
Continuous Optimization and TAO

J. Moré, T. Munson, and J. Sarich

Mathematics and Computer Science Division, Argonne

August 18, 2006

Moré, Munson, and Sarich Continuous Optimization and TAO

Outline

• Introduction

• Unconstrained optimization
• Model-based methods
• Limited-memory variable metric methods
• Newton’s method

• Automatic Differentiation

• Solving optimization problems with TAO

Moré, Munson, and Sarich Continuous Optimization and TAO

Nonlinearly Constrained Optimization

min {f(x) : xl ≤ x ≤ xu, cl ≤ c(x) ≤ cu}

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.02

0.04

0.06

0.08

0.1

0.12

Moré, Munson, and Sarich Continuous Optimization and TAO

Isomerization of α-pinene

Determine the reaction coefficients in the thermal isomerization of
α-pinene from measurements z1, . . . z8 by minimizing

8∑
j=1

‖y(τj ; θ)− zj‖2

y′1 = −(θ1 + θ2)y1

y′2 = θ1y1

y′3 = θ2y1 − (θ3 + θ4)y3 + θ5y5

y′4 = θ3y3

y′5 = θ4y3 − θ5y5

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

eq 1
eq 2
eq 3
eq 4
eq 5

Moré, Munson, and Sarich Continuous Optimization and TAO

Classification of Constrained Optimization Problems

min {f(x) : xl ≤ x ≤ xu, cl ≤ c(x) ≤ cu}

• Number of variables n

• Number of constraints m

• Number of linear constraints

• Number of equality constraints ne

• Number of degrees of freedom n− ne

• Sparsity of c′(x) = (∂icj(x))
• Sparsity of ∇2

xL(x, λ) = ∇2f(x) +
∑m

k=1∇2ck(x)λk

Moré, Munson, and Sarich Continuous Optimization and TAO

Classification of Constrained Optimization Software

• Formulation

• Interfaces: MATLAB, AMPL, GAMS

• Second-order information options:
• Differences
• Limited memory
• Hessian-vector products

• Linear solvers
• Direct solvers
• Iterative solvers
• Preconditioners

• Partially separable problem formulation

• Documentation

• License

Moré, Munson, and Sarich Continuous Optimization and TAO

Unconstrained Optimization: Background

Given a continuously differentiable f : Rn 7→ R and

min {f(x) : x ∈ Rn}

generate a sequence of iterates {xk} such that the gradient test

‖∇f(xk)‖ ≤ τ

is eventually satisfied

Theorem. If f : Rn 7→ R is continuously differentiable and bounded
below, then there is a sequence {xk} such that

lim
k→∞

‖∇f(xk)‖ = 0.

Moré, Munson, and Sarich Continuous Optimization and TAO

Ginzburg-Landau Model

Minimize the Gibbs free energy for a homogeneous superconductor∫
D

{
−|v(x)|2 + 1

2 |v(x)|4 + ‖[∇− iA(x)] v(x)‖2 + κ2 ‖(∇×A)(x)‖2}
dx

v : R2 → C (order parameter)
A : R2 → R2 (vector potential)

Unconstrained problem with a non-convex objective function. The
Hessian matrix is singular, but has a unique minimizer and saddle points.

Moré, Munson, and Sarich Continuous Optimization and TAO

Unconstrained Optimization

What can I use if the gradient ∇f(x) is not available?

• Geometry-based methods: Pattern search, Nelder-Mead, . . .

• Model-based methods: Quadratic, radial-basis models, . . .

What can I use if the gradient ∇f(x) is available?

• Conjugate gradient methods

• Limited-memory variable metric methods

• Variable metric methods

What can I use if the gradient ∇f(x) and Hessian ∇2f(x) are available?

• Newton’s method with a trust region or line search

Moré, Munson, and Sarich Continuous Optimization and TAO

Quadratic Model-Based Methods

Question: How do we find a minimizer of f : Rn 7→ R if we are not able
to compute the gradient?

At each iterations we have m points x1, . . . , xm, and we construct a
quadratic q that interpolates f at each point, that is,

q(xk) = f(xk), 1 ≤ k ≤ m.

We also require that the Hessian approximation B be such that

min {‖B −B0‖F : q(xk) = f(xk), 1 ≤ k ≤ m}

where B0 is the Hessian approximation obtained on the previous iteration.

Moré, Munson, and Sarich Continuous Optimization and TAO

Quadratic Model-Based Methods

If x0 is the current approximation to the minimizer, then the next iterate
is determined by solving the trust region subproblem

min {q(x0 + w) : ‖w‖ ≤ ∆}

and setting x+ = x0 + w.

Research Issues

• How do we compute the quadratic q?

• How do we compute the initial set of points x1, . . . , xm?

• How do we update the basis points x1, . . . , xm?

Moré, Munson, and Sarich Continuous Optimization and TAO

Line Search Methods

A sequence of iterates {xk} is generated via

xk+1 = xk + αkpk,

where pk is a descent direction at xk, that is,

∇f(xk)T pk < 0,

and αk is determined by a line search along pk.

Line searches

• Geometry-based: Armijo, . . .

• Model-based: Quadratics, cubics, . . .

Moré, Munson, and Sarich Continuous Optimization and TAO

Powell-Wolfe Conditions on the Line Search

Given 0 ≤ µ < η ≤ 1, require that

f(x + αp) ≤ f(x) + µα∇f(xk)T pk sufficent decrease

|∇f(x + αp)T p| ≤ η |∇f(x)T p| curvature condition

Moré, Munson, and Sarich Continuous Optimization and TAO

Conjugate Gradient Algorithms

Given a starting vector x0 generate iterates via

xk+1 = xk + αkpk

pk+1 = −∇f(xk) + βkpk

where αk is determined by a line search.

Three reasonable choices of βk are (gk = ∇f(xk)):

βFR
k =

(
‖gk+1‖
‖gk‖

)2

, Fletcher-Reeves

βPR
k =

〈gk+1, gk+1 − gk〉
‖gk‖2

, Polak-Rivière

βPR+
k = max

{
βPR

k , 0
}

, PR-plus

Moré, Munson, and Sarich Continuous Optimization and TAO

Limited-Memory Variable-Metric Algorithms

Given a starting vector x0 generate iterates via

xk+1 = xk − αkHk∇f(xk)

where αk is determined by a line search.

The matrix Hk is defined in terms of information gathered during the
previous m iterations.

• Hk is positive definite.

• Storage of Hk requires 2mn locations.

• Computation of Hk∇f(xk) costs (8m + 1)n flops.

Moré, Munson, and Sarich Continuous Optimization and TAO

Limited-Memory Algorithms: Updating Hk

Hk+1 =
(

I −
sky

T
k

ρk

)
Hk

(
I −

yks
T
k

ρk

)
+

sks
T
k

ρk
,

yk = ∇f(xk+1)−∇f(xk), sk = xk+1 − xk, ρk = yT
k sk

Store information from the last m iterations

y1, . . . , ym,

s1, . . . , sm,

ρ1, . . . , ρm

How can we compute Hm+1w ?

Moré, Munson, and Sarich Continuous Optimization and TAO

Limited-Memory Algorithms: Computing Hm+1w

Recursion for qi = V T
i qi+1

qm+1 = w
do i = m, . . . , 1

βi = (sT
i qi+1)/ρi

qi = qi+1 − βiyi

end do

Recursion for ri = Hiqi

do i = 1, . . . , m
ri+1 = ri + si

(
βi − (yT

i ri)/ρi

)
end do
rm+1 = Hm+1w

Moré, Munson, and Sarich Continuous Optimization and TAO

Performance

CUTEr MINPACK-2

Moré, Munson, and Sarich Continuous Optimization and TAO

Trust-Region Newton Algorithm

At each iteration the step sk (approximately) minimizes

min {qk(xk + s) : ‖s‖ ≤ ∆k}

where qk is the quadratic approximation,

qk(w) = 〈∇f(xk), w〉+ 1
2〈w,∇2f(xk)w〉,

to the function, and ∆k is the trust-region bound.

The trust-region subproblem solved with preconditioned Steihaug-Toint
conjugate gradient method.

Moré, Munson, and Sarich Continuous Optimization and TAO

Recommendations

But what algorithm should I use?

• If the gradient ∇f(x) is not available, then a model-based method
is a reasonable choice. Methods based on quadratic interpolation
are currently the best choice.

• If the gradient ∇f(x) is available, then a limited-memory variable
metric method is likely to produce an approximate minimizer in the
least number of gradient evaluations.

• If the Hessian is also available, then a state-of-the-art
implementation of Newton’s method is likely to produce the best
results if the problem is large and sparse.

Moré, Munson, and Sarich Continuous Optimization and TAO

Computing the Gradient

Hand-coded gradients

• Generally efficient

• Error prone

• The cost is usually less than 5 function evaluations

Difference approximations

∂if(x) ≈ f(x + hei)− f(x)
hi

• Choice of hi may be problematic in the presence of noise.

• Costs n function evaluations

• Accuracy is about the ε
1/2
f where εf is the noise level of f

Moré, Munson, and Sarich Continuous Optimization and TAO

Inexpensive Gradient via Automatic Differentiation

Code generated by automatic differentiation tools

• Accurate to full precision

• For the reverse mode the cost is ΩT T{f(x)}.
• In theory, ΩT ≤ 5.

• For the reverse mode the memory is proportional to the number of
intermediate variables.

Moré, Munson, and Sarich Continuous Optimization and TAO

TAO: Toolkit for Advanced Optimization

The process of nature by which all things change and which is
to be followed for a life of harmony.

• Object-oriented techniques

• Component-based interaction

• Leverage of existing parallel computing infrastructure

• Reuse of external toolkits (linear solvers, preconditioners, . . .)

Moré, Munson, and Sarich Continuous Optimization and TAO

TAO Status

• Version 1.9 (December 2006)

• Source code, documentation, tutorials, example problems, . . .

• TAO components: MPQC (Sandia) and NWChem (PNNL)

• Grid sequencing via Distributed Arrays (PETSc)

• Gradients of grid functions via ADIC

Powered by PETSc and ADIC!

Moré, Munson, and Sarich Continuous Optimization and TAO

Using TAO with PETSc

TAO_SOLVER tao; /* TAO Optimization solver */
TAO_APPLICATION app; /* TAO Application using PETSc */
AppCtx user; /* User-defined application context */
Vec x; /* Solution vector */
Mat H; /* Hessian Matrix */

VecCreateSeq(PETSC_COMM_SELF,n,&x);
MatCreateSeqAIJ(PETSC_COMM_SELF,n,n,nz,PETSC_NULL,&H);
TaoCreate(PETSC_COMM_SELF,’’tao_lmvm’’,&tao);
TaoApplicationCreate(PETSC_COMM_SELF,&app);
TaoAppSetInitialSolutionVec(app,x);
TaoAppSetObjectiveRoutine(app, FormFunction,(void *)&user);
TaoAppSetGradientRoutine(app,FormGradient,(void *)&user);
TaoAppSetHessianMat(app,H,H);
TaoAppSetHessianRoutine(app,FormHessian,(void *)&user);
TaoSolveApplication(app,tao);
VecView(x,PETSC_VIEWER_STDOUT_SELF);

Moré, Munson, and Sarich Continuous Optimization and TAO

Objective Function and Gradient Evaluation

typedef struct { /* Used in the minimum surface area problem */
int mx, my; /* discretization in x, y directions */
int bmx, bmy, bheight; /* The size of the plate */
double bheight; /* The height of the plate */
double *bottom, *top, *left, *right; /* boundary values */

} AppCtx;

int FormFunction(TAO_APPLICATION app, Vec x, double *fcn, void *userCtx){
AppCtx *user = (AppCtx *)userCtx;
...

}
int FormGradient(TAO_APPLICATION app, Vec x, Vec g, void *userCtx){

AppCtx *user = (AppCtx *)userCtx;
...

}
int FormHessian(TAO_APPLICATION app, Vec x, Mat *H, Mat *H, int *flag,

void *userCtx){
AppCtx *user = (AppCtx *)userCtx;
...

}

Moré, Munson, and Sarich Continuous Optimization and TAO

Creating and Using a TAO Application

TAO_SOLVER tao; /* TAO Optimization solver */
TAO_APPLICATION app; /* TAO Application using PETSc */
AppCtx user; /* User-defined application context */
Vec x; /* Solution vector */
Mat H; /* Hessian Matrix */

VecCreateSeq(PETSC_COMM_SELF,n,&x);
MatCreateSeqAIJ(PETSC_COMM_SELF,n,n,nz,PETSC_NULL,&H);
TaoCreate(PETSC_COMM_SELF,"tao_lmvm",&tao);
TaoApplicationCreate(PETSC_COMM_SELF,&app);
TaoAppSetInitialSolutionVec(app,x);
TaoAppSetObjectiveRoutine(app,FormFunction,(void *)&user);
TaoAppSetGradientRoutine(app,FormGradient,(void *)&user);
TaoAppSetHessianMat(app,H,H);
TaoAppSetHessianRoutine(app,FormHessian,(void *)&user);
TaoSolveApplication(app,tao);
VecView(x,PETSC_VIEWER_STDOUT_SELF);

Moré, Munson, and Sarich Continuous Optimization and TAO

Creating and Using a TAO Solver

TAO_SOLVER tao; /* TAO Optimization solver */
TAO_APPLICATION app; /* TAO Application using PETSc */
AppCtx user; /* User-defined application context */
Vec x; /* Solution vector */
Mat H; /* Hessian Matrix */

VecCreateSeq(PETSC_COMM_SELF,n,&x);
MatCreateSeqAIJ(PETSC_COMM_SELF,n,n,nz,PETSC_NULL,&H);
TaoCreate(PETSC_COMM_SELF,"tao_lmvm",&tao);
TaoApplicationCreate(PETSC_COMM_SELF,&app);
TaoAppSetInitialSolutionVec(app,x);
TaoAppSetObjectiveRoutine(app,FormFunction,(void *)&user);
TaoAppSetGradientRoutine(app,FormGradient,(void *)&user);
TaoAppSetHessianMat(app,H,H);
TaoAppSetHessianRoutine(app,FormHessian,(void *)&user);
TaoSolveApplication(app,tao);
VecView(x,PETSC_VIEWER_STDOUT_SELF);

Moré, Munson, and Sarich Continuous Optimization and TAO

TAO Program Outline

TAO_SOLVER tao; /* TAO Optimization solver */
TAO_APPLICATION app; /* TAO Application using PETSc */
AppCtx user; /* User-defined application context */
Vec x; /* Solution vector */
Mat H; /* Hessian Matrix */

VecCreateSeq(PETSC_COMM_SELF,n,&x);
MatCreateSeqAIJ(PETSC_COMM_SELF,n,n,nz,PETSC_NULL,&H);
TaoCreate(PETSC_COMM_SELF,"tao_lmvm",&tao);
TaoApplicationCreate(PETSC_COMM_SELF,&app);
TaoAppSetInitialSolutionVec(app,x);
TaoAppSetObjectiveRoutine(app,FormFunction,(void *)&user);
TaoAppSetGradientRoutine(app,FormGradient,(void *)&user);
TaoAppSetHessianMat(app,H,H);
TaoAppSetHessianRoutine(app,FormHessian,(void *)&user);
TaoSolveApplication(app,tao);
VecView(x,PETSC_VIEWER_STDOUT_SELF);

Moré, Munson, and Sarich Continuous Optimization and TAO

Using PETSc Objects on Multiple Processors

TAO_SOLVER tao; /* TAO Optimization solver */
TAO_APPLICATION app; /* TAO Application using PETSc */
AppCtx user; /* user-defined application context */
Vec x; /* solution vector */
Mat H; /* Hessian Matrix */

VecCreateMPI(PETSC_COMM_WORLD,n,&x);
MatCreateMPIAIJ(PETSC_COMM_WORLD,nlocal,nlocal,n,n,d_nz,d_nnz,o_nz,o_nnz,&H);
TaoCreate(PETSC_COMM_WORLD,"tao_lmvm",&tao);
TaoApplicationCreate(PETSC_COMM_WORLD,&app);
TaoAppSetInitialSolutionVec(app,x);
TaoAppSetObjectiveRoutine(app,FormFunction,(void *)&user);
TaoAppSetGradientRoutine(app,FormGradient,(void *)&user);
TaoAppSetHessianMat(app,H,H);
TaoAppSetHessianRoutine(app,FormHessian,(void *)&user);
TaoSolveApplication(app,tao);
VecView(x,PETSC_VIEWER_STDOUT_WORLD);

Moré, Munson, and Sarich Continuous Optimization and TAO

Convergence Tolerances

Absolute tolerances specify acceptable errors in the optimality of the
function and the constraints.

f(x) ≤ f(x∗) + εfatol

Relative tolerances specify the number of significant digits required in the
solution and the constraints.

f(x) ≤ f(x∗) + εfrtol|f(x∗)|

These tolerance can be changed

int TaoSetTolerances(TAO_SOLVER solver,double fatol,double frtol,

double catol,double crtol)

Moré, Munson, and Sarich Continuous Optimization and TAO

TAO Basic Facilities

• TaoAppSetInitialSolutionVec

• TaoAppSetVariableBounds

• TaoGetLinearSolver

• TaoFromOptions

• TaoAppSetMonitor

• TaoView

• . . .

Moré, Munson, and Sarich Continuous Optimization and TAO

