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Benchmarking Optimization Software with COPS 3.0∗

Elizabeth D. Dolan†, Jorge J. Moré‡, and Todd S. Munson‡

Abstract

We describe version 3.0 of the COPS set of nonlinearly constrained optimization
problems. We have added new problems, as well as streamlined and improved most of
the problems. We also provide a comparison of the FILTER, KNITRO, LOQO, MINOS,
and SNOPT solvers on these problems.

Introduction

The COPS [12] test set provides a modest selection of difficult nonlinearly constrained op-

timization problems from applications in optimal design, fluid dynamics, parameter esti-

mation, and optimal control, among others. In this report we describe version 3.0 of the

COPS problems. The formulation and discretization of the original problems have been

streamlined and improved. We have also added new problems.

For each problem we discuss the formulation of the problem. We also present the

structural data in the table below in order to provide an approximate idea of the size and

sparsity of the problem.

Variables
Constraints
Bounds
Linear equality constraints
Linear inequality constraints
Nonlinear equality constraints
Nonlinear inequality constraints
Nonzeros in ∇2f(x)
Nonzeros in c′(x)

We include the results of computational experiments with the FILTER [13], KNITRO

[35], LOQO [33], MINOS [25], and SNOPT [17] solvers. As part of the benchmarking

process we have introduced an analyzer to help determine whether the quality of the

solution returned by any particular solver meets our expectations. The analyzer will be

described in a separate report. We have also introduced software scripts specifically designed

to benchmark this test set.
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Testing Methods

We have devised a set of Perl scripts for running a problem on each solver successively, so

as to minimize the effect of fluctuation in the machine load. The scripts track the wall-clock

time from the start of the solve, killing any process that runs for more than 1800 seconds,

which we declare unsuccessful. We cycle through all problem variants, recording the wall-

clock time as well as the combination of AMPL system time (to interpret the model and

compute varying amounts of derivative information required by each solver) and solver time.

We consider the times returned by AMPL definitive, but we initially record the wall-clock

times to check for discrepancies in the solvers’ methods of calculating execution time. We

include no problem results for which the AMPL time and the wall-clock time differ by more

than ten percent. To further ensure consistency, we have verified that the AMPL time

results we present could be reproduced to within five percent accuracy.

We examine the solver result number returned by each AMPL solver, but a successful

return code is only the first step we take to check on the solver’s work. As each solve

completes, we run the analyzer to check the solution written. If the feasibility and op-

timality tests fail to meet our standards, we tighten whatever tolerance option applies for

that solver by an order of magnitude and rerun the job. If the tolerance reaches 1.0e-16

and the solution reported does not meet our goals, then the solver fails the benchmark test,

and we use the symbol l in the appropriate table. We also check the solution returned by

the AMPL solver when an unsuccessful return code is reported. These cases are marked

with the symbol † in the appropriate table. Sometimes the benchmark test indicates that

a solution has been obtained to within our tolerances.

Regarding solver options, we also increase iteration, super-basics, and memory size limits

that might artificially cause a solver to fail. Printed output is reduced to its lowest level

for each solver. The testing method described is more strict than anything we have done in

the past, but the results we obtained from default options varied widely in quality. We felt

that some independent measurement, while its specifics might be argued, would enhance

the worth of the benchmark as a whole.

All computations were performed on an Intel Pentium 4 1.8GHz CPU with 512M of

RAM and a 256Kb cache, running Red Hat 7.3. The tested solvers include

filterSQP, ASL (20020923)

KNITRO 3.0, ASL (20020905)

LOQO 6.02, ASL (20020221)

MINOS 5.5, ASL (20020614)

SNOPT 6.1, ASL (20020614)

The source code for all the problems in this report and for the analyzer is included with

the distribution [12] of COPS 3.0.
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1 Largest Small Polygon

Find the polygon of maximal area, among polygons with nv sides and diameter d ≤ 1.

Formulation

This is a classic problem (see, for example, Graham [19]). If (ri, θi) are the coordinates of

the vertices of the polygon, then we must maximize

f(r, θ) = 1

2

nv−1
∑

i=1

ri+1ri sin(θi+1 − θi)

subject to the constraints

r2
i + r2

j − 2rirj cos(θi − θj) ≤ 1, 1 ≤ i < nv, i < j ≤ nv,

θi ≤ θi+1, 1 ≤ i < nv,
θi ∈ [0, π], ri ≥ 0, 1 ≤ i ≤ nv.

Our implementation follows [16] and fixes the last vertex by setting rnv = 0 and θnv = π.

By fixing a vertex at the origin, we can add the bounds ri ≤ 1.

Graham [19] showed that the optimal solution is regular for odd n but not regular for

even n except n = 4. Another interesting feature of this problem is the presence of order n2
v

nonlinear nonconvex inequality constraints. We also note that as nv → ∞, we expect the

maximal area to converge to the area of a unit-diameter circle, π/4 ≈ 0.7854. This problem

has many local minima. For example, for nv = 4 a square with sides of length 1/
√

2 and an

equilateral triangle with another vertex added at distance 1 away from a fixed vertex are

both global solutions with optimal value f = 1

2
. Indeed, the number of local minima is at

least O(nv!). Thus, general solvers are usually expected to find only local solutions. Data

for this problem appears in Table 1.1.

Table 1.1: Largest-small polygon problem data

Variables 2(nv − 1)
Constraints ( 1

2
nv + 1)(nv − 1) − 1

Bounds 2(nv − 1)
Linear equality constraints 0
Linear inequality constraints nv − 2
Nonlinear equality constraints 0
Nonlinear inequality constraints 1

2
nv(nv − 1)

Nonzeros in ∇2f(x) 11(nv − 1) − 8
Nonzeros in c′(x) 2nv(nv − 1) − 2

Performance

Results for the AMPL implementation are summarized in Table 1.2. A polygon with almost

equal sides is the starting point. Global solutions for several nv are shown in Figure 1.1.
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Table 1.2: Performance on largest small polygon problem

Solver nv = 50 nv = 100 nv = 200

FILTER 27.64 s 555.2 s ‡
f 7.66131e-01 7.77239e-01 ‡

c violation 8.88e-16 1.17e-14 ‡
optimality 8.96e-07 9.90e-07 ‡
KNITRO 1.41 s 8.99 s 59.53 s

f 7.60725e-01 7.37119e-01 6.74980e-01
c violation 0.00e+00 0.00e+00 0.00e+00
optimality 7.53e-07 3.99e-07 2.01e-07

LOQO 14.39 s ‡ ‡
f 7.63694e-01 ‡ ‡

c violation 1.08e-10 ‡ ‡
optimality 1.02e-10 ‡ ‡
MINOS 5.6 s 121.3 s 223.94 s

f 7.66297e-01 6.79085e-01 6.57163e-01†
c violation 8.03e-14 1.75e-13 2.66e-15†
optimality 6.32e-08 9.50e-10 9.55e-02†
SNOPT 4.34 s 69.35 s ‡

f 7.84015e-01 7.85023e-01 ‡
c violation 1.11e-10 1.78e-11 ‡
optimality 8.30e-07 1.35e-07 ‡
†Errors. ‡Timed out. lFailed benchmark tests.
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Figure 1.1: Polygons of maximal area with nv = 6, 10, 20 (left, center, right)
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2 Distribution of Electrons on a Sphere

Given np electrons, find the equilibrium state distribution (of minimal Coulomb potential)

of the electrons positioned on a conducting sphere.

Formulation

This problem, known as the Thomson problem of finding the lowest energy configuration of

np point charges on a conducting sphere, originated with Thomson’s plum pudding model

of the atomic nucleus. This problem is representative of an important class of problems in

physics and chemistry that determine a structure with respect to atomic positions.

The potential energy for np points (xi, yi, zi) is defined by

f(x, y, z) =

np−1
∑

i=1

np
∑

j=i+1

(

(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2
)−1

2 ,

and the constraints on the np points are

x2
i + y2

i + z2
i = 1, i = 1, . . . , np.

Data for this problem appears in Table 2.1.

This problem has many local minima at which the objective value is relatively close to

the objective value at the global minimum. Experimental and theoretical results [24, 27]

show that

min
{

f(v1, . . . , vnp) : ‖vi‖ = 1, 1 ≤ i ≤ np

}

≥ 1

2
n2

p(1 − ε), 0 ≤ ε ≤
(

1

np

)1/2

.

Also, the number of local minima grows exponentially with np. Thus, determining the

global minimum is computationally difficult, and solvers are usually expected to find only

a local minimum.

Table 2.1: Electrons on a sphere problem data

Variables 3np

Constraints np

Bounds 0
Linear equality constraints 0
Linear inequality constraints 0
Nonlinear equality constraints np

Nonlinear inequality constraints 0
Nonzeros in ∇2f(x) 9n2

p

Nonzeros in c′(x) 3np

Performance

Results for the AMPL implementation are summarized in Table 2.2. The starting point is

a quasi-uniform distribution of the points on a unit sphere. The best known solution for

np = 100 is shown in Figure 2.1.
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Table 2.2: Performance on electrons on a sphere problem

Solver np = 50 np = 100 np = 200

FILTER 34.51 s 203.82 s ‡
f 1.05518e+03 4.44841e+03 ‡

c violation 5.55e-16 1.22e-15 ‡
optimality 6.08e-07 9.04e-07 ‡
KNITRO 0.54 s 3.12 s 20.76 s

f 1.05518e+03 4.44847e+03 1.84390e+04
c violation 1.11e-16 2.22e-16 1.66e-16
optimality 5.89e-08 4.32e-08 3.94e-07

LOQO 7.78 s ‡ ‡
f 1.05518e+03 ‡ ‡

c violation 2.77e-08 ‡ ‡
optimality 6.35e-07 ‡ ‡
MINOS 4.71 s ‡ 182.39 s

f 1.05518e+03 ‡ 8.52026e+03†
c violation 5.25e-14 ‡ 1.00e+00†
optimality 1.62e-07 ‡ 1.00e+00†
SNOPT 1.31 s 10.42 s 103.1 s

f 1.05518e+03 4.44847e+03 1.84389e+04
c violation 1.47e-13 1.48e-13 1.49e-13
optimality 5.85e-07 5.97e-07 1.11e-07

†Errors. ‡Timed out. lFailed benchmark tests.

Figure 2.1: Optimal distribution of electrons on a sphere, np = 100

6



3 Shape Optimization of a Cam

Maximize the area of the valve opening for one rotation of a convex cam with constraints

on the curvature and on the radius of the cam.

Formulation

The formulation of this problem is due to Anitescu and Serban [1]. We assume that the

shape of the cam is circular over an angle of 6

5
π of its circumference, with radius rmin. The

design variables ri, i = 1, . . . , n , represent the radius of the cam at equally spaced angles

distributed over an angle of 2

5
π. We maximize the area of the valve opening by maximizing

f(r) = πr2
v

(

1

n

n
∑

i=1

ri

)

subject to the constraints on r. The design parameter rv is related to the geometry of the

valve. We also require that rmin ≤ ri ≤ rmax. The requirement that the cam be convex is

expressed by requiring that

area(ri−1, ri+1) ≤ area(ri−1, ri) + area(ri, ri+1),

where area(ri, rj) is the area of the triangle defined by the origin and the points ri and rj

on the cam surface. This convexity constraint can also be expressed as

2ri−1ri+1 cos(θ) ≤ ri(ri−1 + ri+1), i = 0, . . . , n + 1,

where r−1 = r0 = rmin, rn+1 = rmax, rn+2 = rn and θ = 2π/5(n + 1). The curvature

requirement is expressed by

−α ≤
(

ri+1 − ri

θ

)

≤ α, i = 0, . . . , n.

This is a departure from [1], where the curvature constraint was expressed in terms of

(ri+1 − ri)
2. Data for this problem appears in Table 3.1.

Table 3.1: Optimal design of a cam problem data

Variables n

Constraints 2n

Bounds n

Linear equality constraints 0
Linear inequality constraints n − 1
Nonlinear equality constraints 0
Nonlinear inequality constraints n + 1
Nonzeros in ∇2f(x) 0
Nonzeros in c′(x) 5n − 3

We follow [1] and use rmin = 1.0 and rmax = 2.0 for the bounds on r, rv = 1.0 in the

area of the valve, and α = 1.5 in the curvature constraint. Since the optimal cam shape

is symmetric, we consider only half of the design angle. The problem was originally [1]

formulated for the full angle of 4

5
π.
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Performance

Results for the AMPL implementation are summarized in Table 3.2. We use a starting

guess of ri ≡ (rmin + rmax)/2. The cam shape for α = 1.5 appears in Figure 3.1. We note

that the number of active constraints increases with α up to a threshold of α1 ≈ 3.0, after

which increasing α does not change the optimal solution.

Table 3.2: Performance on optimal cam shape problem

Solver n = 800 n = 1000 n = 1200

FILTER 2.47 s 3.84 s 5.71 s
f 4.27427e+00 4.27399e+00 4.27380e+00

c violation 8.88e-16 1.33e-15 8.88e-16
optimality 1.08e-12 1.46e-12 2.09e-12

KNITRO 8.91 s 14.87 s 21.13 s
f 4.27427e+00 4.27397e+00 4.27380e+00

c violation 0.00e+00 0.00e+00 0.00e+00
optimality 1.58e-10 1.23e-12 5.27e-12

LOQO 5.11 s 53.19 s 3.86 s
f 4.27427e+00 4.27399e+00 4.27380e+00

c violation 6.57e-14 1.68e-14 9.85e-14
optimality 1.08e-12 1.68e-12 6.45e-10

MINOS 2.32 s 3.17 s 4.21 s
f 4.27427e+00 4.27399e+00† 4.27380e+00

c violation 2.28e-10 1.33e-15† 1.33e-15
optimality 1.08e-12 3.14e-03† 6.16e-10

SNOPT 5.29 s 8.71 s 11.91 s
f 4.27427e+00 4.27399e+00 4.27380e+00

c violation 1.79e-15 9.16e-12 2.97e-13
optimality 4.00e-11 1.23e-12 4.11e-11

†Errors. ‡Timed out. lFailed benchmark tests.

Figure 3.1: Cam shape for α = 1.5.
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4 Hanging Chain

Find the chain (of uniform density) of length L suspended between two points with minimal

potential energy.

Implementation

This classical problem (see Cesari [10, pages 126-127]) was suggested by Hans Mittelmann.

In this problem we need to determine a function x(t), the shape of the chain, that minimizes

the potential energy
∫

1

0

x
(

1 + (x′)2
)1/2

dt

subject to the constraint on the length of the chain,
∫

1

0

(

1 + (x′)2
)1/2

dt = L,

and the end conditions x(0) = a and x(1) = b. Various formulations of this problem are

possible. We use a formulation in terms of the control x′
1 = u, and the partial potential

energy function

x2(t) =

∫ t

0

x1(s)
(

1 + u(s)2
)1/2

ds.

This definition leads to an end-point formulation of minimizing the total potential energy

x2(1) subject to the differential equations

x′
1 = u, x′

2 = x1(1 + u2)1/2, x′
3 = (1 + u2)1/2.

Discretization is done using a uniform time step and the trapezoidal rule for the integration

of the system over nh intervals. Data for this problem appears in Table 4.1.

Table 4.1: Hanging chain problem data

Variables 4nh − 2
Constraints 3nh

Bounds 0
Linear equality constraints nh

Linear inequality constraints 0
Nonlinear equality constraints 2nh

Nonlinear inequality constraints 0
Nonzeros in ∇2f(x) 0
Nonzeros in c′(x) 14nh − 7

Performance

Results for the AMPL implementation are summarized in Table 4.2 with a = 1, b = 3, and

L = 4. The starting point is the quadratic

x1(t) = (2|b − a|) t(t − 2tm) + a,
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where tm = 0.25 if b > a and tm = 0.75 otherwise, evaluated at the mesh points. This

choice is convex and satisfies the boundary data. The control function u is set to x′
1, while

x2(t) = x1(t)u(t) and x3(t) = u(t). The optimal chain is shown in Figure 4.1.

Table 4.2: Performance on hanging chain problem

Solver nh = 200 nh = 400 nh = 800

FILTER 20.22 s 35.35 s 124.83 s
f 5.06891e+00 5.06862e+00 5.06852e+00

c violation 6.27e-12 2.31e-10 9.24e-10
optimality 1.07e-08 3.03e-08 4.61e-08

KNITRO 0.13 s 0.29 s 0.59 s
f 5.06891e+00 5.06862e+00 5.06852e+00

c violation 8.42e-10 5.59e-10 3.34e-10
optimality 6.58e-10 4.16e-10 2.15e-10

LOQO 0.37 s 0.79 s 1.75 s
f 5.06891e+00 5.06862e+00 5.06852e+00

c violation 4.22e-09 5.40e-09 8.47e-08
optimality 3.43e-10 4.75e-10 1.52e-09

MINOS 8.02 s 33.19 s 150.54 s
f 5.06891e+00 5.06862e+00 5.06852e+00

c violation 2.51e-12 1.79e-10 1.16e-09
optimality 3.54e-07 8.32e-07 1.59e-07

SNOPT 6.31 s 42.71 s 125.98 s
f 5.06891e+00 5.06862e+00 5.06852e+00

c violation 4.86e-09 7.67e-10 1.14e-09
optimality 5.24e-07 1.55e-07 1.57e-07

†Errors. ‡Timed out. lFailed benchmark tests.
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Figure 4.1: Hanging chain of length L = 4
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5 Isometrization of α-pinene

Determine the reaction coefficients in the thermal isometrization of α-pinene. The linear

kinetic model [5] is defined in terms of reaction coefficients θi ≥ 0 via

y′1 = −(θ1 + θ2)y1

y′2 = θ1y1

y′3 = θ2y1 − (θ3 + θ4)y3 + θ5y5 (5.1)

y′4 = θ3y3

y′5 = θ4y3 − θ5y5,

Initial conditions for (5.1) are known. The problem is to minimize

8
∑

j=1

‖y(τj ; θ) − zj‖2, (5.2)

where zj are concentration measurements for y at time points τ1, . . . , τ8.

Formulation

Our formulation of the α-pinene problem as an optimization problem follows [31, 3]. We

use a k-stage collocation method, a uniform partition with nh subintervals of [0, τ8], and

the standard [2, pages 247–249] basis representation,

pπ(t) = vi +
k
∑

j=1

(t − ti)
j

j! hj−1
wij , t ∈ [ti, ti+1],

for the components of the solution y of (5.1). The constraints in the optimization problem

are the initial conditions in (5.1), the continuity conditions, and the collocation equations.

The continuity equations at each interior grid point are a set of 5(nh − 1) linear equations.

The collocation equations are a set of 5knh nonlinear equations obtained by requiring that

the collocation approximation satisfy (5.1) at the collocation points. Data for this problem

appears in Table 5.1. The number of nonzeros in the Hessian of the objective function is

an upper bound. Fewer nonzeros are present if the times at which the measurements were

taken coincide with the grid points.

Table 5.1: Isometrization of α-pinene data

Variables 5(k + 1)hh

Constraints 5(k + 1)nh − 5
Bounds 5
Linear equality constraints 5nh − 5
Linear inequality constraints 0
Nonlinear equality constraints 5knh

Nonlinear inequality constraints 0
Nonzeros in ∇2f(x) 40(k + 1)2

Nonzeros in c′(x) k(10k + 23)nh + 10nh − 13k − 15
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Performance

We provide results for the AMPL formulation with k = 3 in Table 5.2. The initial values

for the θ parameters are θi = 0.0. The initial basis parameters are chosen so that the

collocation approximation is piecewise constant and interpolates the data. The solution

and data are shown in Figure 5.1.

Table 5.2: Performance on isometrization problem

Solver nh = 100 nh = 200 nh = 400

FILTER 27.76 s 214.03 s 1296.29 s
f 1.98721e+01 1.98721e+01 1.98721e+01

c violation 2.21e-14 3.58e-12 3.91e-14
optimality 9.83e-10 2.28e-09 2.00e-09

KNITRO 0.47 s 1 s 2.42 s
f 1.98721e+01 1.98721e+01 1.98721e+01

c violation 2.18e-11 1.94e-11 6.78e-12
optimality 9.58e-08 1.52e-08 1.42e-08

LOQO 1 s 2.09 s 4.83 s
f 1.98721e+01 1.98721e+01 1.98721e+01

c violation 1.06e-11 8.80e-12 2.35e-12
optimality 2.79e-08 1.47e-09 2.86e-09

MINOS 2.19 s 20.62 s 53.47 s
f 1.98721e+01 4.38234e+17† 1.98721e+01

c violation 3.67e-10 1.00e+00† 7.71e-10
optimality 2.15e-08 1.00e+00† 5.45e-07

SNOPT 8.47 s 31.61 s 96.07 s
f 1.98721e+01 1.98721e+01† 1.98721e+01

c violation 1.07e-09 4.29e-10† 1.29e-09
optimality 4.28e-07 7.18e-07† 2.03e-09

†Errors. ‡Timed out. lFailed benchmark tests.
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Figure 5.1: Solution and data for the α-pinene problem
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6 Marine Population Dynamics

Given estimates of the abundance of the population of a marine species at each stage (for

example, nauplius, juvenile, adult) as a function of time, determine stage specific growth

and mortality rates. The model for the population dynamics of the ns-stage population is

y′j = gj−1yj−1 − (mj + gj)yj , 1 ≤ j ≤ ns, (6.1)

where mi and gi are the unknown mortality and growth rates at stage i with g0 = gns = 0.

This model assumes that the species eventually dies or grows into the next stage, with

the implicit assumption that the species cannot skip a stage. Initial conditions for the

differential equations are unknown, since the stage abundance measurements at the initial

time might also be contaminated with experimental error. We minimize the error between

computed and observed data,

nm
∑

j=1

‖y(τj ; m, g) − zj‖2,

where zj are the stage abundance measurements. This problem is based on the work of

Rothschild, Sharov, Kearsley, and Bondarenko [26].

Formulation

Our formulation of the marine population dynamics uses a k-stage collocation method, a

uniform partition with nh subintervals of [0, τnm ], and the standard [2, pages 247–249] basis

representation,

pπ(t) = vi +
k
∑

j=1

(t − ti)
j

j! hj−1
wij , t ∈ [ti, ti+1],

for the components of the solution y of (6.1). The constraints in the optimization problem

are the continuity conditions and the collocation equations. The continuity equations are a

set of ns(nh − 1) linear equations. The collocation equations are a set of k ns nh nonlinear

equations obtained by requiring that the collocation approximation satisfy (6.1) at the

collocation points.

Table 6.1: Marine population dynamics problem data

Variables (k + 1)nsnh + 2ns − 1
Constraints (k + 1)nsnh − ns

Bounds 2ns − 1
Linear equality constraints ns(nh − 1)
Linear inequality constraints 0
Nonlinear equality constraints knsnh

Nonlinear inequality constraints 0
Nonzeros in ∇2f(x) (k + 1)2nsnm

Nonzeros in c′(x) (k2 + 3k + 1)(2ns − 1)nh + nh − (k + 2)ns

13



The parameters in the problem are the nsnh initial conditions, the ns mortality rates, the

ns−1 growth rates, and the knsnh basis parameters in the representation of the collocation

approximation. Data for this problem appears in Table 6.1. The number of nonzeros in

the Hessian of the objective function is an upper bound. Fewer nonzeros are present if the

times at which the measurements were taken coincide with the grid points.

We do not impose any initial conditions on the differential equations, since initial mea-

surements are usually contaminated with experimental error. Introducing these extra de-

grees of freedom into the problem formulation should allow solvers to find a better fit to

the data. A significant difference between this problem and other parameter estimation

problems is that the population dynamics data usually contains large observation errors.

Performance

We provide results for the AMPL formulation with k = 1 in Table 6.2. We use a simulated

dataset with ns = 8 stages. The initial basis parameters are chosen so that the collocation

approximation is piecewise constant and interpolates the data. For this problem we are

using a single collocation point (k = 1), since in this case the number of parameters grows

quickly with the number of stages. The quality of the solution does not seem to be affected,

at least as measured by the population curves and the mortality and growth parameters.

Table 6.2: Performance on marine population dynamics problem

Solver nh = 100 nh = 200 nh = 400

FILTER 26.62 s 155.97 s 856.31 s
f 1.97462e+07 1.97464e+07 1.97465e+07

c violation 8.14e-12 1.61e-11 2.03e-11
optimality 2.75e-08 1.56e-08 3.75e-08

KNITRO 1.02 s 1.95 s 4.65 s
f 1.97462e+07 1.97464e+07 1.97465e+07

c violation 4.13e-10 7.63e-10 9.80e-08
optimality 1.09e-07 5.80e-08 3.91e-08

LOQO 0.89 s 2.07 s 5.4 s
f 1.97462e+07 1.97464e+07 1.97465e+07

c violation 4.24e-10 1.21e-09 7.37e-09
optimality 1.02e-07 1.06e-07 3.09e-07

MINOS 1.12 s 1.29 s 2.98 s
f 1.97462e+07 4.45228e+141† 2.66644e+72†

c violation 3.21e-10 1.00e+00† 1.00e+00†
optimality 8.32e-08 1.00e+00† 1.00e+00†
SNOPT 5.66 s 14.35 s 57.16 s

f 1.97462e+07† 1.97464e+07 1.97465e+07
c violation 7.27e-12† 8.18e-12 9.09e-12
optimality 3.74e-07† 3.09e-07 3.20e-07

†Errors. ‡Timed out. lFailed benchmark tests.

The graph on the left of Figure 6.1 shows the populations for stages 1, 2, 5, and 6, while

the graph on the right shows the populations for stages 3, 4, 7, and 8. In both cases, the

fit between the model and the data is not always tight. Figure 6.2 plots the mortality and
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growth parameters for the eight stages. Mortality parameters are marked ∗, while growth

parameters are marked ◦. The mortality parameters for stages 5 and 6 are not zero, but

they are on the order of 10−3 and 10−9, respectively.
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Figure 6.1: Marine populations for stages 1, 2, 5, 6 (left) and 3, 4, 7, 8 (right)
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Figure 6.2: Mortality (∗) and growth (◦) parameters for the marine populations stages
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7 Flow in a Channel

Analyze the flow of a fluid during injection into a long vertical channel, assuming that the

flow is modeled by the boundary value problem

u′′′′ = R (u′u′′ − uu′′′) , 0 ≤ t ≤ 1,
u(0) = 0, u(1) = 1, u′(0) = u′(1) = 0,

(7.1)

where u is the potential function, u′ is the tangential velocity of the fluid, and R is the

Reynolds number.

Formulation

We use a k-stage collocation method to formulate this problem as an optimization problem

with a constant merit function and equality constraints representing the solution of (7.1).

We use a uniform partition with nh subintervals of [0, 1], and the standard [2, pages 247–249]

basis representation,

pπ(t) =
m
∑

j=1

(t − ti)
j−1

(j − 1)!
vij +

k
∑

j=1

(t − ti)
j+m−1

(j + m − 1)! hj−1
wij , t ∈ [ti, ti+1],

for u. We require the continuity conditions that pπ ∈ Cm−1, where m is the order of the

differential equation.

The constraints in the optimization problem are the initial conditions in (7.1), the

continuity conditions, and the collocation equations. There are m = 4 initial conditions.

The continuity equations are a set of m(nh − 1) linear equations. The collocation equations

are a set of k nh nonlinear equations obtained by requiring that u satisfy (7.1) at the

collocation points ξij = ti +hρj for i = 1, . . . , nh and j = 1, . . . , k. The collocation points ρj

are the roots of the kth degree Legendre polynomial. The parameters in the optimization

problem are the (m + k)nh parameters vij and wij in the representation of u. Data for this

problem appears in Table 7.1.

Table 7.1: Flow in a channel problem data

Variables (k + 4)nh − 2
Constraints (k + 4)nh − 2
Bounds 0
Linear equality constraints 4nh − 2
Linear inequality constraints 0
Nonlinear equality constraints knh

Nonlinear inequality constraints 0
Nonzeros in ∇2f(x) 0
Nonzeros in c′(x) (k2 + 8k + 14)nh − 4k − 10
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Performance

Results for the AMPL implementation with k = 4 and R = 10 are summarized in Table 7.2.

The starting point is the function t2(3 − 2t) evaluated at the mesh points. Solutions for

several R are shown in Figure 7.1. This problem is easy to solve for small Reynolds numbers

but becomes increasingly difficult to solve as R increases.

Table 7.2: Performance on flow in channel problem

Solver nh = 200 nh = 400 nh = 800

FILTER 9.61 s 56.77 s 343.61 s
f 1.00000e+00 1.00000e+00 1.00000e+00

c violation 1.29e-11 3.54e-14 2.64e-11
optimality 0.00e+00 0.00e+00 0.00e+00

KNITRO 0.63 s 1.31 s 2.71 s
f 1.00000e+00 1.00000e+00 1.00000e+00

c violation 2.27e-12 2.26e-12 2.35e-12
optimality 0.00e+00 0.00e+00 0.00e+00

LOQO 1.29 s 3.26 s 8.81 s
f 1.00000e+00 1.00000e+00 1.00000e+00

c violation 8.80e-10 4.85e-09 4.37e-09
optimality 0.00e+00 0.00e+00 0.00e+00

MINOS 1.16 s 4.04 s 13.08 s
f 1.00000e+00 1.00000e+00 1.00000e+00

c violation 2.01e-13 3.47e-13 4.70e-08
optimality 0.00e+00 0.00e+00 0.00e+00

SNOPT 5.3 s 17.46 s 57.77 s
f 1.00000e+00 1.00000e+00† 1.00000e+00†

c violation 4.82e-13 3.82e-07† 4.99e-07†
optimality 0.00e+00 0.00e+00† 0.00e+00†
†Errors. ‡Timed out. lFailed benchmark tests.
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Figure 7.1: Tangential velocity u′ for Reynolds numbers R = 0, 102, 104
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8 Robot Arm

Minimize the time taken for a robot arm to travel between two points.

Formulation

This problem originated in the thesis of Monika Mössner-Beigel (Heidelberg University). In

her formulation the arm of the robot is a rigid bar of length L that protrudes a distance

ρ from the origin to the gripping end and sticks out a distance L − ρ in the opposite

direction. If the pivot point of the arm is the origin of a spherical coordinate system, then

the problem can be phrased in terms of the length ρ of the arm from the pivot, the horizontal

and vertical angles (θ, φ) from the horizontal plane, the controls (uρ, uθ, uφ), and the final

time tf . Bounds on the length and angles are

ρ(t) ∈ [0, L], |θ(t)| ≤ π, 0 ≤ φ(t) ≤ π,

and for the controls,

|uρ| ≤ 1, |uθ| ≤ 1, |uφ| ≤ 1.

The equations of motion for the robot arm are

Lρ′′ = uρ, Iθθ
′′ = uθ, Iφφ′′ = uφ, (8.1)

where I is the moment of inertia, defined by

Iθ =
((L − ρ)3 + ρ3)

3
sin(φ)2, Iφ =

((L − ρ)3 + ρ3)

3
.

The boundary conditions are

ρ(0) = ρ(tf ) = 4.5, θ(0) = 0, θ(tf ) =
2π

3
, φ(0) = φ(tf ) =

π

4
,

ρ′(0) = θ′(0) = φ′(0) = ρ′(tf ) = θ′(tf ) = φ′(tf ) = 0.

This model ignores the fact that the spherical coordinate reference frame is a noninertial

frame and should have terms for Coriolis and centrifugal forces.

Implementation

In the implementation of Vanderbei [32] the controls u are eliminated by substitution, and

thus the equality constraints in (8.1) become the inequalities

|Lρ′′| ≤ 1, |Iθθ
′′| ≤ 1, |Iφφ′′| ≤ 1.

In this implementation (8.1) is expressed in terms of a first-order system with the additional

variables ρ′, θ′, and φ′. Discretization is done with a uniform time step and the trapezoidal

rule over nh intervals. Data for this problem is shown in Table 8.1.
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Table 8.1: Robot arm problem data

Variables 9(nh + 1) − 11
Constraints 6nh

Bounds 6nh

Linear equality constraints 0
Linear inequality constraints 0
Nonlinear equality constraints 6nh

Nonlinear inequality constraints 0
Nonzeros in ∇2f(x) 0
Nonzeros in c′(x) 36nh − 26

Performance

Results for the AMPL implementation appear in Table 8.2. All solvers were given the same

initial values. The initial values for ρ and φ were set to the functions ρ ≡ 4.5 and φ ≡ π/4

evaluated at the grid points. Similarly, initial values for θ were set to the discrete version

of the parabola

θ(t) =
2π

3

(

t

tf

)2

,

which matches three of the boundary conditions. The initial values for all the controls were

set to zero, and tf = 1 initially.

Table 8.2: Performance on robotic arm problem

Solver nh = 200 nh = 400 nh = 800

FILTER 6.09 s 34.32 s 182.28 s
f 9.14138e+00 9.14101e+00 9.14093e+00

c violation 1.43e-09 1.51e-10 4.02e-15
optimality 2.12e-14 4.48e-14 3.10e-14

KNITRO 0.98 s 2.58 s 6.25 s
f 9.14138e+00 9.14101e+00 9.14093e+00

c violation 1.38e-11 2.47e-13 1.24e-13
optimality 3.29e-14 2.66e-14 3.64e-14

LOQO 364.28 s 207.62 s ‡
f -1.98956e+03† -1.79892e+07† ‡

c violation 1.00e+00† 2.16e-07† ‡
optimality 9.99e-01† 1.00e+00† ‡
MINOS 6.38 s 25.81 s 107.21 s

f 9.14138e+00 9.14101e+00 9.14125e+00†
c violation 2.67e-12 2.34e-12 1.18e-11†
optimality 5.32e-15 3.55e-15 2.63e-05†
SNOPT 2.86 s 10.17 s 102.32 s

f 9.14138e+00 9.14101e+00 9.14093e+00
c violation 4.44e-09 4.76e-09 2.86e-13
optimality 6.21e-15 1.34e-14 6.57e-14

†Errors. ‡Timed out. lFailed benchmark tests.
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Figure 8.1 shows the variables ρ, θ, φ for the robot arm as a function of time. We also

show in Figure 8.2 the controls uρ, uθ, uφ as a function of time. Note that the controls for

the robot arm are bang-bang. Also note that the functions ρ, θ, φ for the robot arm are

continuously differentiable, but since the second derivatives are directly proportional to the

controls, the second derivatives are piecewise continuous.
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Figure 8.1: Variables ρ, θ, φ for the robot arm as a function of time
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Figure 8.2: Control variables uρ, uθ, uφ for the robot arm as a function of time
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9 Particle Steering

Minimize the time taken for a particle, acted upon by a thrust of constant magnitude, to

achieve a given altitude and terminal velocity.

Formulation

The equations of motion are

ÿ1 = a cos(u), ÿ2 = a sin(u), (9.1)

where (y1, y2) is the position of the particle, u is the control angle with

|u(t)| ≤ π

2
,

and a is the constant magnitude of thrust. The particle is initially at rest so that

y1(0) = y2(0) = ẏ1(0) = ẏ2(0) = 0.

The problem is to minimize the travel time tf so that the particle achieves a given height

y2(tf ) and terminal velocity (ẏ1(tf ), ẏ2(tf )).

This is a classical (see Bryson and Ho [6, pages 59–62]) problem in dynamic optimization.

We use a = 100 for the magnitude of thrust and the boundary conditions [4]

y2(tf ) = 5, ẏ1(tf ) = 45, ẏ2(tf ) = 0.

Discretization is done using a uniform time step and the trapezoidal rule for the integration

of the system over nh intervals. Data for this problem is shown in Table 9.1.

Table 9.1: Particle steering problem data

Variables 5nh − 1
Constraints 4nh

Bounds nh + 2
Linear equality constraints 0
Linear inequality constraints 0
Nonlinear equality constraints 4nh

Nonlinear inequality constraints 0
Nonzeros in ∇2f(x) 0
Nonzeros in c′(x) 20nh − 11

Performance

Results for the AMPL implementation are given in Table 9.2. The initial values for y2 and

y3 = ẏ1 are chosen as the functions

y1(t) = 5

(

t

tf

)

, y3(t) = 45

(

t

tf

)

.
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Table 9.2: Performance on particle steering problem

Solver nh = 200 nh = 400 nh = 800

FILTER 16.88 s 73.36 s 840.4 s
f 5.54577e-01 5.54572e-01 5.54571e-01

c violation 1.63e-09 5.80e-11 6.09e-10
optimality 4.89e-08 1.67e-08 4.79e-08

KNITRO 0.32 s 0.59 s 1.55 s
f 5.54577e-01 5.54572e-01 5.54571e-01

c violation 4.32e-08 1.74e-10 1.27e-08
optimality 1.50e-07 7.68e-07 3.20e-08

LOQO 1159.27 s ‡ ‡
f 7.22390e-01† ‡ ‡

c violation 1.24e-01† ‡ ‡
optimality 2.27e-03† ‡ ‡
MINOS 4.02 s 19.58 s 13.54 s

f 5.54577e-01 5.54572e-01 0.00000e+00†
c violation 4.11e-08 1.20e-08 1.00e+00†
optimality 5.58e-08 1.10e-07 5.40e-15†
SNOPT 10.02 s 49.57 s 245.19 s

f 5.54577e-01 5.54572e-01 5.54571e-01
c violation 5.98e-10 6.68e-10 5.71e-10
optimality 7.12e-08 1.15e-07 1.29e-07

†Errors. ‡Timed out. lFailed benchmark tests.

Initial values for y2, y4 = ẏ2, and u are set to zero. The initial value for the final time is

tf = 1. Plots of the height y2 and control u as a function of the horizontal position y1 are

in Figure 9.1.
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Figure 9.1: Height and control as a function of position for the particle steering problem
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10 Goddard Rocket

Maximize the final altitude of a vertically launched rocket, using the thrust as a control

and given the initial mass, the fuel mass, and the drag characteristics of the rocket.

Formulation

This is a classical problem in dynamic optimization that is typical of control problems with

a singular arc. See Bryson [7, pages 392–394] for background information. The equations

of motion for the rocket are

h′ = v, v′ =
T − D(h, v)

m
− g(h), m′ = −T

c
, (10.1)

where h is the altitude from the center of the earth, v is the vertical velocity, T is the rocket

thrust, D is the aerodynamic drag, g is the gravitational force, and c is a constant that

measures the impulse of the rocket fuel. The thrust must satisfy

0 ≤ T (t) ≤ Tmax.

The drag and the gravitational force are defined by

D(h, v) = Dcv
2 exp

(

−hc

(

h − h(0)

h(0)

))

, g(h) = g0

(

h(0)

h

)2

,

where Dc and hc are constants, and g0 is the gravitational force at the earth’s surface. The

rocket is initially at rest (v(0) = 0), and the mass at the end of the flight is a fraction of

the initial mass,

m(tf ) = mcm(0),

where tf is the flight time and mc is a constant. In addition to the bounds on the thrust,

there are bounds

m(tf ) ≤ m(t) ≤ m(0), h(t) ≥ h(0), v(t) ≥ 0,

on the mass, altitude, and velocity of the rocket. These bounds are a direct consequence of

the equations of motion (10.1).

The equations of motion can be made dimension free by scaling the equations and

choosing the model parameters in terms of h(0), m(0), and g0. We follow [7] and use

Tmax = 3.5 g0m(0), Dc = 1

2
vc

m(0)

g0

, c = 1

2
(g0h(0))1/2.

With these choices we can assume, without loss of generality, that h(0) = m(0) = g0 = 1.

We also follow [7] and choose

hc = 500, mc = 0.6, vc = 620.

We discretize the equations of motion with the trapezoidal rule, and a uniform mesh with

nh intervals. Data for this problem appears in Table 10.1.
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Table 10.1: Goddard rocket problem data

Variables 4nh + 1
Constraints 3nh

Bounds 4nh + 1
Linear equality constraints 0
Linear inequality constraints 0
Nonlinear equality constraints 3nh

Nonlinear inequality constraints 0
Nonzeros in ∇2f(x) 0
Nonzeros in c′(x) 19nh − 8

Performance

Results for the AMPL implementation are shown in Table 10.2. For starting points we use

tf = 1 and the functions h = 1,

v(t) =
t

tf

(

1 − t

tf

)

, m(t) = (mf − m0)

(

t

tf

)

+ m0,

evaluated at the grid points. The initial value for the thrust is T = Tmax/2.

Table 10.2: Performance on Goddard rocket problem

Solver nh = 400 nh = 800 nh = 1600

FILTER 10.58 s ‡ 263.83 s
f 1.01283e+00 ‡ 1.01283e+00

c violation 4.20e-13 ‡ 8.93e-14
optimality 4.55e-11 ‡ 8.11e-12

KNITRO 7.61 s 74.97 s 309.73 s
f 1.01283e+00 1.01283e+00 1.01283e+00

c violation 3.75e-08 1.54e-08 7.03e-08
optimality 1.94e-07 3.47e-08 4.40e-08

LOQO 1.55 s 3.43 s 7.64 s
f 1.01283e+00 1.01283e+00 1.01283e+00

c violation 3.06e-09 4.92e-10 2.40e-09
optimality 2.60e-08 4.17e-09 3.88e-09

MINOS 0.36 s 1.95 s 4.27 s
f 6.11246e+03† 5.83895e+07† 6.86120e+07†

c violation 1.00e+00† 1.00e+00† 1.00e+00†
optimality 1.00e+00† 1.00e+00† 1.00e+00†
SNOPT 13.21 s 37.64 s 143.38 s

f 1.01282e+00 1.01283e+00 1.01283e+00
c violation 3.35e-08 1.02e-08 6.71e-08
optimality 5.29e-07 1.31e-07 2.76e-07

†Errors. ‡Timed out. lFailed benchmark tests.

Figure 10.1 shows the altitude and mass of the rocket as a function of time. Note that

altitude increases until a maximum altitude of h = 1.01 is reached, while the mass of the

rocket steadily decreases until the final mass of m(tf ) = 0.6 is reached at t = 0.073.

24



Figure 10.2 shows the velocity and thrust as a function of time. The thrust is bang-

singular-bang, with the region of singularity occurring when

0 < T (t) < Tmax.

This figure shows that the optimal flight path involves using maximal thrust until t = 0.022,

and no thrust for t ≥ 0.073, at which point the final mass is reached, and the rocket coasts

to its maximal altitude. The oscillations that appear at the point of discontinuity in the

thrust parameter can be removed by using more grid points.
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Figure 10.1: Altitude and mass for the Goddard rocket problem
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Figure 10.2: Velocity and thrust for the Goddard rocket problem
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11 Hang Glider

Maximize the final horizontal position of a hang glider while in the presence of a thermal

updraft.

Formulation

The formulation of this problem follows [8]. The equations of motion for the hang glider

are

x′′ =
1

m
(−L sin(η) − D cos(η)), y′′ =

1

m
(L cos(η) − D sin(η)) − g, (11.1)

where (x, y) is the position of the glider, m is the mass of the glider, g is the gravitational

constant, and the function η is defined by

sin(η) =
w(x, y′)

v(x, x′, y′)
, cos(η) =

x′

v(x, x′, y′)
,

where

v(x, x′, y′) =
√

x′2 + w(x, y′)2, w(x, y′) = y′ − u(x),

u(x) = uc(1 − r(x)) exp(−r(x)), r(x) =

(

x

rc
− 2.5

)2

,

and constants uc = 2.5 and rc = 100. The updraft function u is positive in a neighborhood

of x = 2.5 rc but drops to zero exponentially away from x = 2.5 rc. The functions D and L

are defined by

D(x, x′, y′, cL) =
1

2

(

c0 + c1c
2
L

)

ρSv(x, x′, y′)2, L(x, x′, y′, cL) =
1

2
cLρSv(x, x′, y′)2,

where S is the wing area, ρ is the air density, cL is the aerodynamic lift coefficient, and

c0 + c1c
2
L is the drag coefficient. For this glider

c0 = 0.034, c1 = 0.069662, S = 14, ρ = 1.13.

The aerodynamic lift coefficient cL must satisfy the bounds

0 ≤ cL(t) ≤ cmax,

and we also impose the natural bounds x ≥ 0 and x′ ≥ 0. In this problem cmax = 1.4,

m = 100, g = 9.81, and the boundary conditions are

x(0) = 0, y(0) = 1000, y(tf ) = 900,

x′(0) = x′(tf ) = 13.23, y′(0) = y′(tf ) = −1.288.

Discretization is done with a uniform time step and the trapezoidal rule over nh intervals.

Data for this problem is shown in Table 11.1.
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Table 11.1: Hang glider problem data

Variables 5nh − 1
Constraints 4nh

Bounds 3nh + 1
Linear equality constraints 0
Linear inequality constraints 0
Nonlinear equality constraints 4nh

Nonlinear inequality constraints 0
Nonzeros in ∇2f(x) 0
Nonzeros in c′(x) 28nh − 17

Performance

Results for the AMPL implementation are shown in Table 11.2. For starting points we use

tf = 1 and the functions x′ = x′(0), y′ = y′(0), and

x(t) = x(0) + x′(0)

(

t

tf

)

, y(t) = y(0) + (y(tf ) − y(0))

(

t

tf

)

,

evaluated at the grid points. The initial value for the control is cL(t) = 1

2
cmax.

Table 11.2: Performance on hang glider problem

Solver nh = 100 nh = 200 nh = 400

FILTER 121.89 s 521.66 s ‡
f 1.25461e+03 1.24880e+03 ‡

c violation 2.27e-13 2.27e-13 ‡
optimality 2.08e-07 6.46e-08 ‡
KNITRO 132.43 s 932.48 s 575.8 s

f 1.25505e+03 1.24880e+03 1.24797e+03
c violation 3.23e-09 1.56e-10 1.20e-10
optimality 7.74e-07 4.21e-08 9.24e-07

LOQO ‡ 202.48 s ‡
f ‡ 1.24889e+03 ‡

c violation ‡ 2.64e-09 ‡
optimality ‡ 3.12e-09 ‡
MINOS 20.16 s 20.3 s 49.1 s

f 1.45505e+04† 6.66929e+03† 1.25819e+04†
c violation 1.00e+00† 1.00e+00† 1.00e+00†
optimality 1.00e+00† 1.00e+00† 1.00e+00†
SNOPT 39.1 s 176.52 s 345.13 s

f 1.25505e+03 2.38432e+05† 2.06594e+03†
c violation 3.06e-12 1.00e+00† 1.00e+00†
optimality 9.09e-07 1.00e+00† 5.00e-01†
†Errors. ‡Timed out. lFailed benchmark tests.

Figure 11.1 shows the altitude and control function cL as a function of time. The glider

starts at an altitude of y(0) = 1000 and descends until the glider meets the updraft centered
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at x = 250. As a result the glider climbs and then descends to the desired final altitude of

y(tf ) = 900 at time tf = 105.
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Figure 11.1: Altitude and control cL for the hang glider problem

Figure 11.2 shows velocities x′ and y′ as a function of time. Note, in particular, the

erratic behavior of the velocities while the control is in the bang-region where cL(t) = cmax.
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Figure 11.2: Velocities x′ and y′ for the hang glider problem
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12 Catalytic Cracking of Gas Oil

Determine the reaction coefficients for the catalytic cracking of gas oil into gas and other

byproducts. The nonlinear model [31] that describes the process is

y′1 = −(θ1 + θ3)y
2
1 (12.1)

y′2 = θ1y
2
1 − θ2y2

with coefficients θi ≥ 0 for i = 1, . . . , 3. Initial conditions for (12.1) are known. The problem

is to minimize
21
∑

j=1

‖y(τj ; θ) − zj‖2,

where zj are concentration measurements for y at time points τ1, . . . , τ21.

Formulation

Our formulation of the catalytic cracking of gas oil problem as an optimization problem

follows [31, 3]. We use a k-stage collocation method, a uniform partition of the interval

[0, τ21] with nh intervals, and the standard [2, pages 247-249] basis representation,

pπ(t) = vi +
k
∑

j=1

(t − ti)
j

j! hj−1
wij , t ∈ [ti, ti+1],

for the components of the solution (y1, y2) of (12.1). The constraints in the optimization

problem are the initial conditions in (12.1), the continuity conditions, and the collocation

equations. The continuity equations are a set of 2(nh −1) linear equations. The collocation

equations are a set of 2knh nonlinear equations obtained by requiring that the collocation

approximation satisfy (12.1) at the collocation points. Data for this problem appears in

Table 12.1. The number of nonzeros in the Hessian of the objective function is an upper

bound. Fewer nonzeros are present if the times at which the measurements were taken

coincide with the grid points.

Table 12.1: Catalytic cracking of gas oil data

Variables 2(k + 1)nh + 1
Constraints 2(k + 1)nh − 2
Bounds 3
Linear equality constraints 2(nh − 1)
Linear inequality constraints 0
Nonlinear equality constraints 2knh

Nonlinear inequality constraints 0
Nonzeros in ∇2f(x) 42(k + 1)2

Nonzeros in c′(x) 3k(k + 3)nh + 4nh − 5k − 6
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Performance

We provide results for the AMPL formulation with k = 4 in Table 12.2. The initial values for

the θ parameters are θi = 0.0. The initial basis parameters are chosen so that the collocation

approximation is piecewise constant and interpolates the data. Data is generated by solving

(12.1) numerically using the Tjoa and Biegler [31] values θ = (12, 8, 2) and applying a

relative random perturbation of size 10−1. Figure 12.1 shows the solution and the data.

Table 12.2: Performance on catalytic cracking of gas oil problem

Solver nh = 100 nh = 200 nh = 400

FILTER 2.86 s 13.61 s 68.84 s
f 5.23659e-03 5.23659e-03 5.23659e-03

c violation 2.87e-15 3.79e-09 2.96e-09
optimality 4.64e-11 2.00e-10 1.48e-10

KNITRO 1.75 s 5.52 s 17.82 s
f 5.23659e-03 5.23659e-03 5.23659e-03

c violation 4.03e-10 2.51e-09 3.90e-08
optimality 2.91e-08 1.19e-09 5.80e-08

LOQO 0.4 s 0.99 s 3.07 s
f 5.23659e-03 5.23659e-03 5.23659e-03

c violation 3.35e-08 1.87e-08 3.23e-08
optimality 8.85e-11 2.16e-10 3.42e-10

MINOS 1.85 s 6.42 s 18.69 s
f 5.23659e-03 5.23659e-03 5.23659e-03

c violation 9.34e-12 1.27e-08 5.93e-09
optimality 3.14e-11 4.68e-10 2.96e-10

SNOPT 2.41 s 8.88 s 25.54 s
f 5.23659e-03 5.23659e-03 5.23659e-03

c violation 4.81e-09 8.22e-09 7.20e-08
optimality 2.48e-08 1.44e-08 2.24e-09

†Errors. ‡Timed out. lFailed benchmark tests.
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Figure 12.1: Solution and data for the catalytic cracking of gas oil problem
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13 Methanol to Hydrocarbons

Determine the reaction coefficients for the conversion of methanol into various hydrocarbons.

The nonlinear model [14, 22] that describes the process is

y′1 = −
(

2θ2 −
θ1y2

(θ2 + θ5)y1 + y2

+ θ3 + θ4

)

y1

y′2 =
θ1y1(θ2y1 − y2)

(θ2 + θ5)y1 + y2

+ θ3y1 (13.1)

y′3 =
θ1y1(y2 + θ5y1)

(θ2 + θ5)y1 + y2

+ θ4y1

with coefficients θi ≥ 0. Initial conditions for (13.1) are known. The problem is to minimize

16
∑

j=1

‖y(τj ; θ) − zj‖2,

where zj are concentration measurements for y at time points τ1, . . . , τ16.

Formulation

Our formulation of the methanol-to-hydrocarbons problem as an optimization problem fol-

lows [31, 3]. We use a k-stage collocation method, a uniform partition of the interval [0, τ16]

with nh intervals, and the standard [2, pages 247-249] basis representation,

pπ(t) = vi +
k
∑

j=1

(t − ti)
j

j! hj−1
wij , t ∈ [ti, ti+1],

for the components of the solution (y1, y2, y3) of (13.1). The constraints in the optimization

problem are the initial conditions in (13.1), the continuity conditions, and the collocation

equations. The continuity equations are a set of 3(nh −1) linear equations. The collocation

equations are a set of 3knh nonlinear equations obtained by requiring that the collocation

approximation satisfy (13.1) at the collocation points. Data for this problem appears in

Table 13.1.

Table 13.1: Methanol-to-hydrocarbons data

Variables 3(k + 1)nh + 2
Constraints 3(k + 1)nh − 3
Bounds 5
Linear equality constraints 3(nh − 1)
Linear inequality constraints 0
Nonlinear equality constraints 3knh

Nonlinear inequality constraints 0
Nonzeros in ∇2f(x) 48(k + 1)2

Nonzeros in c′(x) (7k + 22)knh + 6nh − 9k − 9
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In Table 13.1, the number of nonzeros in the Hessian of the objective function is an

upper bound. Fewer nonzeros are present if the times at which the measurements were

taken coincide with the grid points.

Performance

We provide results for the AMPL formulation with k = 3 in Table 13.2. The initial values for

the θ parameters are θi = 1.0. The initial basis parameters are chosen so that the collocation

approximation is piecewise constant and interpolates the data. Data is generated by solving

(13.1) numerically using θ = (2.69, 0.5, 3.02, 0.5, 0.5) as given in Maria [22] and applying a

relative random perturbation of size 10−1. Figure 13.1 shows the solution and the data.

Table 13.2: Performance on methanol-to-hydrocarbons problem

Solver nh = 100 nh = 200 nh = 400

FILTER 17.64 s 85.31 s 651.02 s
f 9.02229e-03 9.02229e-03 9.02229e-03

c violation 8.71e-15 6.54e-11 1.07e-12
optimality 1.14e-14 1.82e-13 2.21e-13

KNITRO 1.95 s 5.43 s 9.01 s
f 9.02229e-03 9.02229e-03 9.02229e-03

c violation 2.38e-09 2.41e-09 2.42e-09
optimality 2.77e-11 1.71e-11 9.13e-12

LOQO 0.86 s 2.11 s 5.85 s
f 9.02229e-03 9.02229e-03 9.02229e-03

c violation 7.54e-08 2.64e-08 2.07e-08
optimality 5.65e-12 3.30e-12 5.01e-12

MINOS 2.17 s 4.54 s 44.85 s
f 9.02229e-03 9.02229e-03 9.02229e-03

c violation 5.80e-13 2.32e-11 3.00e-13
optimality 1.02e-09 9.20e-10 9.07e-10

SNOPT 5.15 s 14.53 s 66.93 s
f 9.02229e-03 9.02229e-03 9.02229e-03

c violation 1.28e-10 3.19e-10 7.48e-11
optimality 4.24e-08 5.24e-08 7.05e-09

†Errors. ‡Timed out. lFailed benchmark tests.
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Figure 13.1: Solution and data for the methanol-to-hydrocarbons problem
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14 Catalyst Mixing

Determine the optimal mixing policy of two catalysts along the length of a tubular plug

flow reactor involving several reactions.

Formulation

The nonlinear model [34] that describes the reactions is

x′
1(t) = u(t)(10x2(t) − x1(t)) (14.1)

x′
2(t) = u(t)(x1(t) − 10x2(t)) − (1 − u(t))x2(t).

Initial conditions for (14.1) are x1(0) = 1 and x2(0) = 0. The control variable u represents

the mixing ratio of the catalysts and must satisfy the bounds

0 ≤ u(t) ≤ 1.

The problem is to minimize

−1 + x1(tf ) + x2(tf ), tf = 1.

We formulate this problem with a k-stage collocation method, a uniform partition of the

interval [0, 1] with nh intervals, and the standard [2, pages 247-249] basis representation,

pπ(t) = vi +
k
∑

j=1

(t − ti)
j

j! hj−1
wij , t ∈ [ti, ti+1],

for the components of the solution of (14.1). The constraints in the optimization problem

are the initial conditions in (14.1), the continuity conditions, and the collocation equations.

Data for this problem appears in Table 14.1.

Table 14.1: Catalyst mixing data

Variables (3k + 2)nh − 2
Constraints (2k + 2)nh − 2
Bounds knh

Linear equality constraints 2(nh − 1)
Linear inequality constraints 0
Nonlinear equality constraints 2knh

Nonlinear inequality constraints 0
Nonzeros in ∇2f(x) 0
Nonzeros in c′(x) (4k + 8)knh + 4nh − 6k − 6

Performance

We provide results for the AMPL formulation with k = 3 in Table 14.1. For starting points

we use u = 0, x1 = 1, and x2 = 0 evaluated at the grid points.
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The catalyst mixing problem is a typical bang-singular-bang problem. The singularity

leads to nonunique values of the control in the singular region, and thus it is possible to

obtain different values for the control. Figure 14.1 shows the controls obtained by two

different solvers.

Table 14.2: Performance on catalyst mixing problem

Solver nh = 100 nh = 200 nh = 400

FILTER 21.63 s 29.87 s 500.74 s
f -4.80556e-02 -4.80556e-02 -4.80556e-02

c violation 4.80e-10 2.01e-08 1.27e-09
optimality 8.90e-10 1.70e-09 5.58e-10

KNITRO 9.06 s 7.09 s 7.37 s
f -4.80556e-02 -4.80556e-02 -4.80556e-02†

c violation 8.10e-08 1.76e-14 3.36e-16†
optimality 2.20e-07 2.76e-07 3.40e-08†

LOQO 3.57 s 2 s 19.22 s
f -4.80556e-02 -4.80556e-02 -4.80556e-02†

c violation 6.16e-09 2.11e-08 2.88e-11†
optimality 2.49e-09 3.96e-09 1.40e-11†
MINOS 8.88 s 18.1 s 32.93 s

f -4.80538e-02 -4.80534e-02 -4.80477e-02
c violation 2.91e-08 2.91e-08 3.33e-08
optimality 1.87e-07 2.68e-07 3.29e-07

SNOPT 9.3 s 55.09 s 179.14 s
f -4.80555e-02 -4.80556e-02 -4.80516e-02

c violation 6.33e-08 4.14e-08 5.14e-11
optimality 1.46e-07 9.53e-09 2.99e-07

†Errors. ‡Timed out. lFailed benchmark tests.
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Figure 14.1: Controls obtained by two different solvers for the catalyst mixing problem
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15 Elastic-Plastic Torsion

Determine the stress potential in an infinitely long cylinder when torsion is applied.

Formulation

The elastic-plastic torsion problem [18, pages 41–46] can be formulated in terms of the

cross-section D of the cylinder, and the torsion angle c per unit length. The stress potential

u minimizes the quadratic q : K 7→ R,

q(v) =

∫

D

{

1

2
‖∇v(x)‖2 − c v(x)

}

dx,

over the convex set K, where

K = {v ∈ H1
0 (D) : |v| ≤ dist(x, ∂D), x ∈ D},

dist(x, ∂D) is the distance from x to the boundary of D, and H1
0 (D) is the space of functions

with gradients in L2(D) that vanish on the boundary of D.

A finite element approximation to the elastic-plastic torsion problem is obtained by

triangulating D and minimizing q over the space of piecewise linear functions with values

vi,j at the vertices of the triangulation. We follow [18, 3] by choosing D = [0, 1]× [0, 1], and

using a triangulation with, respectively, nx and ny internal grid points in the coordinate

directions. Data for this problem appears in Table 15.1.

Table 15.1: Elastic-plastic torsion problem data

Variables nxny

Constraints 0
Bounds nxny

Linear equality constraints 0
Linear inequality constraints 0
Nonlinear equality constraints 0
Nonlinear inequality constraints 0
Nonzeros in ∇2f(x) 5nxny − 2(nx + ny)
Nonzeros in c′(x) 0

Performance

We provide results for the AMPL formulation with c = 5 in Table 15.2. For these results

we fix nx = 50 and vary ny. The starting guess is the function dist(x, ∂D) evaluated at the

grid nodes. Figure 15.1 shows the potential in the torsion problem with c = 5. The number

of active constraints in this problem increases with c. Also

lim
c→∞

vc(x) = dist(x, ∂D),

where vc is the potential as a function of c.
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Table 15.2: Performance on elastic-plastic torsion problem

Solver ny = 50 ny = 75 ny = 100

FILTER 135.92 s 446.87 s 545.44 s
f -4.18087e-01 -4.18199e-01 -4.18239e-01

c violation 0.00e+00 0.00e+00 0.00e+00
optimality 3.83e-07 4.47e-07 6.16e-07

KNITRO 258.79 s 1415.58 s ‡
f -4.18087e-01 -4.18199e-01 ‡

c violation 0.00e+00 0.00e+00 ‡
optimality 5.82e-07 4.77e-07 ‡

LOQO 1.02 s 1.72 s 2.38 s
f -4.18087e-01 -4.18199e-01 -4.18239e-01

c violation 0.00e+00 0.00e+00 0.00e+00
optimality 2.50e-07 1.59e-08 9.34e-08

MINOS 59.98 s 180.77 s 402.23 s
f -4.18087e-01 -4.18199e-01 -4.18239e-01

c violation 0.00e+00 0.00e+00 0.00e+00
optimality 1.49e-07 5.01e-07 4.44e-07

SNOPT 12.36 s 36.07 s 91.02 s
f -4.18087e-01 -4.18199e-01 -4.18239e-01

c violation 0.00e+00 0.00e+00 0.00e+00
optimality 7.12e-15 9.51e-15 1.67e-14

†Errors. ‡Timed out. lFailed benchmark tests.
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Figure 15.1: Elastic-plastic torsion problem with c = 5
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16 Journal Bearing

Given the eccentricity ε of the journal bearing, find the pressure distribution in the lubricant

separating the shaft from the bearing.

Formulation

The journal bearing problem [9] requires determining the pressure between two circular

cylinders of length L and radii R and R + c. The separation between the cylinders is εc,

where ε is the eccentricity. The pressure v minimizes the quadratic q : K 7→ R,

q(v) =

∫

D

{

1

2
wq(x)‖∇v(x)‖2 − wl(x)v(x)

}

dx,

over the convex set K, where D = (0, 2π) × (0, 2b),

K = {v ∈ H1
0 (D) : v ≥ 0},

H1
0 (D) is the space of functions with gradients in L2(D) that vanish on the boundary of D,

and the functions wq : D 7→ R and wl : D 7→ R are defined by

wq(ξ1, ξ2) = (1 + ε cos ξ1)
3, wl(ξ1, ξ2) = ε sin ξ1,

with ε ∈ (0, 1) the eccentricity of the bearing.

A finite element approximation to the journal bearing problem is obtained by triangu-

lating D and minimizing q over the space of piecewise linear functions with values vi,j at

the vertices of the triangulation. We follow [3] by using a triangulation with, respectively,

nx and ny internal grid points in the coordinate directions. Data for this problem appears

in Table 16.1.

Table 16.1: Journal bearing problem data

Variables nxny

Constraints 0
Bounds nxny

Linear equality constraints 0
Linear inequality constraints 0
Nonlinear equality constraints 0
Nonlinear inequality constraints 0
Nonzeros in ∇2f(x) 5nxny − 2(nx + ny)
Nonzeros in c′(x) 0

Performance

We provide results with the AMPL formulation in Table 16.2 with b = 10 and ε = 0.1. For

these results we fix nx = 50 and vary ny. The starting guess is the function max{sin(x), 0}
evaluated at the grid nodes. Figure 16.1 shows the pressure distribution for the journal

bearing problem.
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Table 16.2: Performance on pressure in journal bearing problem

Solver ny = 50 ny = 75 ny = 100

FILTER 101.08 s 312.17 s 1058.45 s
f -1.54824e-01 -1.54984e-01 -1.55042e-01

c violation 1.08e-18 2.16e-19 4.33e-19
optimality 8.68e-07 7.29e-07 6.52e-07

KNITRO 101.83 s 176.98 s 477.6 s
f -1.54824e-01 -1.54984e-01† -1.55042e-01†

c violation 0.00e+00 0.00e+00† 0.00e+00†
optimality 1.10e-08 8.49e-09† 6.21e-09†

LOQO 0.85 s 1.35 s 2.08 s
f -1.54824e-01 -1.54984e-01 -1.55042e-01

c violation 0.00e+00 0.00e+00 0.00e+00
optimality 4.14e-08 2.62e-07 8.41e-08

MINOS 76.08 s 203.49 s 387.45 s
f -1.54824e-01 -1.54984e-01 -1.55042e-01

c violation 0.00e+00 0.00e+00 0.00e+00
optimality 1.48e-07 2.09e-07 1.83e-07

SNOPT 10.25 s 31.01 s 68.29 s
f -1.54824e-01 -1.54984e-01 -1.55042e-01

c violation 0.00e+00 0.00e+00 0.00e+00
optimality 1.12e-14 7.05e-15 8.42e-15

†Errors. ‡Timed out. lFailed benchmark tests.
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Figure 16.1: Journal bearing problem with ε = 0.1
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17 Minimal Surface with Obstacle

Find the surface with minimal area that lies above an obstacle with given boundary condi-

tions.

Formulation

Plateau’s problem is to determine the surface of minimal area with a given closed curve

in R
3 as boundary. We assume that the surface can be represented in nonparametric form

v : R
2 7→ R, and we add the requirement that v ≥ vL for some obstacle vL. The solution of

this obstacle problem [15] minimizes the function f : K 7→ R,

f(v) =

∫

D

(

1 + ‖∇v(x)‖2
)1/2

dx,

over the convex set K, where

K =
{

v ∈ H1(D) : v(x) = vD(x) for x ∈ ∂D, v(x) ≥ vL(x) for x ∈ D
}

,

H1(D) is the space of functions with gradients in L2(D), the function vD : ∂D 7→ R defines

the boundary data, and vL : D 7→ R is the obstacle. We assume that vL ≤ vD on the

boundary ∂D.

A finite element approximation to the minimal surface problem is obtained by triangu-

lating D and minimizing f over the space of piecewise linear functions with values vi,j at the

vertices of the triangulation. We set D = [0, 1]× [0, 1] and use a triangulation with, respec-

tively, nx and ny internal grid points in the coordinate directions. Data for this problem

appears in Table 16.1.

Table 17.1: Minimal surface problem data

Variables nxny

Constraints 0
Bounds nxny

Linear equality constraints 0
Linear inequality constraints 0
Nonlinear equality constraints 0
Nonlinear inequality constraints 0
Nonzeros in ∇2f(x) 7nxny − 4(nx + ny) + 2
Nonzeros in c′(x) 0

Performance

We provide results for the AMPL formulation in Table 17.2. For these results we fix nx = 50

and vary ny. The starting guess is the function 1 − (2x − 1)2 evaluated at the grid nodes.

We used boundary data

vD(x, y) =

{

1 − (2x − 1)2, y = 0, 1
0, otherwise,
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and the obstacle

vL(x, y) =

{

1 if |x − 1

2
| ≤ 1

4
, |y − 1

2
| ≤ 1

4

0, otherwise.

Figure 17.1 shows the minimal surface for this data.

Table 17.2: Performance on minimal surface area with obstacle problem

Solver ny = 50 ny = 75 ny = 100

FILTER 77.67 s 244.35 s 423.62 s
f 2.51488e+00 2.50568e+00 2.50694e+00

c violation 0.00e+00 0.00e+00 0.00e+00
optimality 2.78e-07 2.62e-07 3.87e-07

KNITRO 349.67 s 985.87 s ‡
f 2.51488e+00† 2.50568e+00 ‡

c violation 0.00e+00† 0.00e+00 ‡
optimality 1.27e-10† 3.17e-07 ‡

LOQO 3.99 s 6.12 s ‡
f 2.51488e+00 2.50568e+00 ‡

c violation 0.00e+00 0.00e+00 ‡
optimality 3.00e-07 3.31e-12 ‡
MINOS 77.97 s 295.46 s 700.88 s

f 2.51488e+00 2.50568e+00 2.50694e+00
c violation 0.00e+00 0.00e+00 0.00e+00
optimality 1.98e-07 2.10e-07 4.65e-07

SNOPT 1726.62 s ‡ ‡
f 2.51488e+00 ‡ ‡

c violation 4.73e-08 ‡ ‡
optimality 1.79e-07 ‡ ‡
†Errors. ‡Timed out. lFailed benchmark tests.
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Figure 17.1: Minimal surface problem with a plate obstacle
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18 Triangular Mesh Smoothing

Minimize the sum of the inverse weighted mean ratio of the elements in a fixed–boundary

triangular mesh by adjusting the locations of the free vertices.

Formulation

If we define the matrix A to describe the edges of a triangular element with vertices at

(x0, y0), (x1, y1), and (x2, y2) as

A =

(

x1 − x0 x2 − x0

y1 − y0 y2 − y0

)

,

then the mean ratio metric for the element is

2 det(A)

‖A‖2

F

,

where det(·) and ‖ · ‖F denote the determinant and Frobenius norm of the input matrix,

respectively. The mean ratio [21] measures the shape–quality of the elements. Weighting

the mean ratio metric so that it approaches its maximum value for an equilateral triangle,

rather than an isosceles triangle, requires the matrix

W =

(

1 1

2

0
√

3

2

)

.

The weighted mean ratio metric is then

µ =
2 det(AW−1)

‖AW−1‖2

F

=
4 det(A)√
3‖AW−1‖2

F

,

which is equivalent to the inverse condition number of AW−1 [20]. The weighted mean

ratio value is 1 for an equilateral triangle and approaches zero as the vertices of the triangle

become collinear with at least one nonzero edge length. We minimize

e
∑

k=1

µ−1

k subject to det(Ak) ≥ τ,

where e is the number of elements, Ak is the edge matrix for element k, and τ > 0 is a

tolerance based on the minimum element area for the feasible initial point provided. The

constraints ensure that the area of each element be greater than τ and that the elements

cannot become inverted, causing folds in the mesh. The objective function is bounded

below and twice continuously differentiable on an open set containing the feasible region,

but outside of the feasible region the objective can approach −∞.

Approximate data for this problem appears in Table 18.1, where n is the number of

non-fixed nodes in the mesh, e is the total number of elements, and eb is the number

of elements containing exactly one non-fixed node (boundary elements). The numbers of
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actual nonzeros in the Hessian will be significantly fewer, depending on the number of fixed

nodes in the problem and how the nodes are connected to form elements.

Table 18.1: Triangular Mesh Smoothing

Variables 2n

Constraints e

Bounds 0
Linear equality constraints 0
Linear inequality constraints eb

Nonlinear equality constraints 0
Nonlinear inequality constraints e − eb

Nonzeros in ∇2f(x) 36e − 27eb

Nonzeros in c′(x) 6e − 4eb

Performance

We provide results for the AMPL formulation in Figure 18.2 for several test problems. The

final smoothed mesh for each example is given in Figure 18.1.

Table 18.2: Performance on triangular mesh smoothing problem

Solver deer pacman turtle

FILTER 29.76 s 11.23 s 136.67 s
f 2.01174e+03l 1.25045e+03l 4.21523e+03l

c violation 0.00e+00l 0.00e+00l 0.00e+00l
optimality 3.07e-06l 1.73e-06l 9.48e-06l
KNITRO 1.24 s 0.73 s 4.12 s

f 2.01174e+03 1.25045e+03 4.21523e+03
c violation 0.00e+00 0.00e+00 0.00e+00
optimality 8.11e-07 3.73e-07 3.28e-07

LOQO ‡ ‡ ‡
f ‡ ‡ ‡

c violation ‡ ‡ ‡
optimality ‡ ‡ ‡
MINOS 29.58 s 2.21 s 106.04 s

f † -9.73735e+11† †
c violation † 2.10e-03† †
optimality † 1.00e+00† †
SNOPT 709.2 s 162.06 s 38.7 s

f 2.01174e+03 1.25045e+03 -1.38468e+13†
c violation 0.00e+00 0.00e+00 2.85e-01†
optimality 1.77e-07 1.97e-07 1.00e+00†
†Errors. ‡Timed out. lFailed benchmark tests.
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Figure 18.1: Smoothed meshes for the deer, pacman ghost, and turtle
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19 Tetrahedral Mesh Smoothing

Minimize the sum of the inverse weighted mean ratio of the elements in a fixed–boundary

tetrahedral mesh by adjusting the locations of the free vertices.

Formulation

If we define the matrix A, similar to the matrix used for triangular elements, to describe

the edges of a tetrahedral element as

A =





x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0



 ,

then the mean ratio metric for the element is

3 det(A)
2

3

‖A‖2

F

,

where det(·) and ‖ · ‖F denote the determinant and Frobenius norm of the input matrix,

respectively. The mean ratio [21] measures the shape–quality of the elements. Weighting the

mean ratio metric so that it approaches its maximum value for an equilateral tetrahedron,

rather than a right–angled tetrahedron, requires the matrix

W =







1 1

2

1

2

0
√

3

2

√
3

6

0 0
√

2√
3






.

The weighted mean ratio metric is then

µ =
3 det(AW−1)

2

3

‖AW−1‖2

F

=
3 det(A)

2

3

2
1

3 ‖AW−1‖2

F

This measure is 1 for an equilateral tetrahedron and approaches zero as the vertices of the

tetrahedron become coplanar with at least one nonzero edge length. We minimize

e
∑

k=1

µ−1

k subject to det(Ak) ≥ τ,

where e is the number of elements, Ak is the edge matrix for element k, and τ is a tol-

erance based on the minimum element volume for the feasible initial point provided. The

constraints ensure that the volume of each element be greater than τ and that the elements

cannot become inverted, causing folds in the mesh. The objective function is bounded below

and twice continuously differentiable on an open set containing the feasible region.
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Table 19.1: Tetrahedral Mesh Smoothing

Variables 3n

Constraints e

Bounds 0
Linear equality constraints 0
Linear inequality constraints eb

Nonlinear equality constraints 0
Nonlinear inequality constraints e − eb

Nonzeros in ∇2f(x) 144e − 135eb

Nonzeros in c′(x) 9e − 6eb

Approximate data for this problem appears in Table 19.1, where n is the number of

non-fixed nodes in the mesh, e is the total number of elements, and eb is the number

of elements containing exactly one non-fixed node (boundary elements). The numbers of

actual nonzeros in the Hessian will be significantly fewer, depending on the number of fixed

nodes in the problem and how the nodes are connected to form elements.

Performance

We provide results for the AMPL formulation in Figure 19 for several test problems. Pic-

tures of the boundary nodes for the samples meshes appear in Figure 19.1.

Table 19.2: Performance on tetrahedral mesh smoothing problem

Solver duct15 duct20 foam5 gear hook

FILTER 198.88 s 28.19 s 14.86 s 14.18 s 112.6 s
f 1.04951e+04 4.82685e+03 6.42560e+03l 4.15163e+03l 6.05735e+03l

c violation 0.00e+00 0.00e+00 0.00e+00l 0.00e+00l 0.00e+00l
optimality 4.42e-07 2.52e-07 9.32e-06l 1.72e-05l 1.22e-06l
KNITRO 15.74 s 5.85 s 4.53 s 4.41 s 7.21 s

f 1.04951e+04 4.82685e+03 6.42560e+03 4.15163e+03 6.05735e+03
c violation 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
optimality 7.15e-07 5.09e-07 6.41e-07 8.54e-07 1.09e-07

LOQO 28.39 s 10.5 s 5.99 s 3.86 s 8.99 s
f 1.04951e+04 4.82685e+03 6.42560e+03 4.15163e+03 6.05735e+03

c violation 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
optimality 1.33e-08 1.18e-08 1.56e-07 9.42e-08 6.37e-08

MINOS 199.71 s 244.54 s 1.48 s 1.17 s 3.86 s
f † † † † †

c violation † † † † †
optimality † † † † †
SNOPT 1767.77 s 120.82 s 118.97 s 67.41 s 240.23 s

f 1.04951e+04 4.82685e+03 6.42560e+03 4.15163e+03 6.05735e+03
c violation 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
optimality 1.89e-07 8.87e-08 1.44e-07 1.70e-07 1.99e-07

†Errors. ‡Timed out. lFailed benchmark tests.
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Figure 19.1: Fixed boundary nodes for foam, gear, and hook.

46



20 Transition States for the Lane-Emden Problem

Determine a transition state (mountain-pass) for the Lane-Emden problem. A transition

state is a solution to the Lane-Emden equation for which the energy increases along any

k-dimensional subspace with k > 1.

Formulation

The Lane-Emden problem is defined by the functional f : H1
0 (D) 7→ R,

f(u) =

∫

D

(

1

2
‖∇u(s)‖2 − 1

4
u(s)4

)

ds.

This functional has an infinite number of critical points (Struwe [30, Theorem 6.6]), and

every critical point satisfies the Lane-Emden equation

−∆u = u3, x ∈ D.

In particular, nontrivial critical points u+ ≥ 0 ≥ u− exist. Chen, Zhou, and Ni [11] provide

additional information on the theoretical properties of the solution to this problem.

A finite element approximation to this integral is obtained by triangulating D and

approximating f over the space of piecewise linear functions with values ui,j at the vertices

of the triangulation. For this problem the domain D is the unit square with a triangulation

containing n internal grid points generated by TRIANGLE [28, 29].

The elastic string algorithm [23] finds an approximate mountain pass solution by solving

the constrained optimization problem

min {w : f(uk) ≤ w, 1 ≤ k ≤ m, ‖uk − uk+1‖ ≤ h, 0 ≤ k ≤ m}

where u0 = ua and um+1 = ub are fixed points separated by a mountain range and h > 0 is

a fixed tolerance. Data for this problem appears in Table 20.1.

Table 20.1: Lane-Emden problem data

Variables mn + 1
Constraints 2m + 1
Bounds 0
Linear equality constraints 0
Linear inequality constraints 0
Nonlinear equality constraints 0
Nonlinear inequality constraints 2m + 1
Nonzeros in ∇2f(x) 0
Nonzeros in c′(x) m(3n + 1)

Performance

We provide results for the AMPL formulation in Table 20.2. For these results the discretiza-

tion was fixed, but the number of internal breakpoints m in the elastic string algorithm was
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varied. The graph on the left of Figure 20.1 is a plot of the path profile drawn from the

function values f(uk) for 0 ≤ k ≤ m + 1, while the graph on the right is a plot of the

mountain pass solution.

Note that the maximum along the path profile is achieved at two points, which is to be

expected. The ragged nature of the path profile for the Lane-Emden problem is due to the

use of m = 10; a smoother profile is obtained with higher values of m.

Table 20.2: Performance on Lane-Emden problem

Solver 10 20 40

FILTER ‡ ‡ ‡
f ‡ ‡ ‡

c violation ‡ ‡ ‡
KNITRO 46.12 s 33.42 s 81.72 s

f 8.49464e+00 9.11000e+00 9.28489e+00
c violation 0.00e+00 0.00e+00 0.00e+00
optimality 6.99e-09 6.14e-08 1.30e-08

LOQO 83.46 s 173.12 s 1372.39 s
f 8.49464e+00 9.11000e+00 9.28489e+00

c violation 4.79e-09 5.08e-09 7.33e-10
optimality 2.80e-10 9.47e-11 9.04e-12

MINOS 418.71 s ‡ ‡
f 8.49464e+00 ‡ ‡

c violation 9.19e-12 ‡ ‡
optimality 2.51e-07 ‡ ‡
SNOPT 1177.98 s ‡ ‡

f 8.49464e+00 ‡ ‡
c violation 7.17e-13 ‡ ‡
optimality 1.81e-07 ‡ ‡
†Errors. ‡Timed out. lFailed benchmark tests.
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Figure 20.1: Path profile and mountain pass for the Lane-Emden problem.
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21 Transition States for the Dirichlet Problem

Determine a transition state (mountain-pass) for the (singularly perturbed) Dirichlet prob-

lem. A transition state is a solution to the Dirichlet equation for which the energy increases

along any k-dimensional subspace with k > 1.

Formulation

The (singularly perturbed) Dirichlet problem is defined by the functional f : H1
0 (D) 7→ R,

f(u) =

∫

D

(

ε2

2
‖∇u(s)‖2 +

1

2
u(s)2 − 1

4
u(s)4

)

ds,

where ε ∈ (0, 1). A finite element approximation to this integral is obtained by triangulating

D and approximating f over the space of piecewise linear functions with values ui,j at the

vertices of the triangulation. For this problem the domain D is the unit circle with a

triangulation containing n internal grid points generated by TRIANGLE [28, 29].

The elastic string algorithm [23] finds an approximate mountain pass solution by solving

the constrained optimization problem

min {w : f(uk) ≤ w, 1 ≤ k ≤ m, ‖uk − uk+1‖ ≤ h, 0 ≤ k ≤ m}

where u0 = ua and um+1 = ub are fixed points separated by a mountain range and h > 0 is

a fixed tolerance. Data for this problem appears in Table 21.1.

Table 21.1: Dirichlet problem data

Variables mn + 1
Constraints 2m + 1
Bounds 0
Linear equality constraints 0
Linear inequality constraints 0
Nonlinear equality constraints 0
Nonlinear inequality constraints 2m + 1
Nonzeros in ∇2f(x) 0
Nonzeros in c′(x) m(3n + 1)

Performance

We provide results for the AMPL formulation in Table 21.2 when ε = 0.1. For these results

the discretization was fixed, but the number of internal breakpoints m in the elastic string

algorithm was varied. The graph on the left of Figure 21.1 is a plot of the path profile

drawn from the function values f(uk) for 0 ≤ k ≤ m + 1, while the graph on the right is a

plot of the mountain pass solution.

49



Table 21.2: Performance on perturbed Dirichlet problem

Solver 10 20 40

FILTER 710.39 s 1272.75 s ‡
f 9.33495e-04 2.05683e-02 ‡

c violation 3.44e-13 3.50e-12 ‡
optimality 4.45e-08 5.35e-08 ‡
KNITRO 1614.05 s 145.8 s 329.15 s

f 1.93590e-06 1.71467e-02 3.28852e-02
c violation 0.00e+00 0.00e+00 0.00e+00
optimality 5.78e-07 4.20e-08 1.23e-07

LOQO 259.51 s 643.59 s 1276.72 s
f 9.33494e-04 1.71464e-02 3.01527e-02

c violation 9.40e-09 2.17e-08 6.77e-08
optimality 1.58e-09 2.32e-10 1.33e-10

MINOS 512.63 s 28.16 s 54.48 s
f 2.82702e-12 1.62658e+04† 6.21175e+04†

c violation 4.85e-10 1.00e+00† 1.00e+00†
optimality 4.80e-08 1.00e+00† 1.00e+00†
SNOPT ‡ ‡ ‡

f ‡ ‡ ‡
c violation ‡ ‡ ‡
optimality ‡ ‡ ‡
†Errors. ‡Timed out. lFailed benchmark tests.
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Figure 21.1: Path profile and mountain pass for the singularly perturbed Dirichlet problem.
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22 Transition States for the Henon Problem

Determine a transition state (mountain-pass) for the Henon problem. A transition state is

a solution to the Henon equation for which the energy increases along any k-dimensional

subspace with k > 1.

Formulation

The Henon problem is defined by the functional f : H1
0 (D) 7→ R,

f(u) =

∫

D

(

1

2
‖∇u(s)‖2 − ‖s‖

4
u(s)4

)

ds.

A finite element approximation to this integral is obtained by triangulating D and approx-

imating f over the space of piecewise linear functions with values ui,j at the vertices of the

triangulation. For this problem the domain D is the unit circle with a half unit square cut

from the center. A triangulation of this domain containing n internal grid points generated

by TRIANGLE [28, 29].

The elastic string algorithm [23] finds an approximate mountain pass solution by solving

the constrained optimization problem

min {w : f(uk) ≤ w, 1 ≤ k ≤ m, ‖uk − uk+1‖ ≤ h, 0 ≤ k ≤ m}

where u0 = ua and um+1 = ub are fixed points separated by a mountain range and h > 0 is

a fixed tolerance. Data for this problem appears in Table 22.1.

Table 22.1: Henon problem data

Variables mn + 1
Constraints 2m + 1
Bounds 0
Linear equality constraints 0
Linear inequality constraints 0
Nonlinear equality constraints 0
Nonlinear inequality constraints 2m + 1
Nonzeros in ∇2f(x) 0
Nonzeros in c′(x) m(3n + 1)

Performance

We provide results for the AMPL formulation in Table 22.2. For these results the discretiza-

tion was fixed, but the number of internal breakpoints m in the elastic string algorithm was

varied. The graph on the left of Figure 22.1 is a plot of the path profile drawn from the

function values f(uk) for 0 ≤ k ≤ m + 1, while the graph on the right is a plot of the

mountain pass solution.

The plot of the mountain pass in Figure 22.1 shows that the solution lacks symmetry. In

general, the symmetry properties of the domain D are reflected in the symmetry properties
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of the solution. For example, Chen, Zhou, and Ni [11] noted that on an annular domain

there is a solution that is not rotationally symmetric; and since the domain is rotationally

symmetric, the mountain-pass solutions form a connected nontrivial set. In particular,

the mountain-pass solutions are not isolated. For our domain, which is not rotationally

symmetric, there seem to be four distinct mountain-pass solutions.

Table 22.2: Performance on Henon problem

Solver 10 20 40

FILTER 1360.44 s 566.42 s 1666.75 s
f 7.21915e+00 9.50782e+01 1.25971e+02

c violation 2.18e-12 4.71e-12 3.32e-11
optimality 2.87e-07 2.78e-07 2.36e-07

KNITRO 29.26 s 70 s 160.69 s
f 1.93254e+01 9.50782e+01 1.25971e+02

c violation 0.00e+00 0.00e+00 0.00e+00
optimality 1.58e-09 5.51e-08 1.55e-07

LOQO 101.01 s 209.9 s 537.75 s
f 4.26810e+00 9.24570e+01 1.25971e+02

c violation 2.72e-08 6.82e-09 1.10e-08
optimality 1.02e-10 1.97e-11 4.67e-11

MINOS 1092.05 s 1371.3 s ‡
f 7.21915e+00 7.52141e+01 ‡

c violation 2.79e-09 2.41e-10 ‡
optimality 2.39e-07 2.12e-07 ‡
SNOPT ‡ ‡ ‡

f ‡ ‡ ‡
c violation ‡ ‡ ‡
optimality ‡ ‡ ‡
†Errors. ‡Timed out. lFailed benchmark tests.
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Figure 22.1: Path profile and mountain pass for the Henon equation.
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[23] J. J. Moré and T. S. Munson, Computing mountain passes, Preprint ANL/MCS-

P957-0502, Argonne National Laboratory, Argonne, Illinois, 2002.

[24] J. R. Morris, D. M. Deaven, and K. M. Ho, Genetic algorithm energy minimiza-

tion for point charges on a sphere, Phys. Rev. B, 53 (1996), pp. R1740–R1743.

[25] B. A. Murtagh and M. A. Saunders, MINOS 5.5 user’s guide, Report SOL 83-20R,

Stanford University, 1983, revised July 1998.

[26] B. J. Rothschild, A. F. Sharov, A. J. Kearsley, and A. S. Bondarenko,

Estimating growth and mortality in stage-structured populations, Journal of Plankton

Research, 19 (1997), pp. 1913–1928.

[27] E. B. Saff and A. Kuijlaars, Distributing many points on the sphere, Math. Intel-

ligencer, 19 (1997), pp. 5–11.

[28] J. Shewchuk, Triangle: Engineering a 2D Quality Mesh Generator and Delaunay

Triangulator, in Applied Computational Geometry: Towards Geometric Engineering,

M. C. Lin and D. Manocha, eds., vol. 1148 of Lecture Notes in Computer Science,

Springer-Verlag, May 1996, pp. 203–222. From the First ACM Workshop on Applied

Computational Geometry.

[29] , Delaunay refinement algorithms for triangular mesh generation, Computational

Geometry: Theory and Applications, 22 (2002), pp. 21–74.

[30] M. Struwe, Variational Methods, Springer-Verlag, 2000.

54



[31] I.-B. Tjoa and L. T. Biegler, Simultaneous solution and optimization strategies

for parameter estimation of differential-algebraic equations systems, Ind. Eng. Chem.

Res., 30 (1991), pp. 376–385.

[32] R. Vanderbei, Nonlinear optimization models. See www.sor.princeton.edu/~rvdb/

ampl/nlmodels.

[33] R. J. Vanderbei, LOQO user’s manual – Version 4.05, technical report, Princeton

University, Princeton, 2000.

[34] O. von Stryk, User’s guide for DIRCOL (Version 2.1): A direct collocation method

for the numerical solution of optimal control problems, technical report, Technische

Universität München, 1999.

[35] R. Waltz and J. Nocedal, Knitro user’s manual – Version 3.1, Technical Report 5,

Northwestern University, Evanston, 2003.

55


