examples given in this paper illustrate a process that consists of 

(1) envisioning and then specifying alternative model structures based on a combination of 

experimental inference and biochemical knowledge, (2) performing a quantitative evaluation 

using objective statistical methods (e.g., likelihood comparisons) and, when possible, (3) 

verifying the underlying biological hypothesis (e.g., suicide inhibition) by separate experiment. 

The development of a PBPK model strictly on the basis of existing data is more properly 

characterized as analysis rather than research, the key difference being the iterative nature of the 

latter.  It has wisely been said, “If we knew when we started what we had to do to finish, they’d 

call it search, not research.” 

  The most effective way to develop a PBPK model is to exercise the model to generate a 

quantitative hypothesis; that is, to predict the behavior of the system of interest under conditions 

“outside the envelope” of the data used to develop the model (at shorter/longer  durations, 

higher/lower concentrations, different routes, different species, etc.).  In particular, if there is an 

element of the model which remains in question, the model can be exercised to determine the 
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experimental design under which the specific model element can best be tested.  For example, if 

there is uncertainty regarding whether uptake into a particular tissue is flow or diffusion limited, 

alternative forms of the model can be used to compare predicted tissue concentration time 

courses under each of the limiting assumptions under various experimental conditions.  The 

experimental design and sampling time which maximizes the difference between the predicted 

tissue concentrations under the two assumptions can then serve as the basis for the actual 

experimental data collection.   

Once the critical data has been collected, the same model can also be used to support a 

more quantitative experimental inference.  In the case of the tissue uptake question just 

described, not only can the a priori model predictions be compared with the observed data to test 

the alternative hypotheses, but the model can also be used a posteriori to estimate the quantitative 

extent of any observed diffusion limitation (i.e., to estimate the relevant model parameter by 

fitting the data).  If, on the other hand, the model is unable to reproduce the experimental data 

under either assumption, it may be necessary to re-evaluate other aspects of the model structure.   

There is an unfortunate tendency in PBPK model development to rely heavily on 

previously published models for other chemicals.  For example, recently published PBPK models 

are still sometimes described by the authors as being based on the original styrene model 

(Ramsey and Andersen, 1984), and make use of essentially the same physiological structure and 

parameters.  However, a great deal of progress has taken place over the score of years since the 

publication of the original styrene model, including the convening of expert working groups to 

recommend physiological parameter values.  Moreover, the structure of the original styrene 

model reflects an appropriate use of parsimony and pragmatism consistent with the purposes of 

that modeling effort; for example, the volume of the intestines is included in the richly perfused 

tissues compartment, while their blood flow is included in the liver compartment, and a non-

physiological liver blood flow is used to account for extrahepatic metabolism.  More recent 

descriptions of other volatile, lipophilic compounds have sometimes found it necessary to use a 

different physiological description (Clewell et al., 2000).  Every aspect of the development of a 

new model should be subject to skeptical criticism and careful evaluation by experimental 

measurement and simulation. 
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Data Limitations 

 Current knowledge of physiological parameters is limited at best, with well characterized 

values only for the larger tissues and organs, and little data on skin, fat and the smaller organs.  

Available data are restricted primarily to humans, rats, and to a lesser extent, mice, dogs, and 

monkeys; there is almost no data on other species.  Data is primarily on adult animals, with little 

information on the perinatal period other than tissue weights.  There is even less data on the 

variability of physiological parameters, let alone their interdependencies. 

 Literature data on partitioning is limited primarily to the volatile lipophilic compounds.  

In vitro experimental methods exist for estimating thermodynamic partitioning (lipophilicity) in 

both volatile and nonvolatile compounds.  QSAR methods for estimating partitioning have been 

demonstrated for volatile, lipophilic compounds, but not in general.  For many compounds, the 

apparent distribution ratio between plasma and tissues is determined, at least in part, by specific 

or nonspecific binding to proteins or other cellular components; methods for estimating 

parameters in this case are not as well developed.      

 Literature data on metabolism is usually limited to measurements of “activity” (rate of 

metabolism under excess substrate conditions) rather than the multiple concentration studies that 

are necessary to separately determine enzyme affinity and capacity.  There are a variety of in 

vitro experimental methods available for determining metabolism rate constants that can be used 

in a PBPK model, but these have been reliably demonstrated only in the liver.  The collection of 

in vitro metabolism data from other tissues, such as kidney, lung, nose or testes is more 

problematic, and more reliable methods are needed.  Often the key issue is the inability to detect 

metabolism in the human target tissue, which compromises the usefulness of the PBPK model to 

predict a metric of risk for that tissue. 

 Perhaps the most critical need is for the development of ethically acceptable approaches 

for conducting in vivo kinetic studies in humans for non-pharmaceuticals.  While it is certainly 

arguable that it should be possible to develop a human PBPK model on the basis of a validated 

animal model together with human physiological data and in vitro metabolism data, there is no 

question that the reliability of the model would be in doubt in the absence of in vivo 

pharmacokinetic (ADME) validation data.  
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