

NCEP Land Data Assimilation Thrusts: including use of CRTM and Satellite Land Products

Ken Mitchell NCEP/EMC (NOAA)

JCSDA Annual Science Workshop 10-11 June 2008

Span of JCSDA Land Arena

(Coordination via monthly telecons hosted by NCEP/EMC)

Joint Center for Satellite Data Assimilation: Land PIs

- External JCSDA-funded PIs

Presently

- U. Arizona:
- NCAR / Purdue U.:
- U. Maryland:

Recent Past

- Boston U.:
- Princeton.U / U.Washington:
- George Mason U.:
- NRL:

- Internal JCSDA Investigators:

- NCEP/EMC Land Team:
- NESDIS:
- NASA GSFC/HSB:
- NASA GSFC/GMAO:
- Air Force Weather Agency

Xubin Zeng F. Chen and D. Niyogi S. Liang

M. Friedl

- E. Wood and D. Lettenmaier
- P. Houser
- B. Ruston
- K. Mitchell, W. Zheng, J. Meng, V. Wong
- X. Zhan, Ron Vogel, C.-Z. Zao
- C. Peters-Lidard, S. Kumar, LIS Team
- R. Reichle
- J. Eylander

Goals of Land-arena in JCSDA:

Improved Weather and Climate Forecast Skill Through Use and Assimilation of Satellite Land Data

- Derive and apply new <u>satellite-based land surface characteristics</u>
 - Boston U. (M. Friedl)
 - U. Arizona (X. Zeng)
 - NESDIS (L. Jiang)
 - Improve land surface forward modeling of surface emission
 - Princeton U. / U. Washington (E. Wood/D. Lettenmaier)
 - U. Maryland (S. Liang)
 - NRL (B. Ruston)
 - NESDIS (R. Vogel)
- Improve Noah LSM physics to use satellite data (e.g.improve LST)
 - U. Arizona (X. Zeng)
 - NCAR / Purdue U. (F. Chen, D. Niyogi)
 - NCEP/EMC (K. Mitchell, W. Zheng, J. Meng
 - Execute model impact studies for new land-sfc satellite products
 - NCEP/EMC (W. Zheng), NASA/HSB (Peters-Lidard), NASA/GMAO (R. Reichle)
 - NESDIS (C.-Z. Zao)
 - Demonstrate Land 4DDA methods for land-state initial conditions
 - George Mason U. (P. Houser),
 - NASA/HSB (Peters-Lidard), NASA/GMAO (R. Reichle)
 - NESDIS/ORA (X. Zhan)
- Transition to operations
 - NCEP/EMC, AFWA, NESDIS

Changing focus of Land Arena of JCSDA:

- Early work focused on deriving new satellite-based global land surface characteristics
 - albedo, landuse class, vegetation phenology
- More recent work has focused on:
 - 1) Impact of above land datasets in models
 - especially in NCEP global model, but also WRF
 - 2) Reducing large differences between simulated and observed satellite Tb for sfc-sensitive channels
 - Improve physics of modeled land surface
 - Aerodynamic resistance, canopy resistance and skin temperature
 - Surface emissivity
 - 3) Actual land 4dda of satellite-based snow and soil moisture estimates
 - Kalman filters in NASA LIS system
 - Rescaling satellite soil moisture to that of model

JCSDA Thrusts over past year in NCEP/EMC Land Team

- Develop & demonstrate stand-alone driver for CRTM
 Next step now underway: add NASA LIS as land component
- Reduce bias in NCEP global forecast model (GFS) simulations of land surface skin temperature (LST)
 - Aerodynamic conductance
 - Thermal roughness length
- Test new NESDIS realtime weekly green vegetation fraction (GVF) product in GFS
- Refine MODIS IGBP 1-km landuse database
 - Add three tundra classes

Impact of new JCSDA global datasets of satellite-based land surface characteristics on NCEP global model

Order of testing in GFS at NCEP

- 1) <u>Albedo datasets</u> (focus of last year's presentation)
 - Snow-free (Boston U.)
 - Maximum albedo for deep snow (U. Arizona)
- 2) <u>Vegetation datasets</u> (a focus of this presentation)
 - Weekly realtime Green vegetation fraction GVF (NESDIS)
 - MODIS-based landuse (add tundra classes)
- 3) Improve GFS LST simulations (a focus of this presentation)
 - Upgrade aerodynamic resistance treatment in Noah LSM
- 4) Surface emissivity datasets (NRL, U. Maryland)
 - GFS: broadband in Noah LSM
 - CRTM: channel by channel

4DDA of Satellite Brightness Temperatures (Tb)

- GSI assimilates satellite observed Tb in various spectral channels (infrared & microwave)
 - Analysis increment is derived from the difference between forecast simulated Tb and satellite observed Tb
 - Simulated Tb is product of CRTM and GFS forecast of atmospheric states and earth surface states (land, ice, sea)

$$Tb_{p} = T_{surf} \varepsilon_{p} e^{-\tau(0,H)/} + T_{atm}^{\downarrow} (1 - \varepsilon_{p}) e^{-\tau(0,H)/\mu} + T_{atm}^{\uparrow},$$
with
$$T_{atm}^{\downarrow} = \int_{-H}^{0} T(z) [\alpha(z)/\mu] e^{-\tau(z,0)/\mu} dz + T_{cosm} e^{-\tau(0,H)/\mu}$$

$$T_{atm}^{\uparrow} = \int_{-0}^{H} T(z) [\alpha(z)/\mu] e^{-\tau(z,H)/\mu} dz.$$

$$\tau(z_{0}, z_{1}) = \int_{-z_{0}}^{z_{1}} \alpha(z) dz$$

$$\alpha = \text{atmospheric absorption}$$

For surface sensitive channels (so called "window channels"):

atmospheric absorption (α) is weak and Tskin & sfc emissivity (ξ) are key Sfc emissivity (ξ) is strong function of land surface states: Snow cover/density, vegetation cover/density, soil moisture amount, Soil moisture phase (frozen vs. liquid)

Surface Emissivity Module in JCSDA Community Radiative Transfer Model: CRTM (Sfc Emissivity as function of satellite sensor channel & incidence angle)

Specified surface emissivity via look-up tables OR physical OR empirical models, depending on spectral band and ocean / land / snow / sea-ice presence. Fuzh

Fuzhong Weng et al., NOAA/NESDIS

Develop and Demonstrate a stand-alone driver for CRTM

Weizhong Zheng NCEP/EMC

Assistance from Ron Vogel and Paul Van Delst

Develop and Demonstrate a stand-alone driver for CRTM:

- Accomplishments
 - 1. Developed a stand-alone CRTM driver
 - 2. Now adding LIS to CRTM
 - 3. Testing this CRTM driver to simulate brightness temperatures (Tb) that consistent with those of GSI/CRTM.
 - 4. Testing improvements to GFS LST and Tb simulations.

Structure of CRTM Driver

CRTM REL-1.1

beta version

Comparison of CRTM Driver and GSI/CRTM: Tb Simulation

This is to check if the CRTM driver works properly, given the same input data as GSI, except that GSI performs QC and 'thin' to reduce satellite data pixels.

Sensor: NOAA-18 AMSU_A Ch15 Case : 1800 UTC, July 1, 2007

GSI/CRTM

NOAA-18 AMSU-A, CHANNEL 15

Simulated Tb

30N

130W

220

120W

240

230

110W

260

270

250

100W

280

290

90W

300

310

80W

320 330

70W

Comparison of GSI/CRTM and CRTM Driver: Tb: Guess-Obs

Case: 18Z, 20070701

Note the large cool bias in simulated brightness temperature over arid western CONUS, which further study showed was a result of large cool bias in GFS simulated LST.

Assess and reduce GFS LST cold bias in warm arid regions

Weizhong Zeng, Helin Wei, Jesse Meng NCEP/EMC

> Xubin Zeng U. Arizona

Mean 18Z LST [K]

GOES Retrieval of LST

July 1 - 3, 2007 3-Day Mean

GFS Simulation of LST

Monthly Mean Difference: GOES-minus-GFS 18Z LST July 2007

LST [K] Verification at SURFRAD Sites, July 2007

SURFRAD Network

Summer PDF distribution: by Vegetation Type

<u>Use Stand-Alone CRTM Driver</u> to simulate AMSU-A Channel 15 with GFS input and compare to observed AMSU-A Channel 15

LST (Tskin) and Surface Sensible Heat Flux

<u>Sensible heat flux:</u> SH = $\rho CpCh (T_{skin} - Tair)$

Ch (m/sec) = (Ch*) x IVI = aerodynamic conductance Ch* is non-dimensional surface exchange coefficient IVI is the wind speed at same level as T_{air} T_{skin} is land surface skin temperature (LST)

- Errors in Ch and T_{skin} can offset each other to still yield reasonable sensible heat flux
- But CRTM surface emission module cannot tolerate large error in LST.

From PI Xubin Zeng: The role of surface roughness length for heat (Zot)

SH ~ $(Ta - Ts)/(r_{ah} + r_{ss})$ (Zeng and Dickinson 1998)

rah = f(Zom, stability)
rss = ln(Zom/Zot)/(ku*)

CLM: In(Zom/Zot)= α Re^{0.45} (Re = u_{*} Zom/v)

In GFS: In(Zom/Zot) = 0 (i.e. Zot = Zom)

Test of Z0t Scheme (Xubin Zeng) with GFS for Summer Case

- Model: GFS prediction system.
- Z0t : Z0T(I) = Z0M(I)*exp(-((1.-GVF(I))**b)*C21*CA*sqrt(USTAR(I)*0.01/(1.5E-05))))
- Case : 00Z, July 1, 2007; 72-h integration.
- Exps: Control run (Ctr) : Z0T(I) = Z0M(I)

Sensitivity runs (Sen) : Test different Z0t

Exp_01: b=4; C21=0.3 Exp_02: b=2; C21=0.5 Exp_03: b=2; C21=0.7 Exp_04: b=2; C21=0.9 Exp_05: b=2; C21=1.1 Exp_06: b=2; C21=1.5 Exp_07: b=4; C21=0.9

Weizhong Zheng

Mean 18Z LST [K]

GOES GOES: Mean Tsfc [K] 18Z 2007-07-01_03 24 50N 40N 30N 120W 110W 100W 90W 80W 70W 295 305 310 275 285 300 320 280

July 1 - 3, 2007 3-Day Mean

GFS-E06

Next Two Frames:

Comparison of Tb Simulation with GSI/CRTM: CTR and Exp06

This is to study if the LST improvement in GFS (Zot, Exp06) can also improve Tb simulation with GSI/CRTM. The result shows that more radiance data are used in GSI/CRTM after GFS LST improvement over the western CONUS. Sensor: NOAA-18 AMSU_A Ch15 Cases : July 1-3, 2007

Comparison of Tb Simulation between CTR and Exp06 (Zot)

Case: 18Z, 20070702

Tests of New NESDIS realtime weekly global Green Vegetation Fraction (GVF):

> GFS Impact Tests: Weizhong Zheng, Helin Wei NCEP/EMC

WRF Impact Tests: Yuhong Tian, Cheng-Zhi Zao NESDIS

New GVF Developed in NESDIS by Le Jiang, Wei Guo, Felix Kogan and Dan Tarpley Weekly Green Vegetation Fraction (GVF) Datasets

- <u>GVF in NCEP Operational GFS</u>: Monthly 0.14-deg (16-km) global monthly climatology of GVF from AVHRR. (Gutman & Ignatov, 1998).
- <u>New Weekly Realtime GVF</u>: AVHRR-based weekly global 0.144-deg (16-km) GVF (Jiang et al., 2007).
- The weekly GVF data set starts from 1981 to include AVHRR observations from NOAA 7, 9, 11, 14, 16, 17, and 18 satellites.
- <u>Two new datasets:</u> Weekly climatology GVF (1982-2005); Near real-time weekly GVF
- The new GVF datasets can potentially improve the NWP skills, especially during the spring growing season when vegetation has large variations.

Comparison of GVF Climatology Datasets: Old vs New

Real-time Weekly GVF Anomaly (real-time - Clim.) in CONUS

June-July 2006

GFS_T382L64 model results: 10 Cases from 20060716; 7days free forecast

GFS Impact Test: New GVF Climo minus Old GVF Climo

Sensitivity Test: Anomaly of Realtime Weekly GVF data 1800 UTC: Day 1

GFS Impact Test: Realtime GVF minus Realtime GVF Climo

WRF-ARW Model Simulation Experiments

- 10 Cases selected: 2006-07-16 to 2006-07-25 (10 days)
- For each day, 3-day free forecast with WRF-ARW

EXP1: Control run with old monthly climatology GVF
EXP2: Experiment run with new weekly climatology GVF
EXP3: Experiment run with near real-time weekly GVF

- **Results**
 - Study 1: New_Clim minus Old_Clim (EXP2 EXP1)
 - Study 2: New_real-time minus New_Clim (EXP3 EXP2)

WRF-ARW results: 10 Cases average from 20060716 to 0725 (3-day free forecast)

Study 1: New_Clim minus Old_Clim, 1800 UTC, Day 1 forecast

WRF-ARW results: 10 Cases average from 20060716 to 0725 (3-day free forecast)

Study 2: New_Real-time minus new_Clim, 1800 UTC, Day 1 forecast

Improved WRF-launcher 2-m temperature and RH forecasts using NESDIS new GVF data

2-m Relative Humidity (%)

continental USA

IGBP_MODIS + 3 TUNDRA 1 KM LAND COVER

Pls and Co-Pls: Vince Wong (NCEP/EMC) NWP Center Collaborators: Ken Mitchell

Accomplishments

3 tundra classes have been added to the MODIS 1km land cover data base under IGBP classification.

Corrections were made to some erroneous pixels of the savannah, woody savannah, deciduous needleleaf forest, and glacial ice classes. IGBP_MODIS+Tundra 1km Land Cover

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Dev	/eloped and Mosaic Lands (3)
Natural Vegetation (11) 1. Evergreen Needleleaf Forests 2. Evergreen Broadleaf Forests 3. Deciduous Needleleaf Forests 4. Deciduous Broadleaf Forests 5. Mixed Forests 6. Closed Shrublands 7. Open Shrublands 8. Woody Savannas 9. Savannas	12. Croplands 13. Urban and Built-Up Lands 14. Cropland/Natural Vegetation Mosaics nvegetated Lands (3) 15. Snow and Ice 16. Barren 17. Water Bodies ndra Lands (3)
10. Grasslands	18. Wooded Tundra
11. Permanent Wetlands	19. Mixed Tundra
	20. Bare Ground Tundra

Future Plan

This global landuse map is now ready for testing in GFS and CRTM.

IGBP_MODIS(Red):Wooded Tundra(18) IGBP_MODIS_Ori(Green):Open Shrubland(7)

IGBP_MODIS(Red):Mixed Tundra(19) IGBP_AVHER(Green):Open Shrubland(7)

Changing focus of Land Arena of JCSDA:

- Early work focused on deriving new satellite-based global land surface characteristics
 - albedo, landuse class, vegetation phenology
- More recent work has focused on:
 - 1) Impact of above land datasets in models
 - especially in NCEP global model, but also WRF
 - 2) Reducing large differences between simulated and observed satellite Tb for surface-sensitive channels
 - Improve physics of modeled land surface
 - Aerodynamic resistance, canopy resistance and skin temperature
 - Surface emissivity
 - 3) Actual land 4dda of satellite-based snow and soil moisture estimates
 - Kalman filters in NASA LIS system
 - Rescaling satellite soil moisture to that of model