VIII. ALHA77005

Lherzolite, 482 grams Weathering A, Fracturing A

Figure VIII-1. Photograph (or Mug Shot) of exterior surface of ALHA77005 showing minor fusion crust and "polished" appearance. The cube is 1 cm. (NASA #S78-31750)

Introduction

This Martian meteorite was found partially imbedded in the ice at the Allan Hills site during one of the first collecting seasons (Yanai *et al.* 1978). It has a rounded (slightly oblate) shape and its surface was partiallyablated and roughly-polished by wind-blown ice (figure VIII-1). Only ~5% of the surface still had a thin black fusion crust at the time of collection (Mason 1978, 1981). Interior voids (2-4 mm), exposed by the saw cuts, appear to be surrounded by shock melt. At least one small hole (1 mm) extends to the surface (T1).

Preliminary examination of ALHA77005 reported that it is ~55% olivine, ~35% pyroxene, ~8% maskelynite and ~2% opaques (Mason 1981). The olivine (Fa₂₈) occurs as anhedral to subhedral grains up to 2 mm long. The pyroxene occurs as prismatic crystals up to 6 mm long poikilitically enclosing olivine. Maskelynite (An_{53}) is interstitial to olivine and pyroxene. Some pyroxene has undulose extinction and some shock melting has occurred.

ALHA77005, LEW88516 and Y793605 have very similar mineralogy, texture and shock features (Treiman *et al.* 1994; Mikouchi and Miyamoto 1997, 2000). ALHA77005 and LEW88516 have apparently been more heavily shocked than other SNC meteorites (see below).

ALHA77005 has been extensively studied by Ishii *et al.* (1979), McSween *et al.* (1979 a, b), Berkley and Keil (1981), Ma *et al.* (1981), Shih *et al.* (1982), Reitmeijer (1983), Smith and Steele (1984), Collinson (1986), Jagoutz (1989b), Lundberg *et al.* (1990), Mikouchi and Miyamoto (2000) and Ikeda (1994, 1998).

Figure VIII-2. Photograph of first sawn surface of ALHA77005 illustrating "light" and "dark" regions (NASA #S78-37989).

Petrography

ALHA77005 is a cumulate gabbroic rock consisting of brown olivine, low- and high-Ca pyroxene, plagioclase glass, Ti-poor and -rich chromite, ilmenite, whitlockite and sulfides (McSween *et al.* 1979; Lundberg *et al.* 1990; Ikeda 1994). The large sawn surface shows three lithologies: 1) lighter, 2) darker and 3) glass (figure VIII-2).

The saw cut shows that ALHA77005 has distinct, interpenetrating, cm-sized, light and dark regions. The textures of these regions are different. The light-colored regions are composed of large pyroxenes poikilitically enclosing euhedral to subhedral olivine and chromite grains (figure VIII-3). The low-Ca pyroxene megacrysts occur up to 5 mm across. In the dark-

colored, interstitial lithology, poikilitic pyroxenes, olivine, maskelynite, small pyroxenes (both pigeonite and augite), titaniferous chromite, ilmenite, sulfides and phosphates are found. In both regions the olivine appears to be cumulus. In thin section, the olivine has a distinct brown color, apparently due to the presence of Fe^{+3} .

This rock has an igneous texture (see the beautiful color picture of a thin section in Yanai and Kojima (1987, page 52). A study of the olivine orientation by Berkley and Keil (1981) showed that ALHA77005 is a cumulate rock that solidified in the act of flow and accumulation. However, this rock has been heavily shocked (see below). In some areas of the meteorite, small patches of melt glass containing skeletal and hollow crystallites

	Mason	Treiman	Ma 1981	Wadhwa	
	1981	<i>et al</i> . 1994	(norm)	<i>et al.</i> 1994	
Olivine	55	60	52	44-52	
Pyroxene	35	13	37	43	
Maskelynite	8	9.5	10	10-12	
Phosphate		0.4		tr.	
Chromite	2	2	1	1	
Ilmenite		0.5			
Pyrrhotite		0.3			
Melt		14			

Mineralogical Mode

Figure VIII-3. Photomicrograph of thin section of ALHA77005,52. Large poikilitic orthopyroxene encloses euhedral olivine and chromite. Olivine is oddly colored tan to reddish-brown by minor Fe+3. Field of view is 2.2 mm.

of olivine and dendritic chromite grains have been reported (McSween *et al.* 1979).

Lundberg *et al.* (1990) report that the Fe/Mg of the apparently cumulus olivine is out of equilibrium with the coexisting clinopyroxene and the original calculated magmatic liquid. Longhi and Pan (1989), Lundberg *et al.* (1990) and Harvey and McSween (1992) have inferred that original Mg-rich olivine has become more Fe-rich by post-magmatic subsolidus diffusion.

Magmatic melt inclusions in olivine and pyroxene in ALHA77005 have been studied by Ikeda (1998), Stockstill *et al.* (2001) and Zipfel and Goodrich (2001).

Mineral Chemistry

Olivine: Olivine in ALH77005 has an unusual, distinctive pale brown color. Approximately 4.5% of the iron in the olivine in ALHA77005 is trivalent and the distinctive brown color of the olivine may be due to shock-induced oxidation (Ostertag *et al.* 1984).

The average grain size of olivine is 1 mm, with some grains up to 2 mm (Berkley and Keil 1981). A weak preferred orientation of olivine grains indicates that this cumulate rock solidified during magmatic flow. Many grains have a round habit, possibly caused by reaction with intercumulus liquid. The chemical composition of olivine is homogeneous within each grain, but varies from grain to grain, ranging from Fo_{75} to Fo_{70} (Ikeda 1994). Lundberg *et al.* (1990) have shown that this

Figure VIII-4. Composition diagram for pyroxene and olivine in ALHA77005. Data from McSween et al. 1979, Lundberg et al. 1990, and Treiman et al. 1994.

homogeneity was caused by re-equilibration with the intercumulus liquid on cooling.

Quench olivine in shock-melt pockets and veins has chemical zoning from Fa_{16} - Fa_{42} .

Pyroxene: The large pyroxenes in the poikilitic portion of ALHA77005 show chemical zoning from high-Mg, low-Ca orthopyroxene cores to Mg-rich pigeonite with rims of ferroan pigeonite (figure VIII-4) (Mikouchi and Miyamoto 1997). There appears to be a compositional gap from orthopyroxene to Mg-pigeonite. Lundberg *et al.* (1990) have determined the REE composition of large poikilitic pyroxene grains.

High-Ca pyroxene occurs in both the poikilitic and nonpoikilitic portions and shows chemical zoning from sub-calcic to Ca-rich augite. Augite often occurs in contact with pigeonite, suggesting that they crystallized in close association with each other. There is no evidence of exsolution in pyroxenes.

Plagioclase: Maskelynite is present in areas of ALH77005 as pseudomorphs of the original plagioclase grains and is found to have refractive indices lower than those of maskelynite in other shergottites (McSween and Stöffler 1980; Stöffler *et al.* 1986). In areas near the melt pockets (lithology 3), Ikeda (1994) noted that the borders of some of the original plagioclase grains were made of rims of recrystallized Ca-rich plagioclase. Ikeda (1994) analyzed the maskelynite in ALHA77005 with broad-beam microprobe technique and found there was a compositional "gap" between the plagioclase rims and the plagioclase glass. The interpretation is that plagioclase melt produced by the shock, partially

Figure VIII-5. Rough comparison of composition of *ALHA77005 with that of Shergotty by McSween et al.* 1979, EPSL **45**, 280.

recrystallized at the rims and the remainder was quenched as glass. In other areas the maskelynite is normally zoned from An_{50} to An_{45} . Tiny vesicles (bubbles?) are present in the plagioclase glass. According to Treiman *et al.* (1994), maskelynite in ALHA77005 has an average composition of An_{52} and a range from An_{24-56} .

Chromite: The chromite in ALHA77005 has four types of occurrence, based on differences in chemical zoning (Ikeda 1994). McSween *et al.* (1979a) reported that as much at 10% of the iron in the chromite was Fe^{+3} .

Ilmenite: Treiman *et al.* (1994) and McSween *et al.* (1979a) reported ilmenite with 5% MgO.

Phosphate: Lundberg *et al.* (1990) determined the REE composition of whitlockite.

Sulfides: Ikeda (1994) gives the compositions of the sulfides (pyrrhotite with exsolved pentlandite, Ni=10%). McSween *et al.* (1979a) and Smith *et al.* (1983) reported troilite in ALHA77005, but this is probably incorrect.

Kaersutite: Ikeda (1998) analyzed kaersutite found in magmatic inclusions in oikocrystic pigeonite.

Salts: McSween *et al.* (1979a) reported a FeO(OH) phase in isolated areas associated with sulfides.

Figure VIII-6. Normalized rare-earth-element composition diagram comparing ALHA77005 with Shergotty (data from Lodders 1998).

Whole-rock Composition

Jarosewich analyzed prepared powders of both the bulk sample and of the light and dark lithologies (Jarosewich 1990) as part of the McSween consortium. The analyses of the bulk sample and two distinct lithologies were not found to be very different, considering the difference in texture and mineralogy (table VIII-1). McSween *et al.* (1979b) found the trace element content in ALHA77005 compared closely with that in the shergottites (figure VIII-5). The high K/U, Rb/U, Cs/ U and Th/U are distinctive (almost Earth-like) when compared to basaltic achondrites.

The REE have been determined by Shih *et al.* (1982), Burghele *et al.* (1983), Smith *et al.* (1984), Treiman *et al.* (1994), and Haramura (1995) (figure VIII-6). REE in the light and dark lithologies vary by a factor of about two (Treiman *et al.*). However, the light rare earth elements (LREE) are found to be depleted (figure VIII-6) as are certain other trace elements (Rb, Nb, Cs, Ba, Ta, Th and U, figure VIII-7). Shimizu and Masuda (1981) reported a Ce anomaly and Lundberg *et al.* (1992) found that the Ce anomaly was related to weathering of the pyroxene.

Dreibus *et al.* (1992) and Treiman *et al.* (1994) found that the composition of ALHA77005 was almost identical to that of LEW88516. Ir was found to be low — *in the range of the terrestrial upper mantle.*

Burgess *et al.* (1989) determined about 400 ppm S and Burghele *et al.* reported 600 ppm S in ALHA77005. Gooding *et al.* (1990) determined the thermal release

Figure VIII-7. Ratio of trace element contents of ALHA77005, EETA79001 and LEW88516 to those of Shergotty (for reference) showing that Rb, Nb, Cs, Ba, La (and LREE), Ta, Th and U are "depleted" in this special class of Martian meteorites.

pattern for several volatile species.

Shock Features

ALHA77005 has been more heavily shocked than the other SNC meteorites. Maskelynite is found to have refractive indices lower than that in other shergottites (McSween and Stöffler 1980; Stöffler *et al.* 1986). Ikeda (1994) reported that all of the olivine and pyroxene showed mosaic extinction under the microscope. McSween and Stöffler found that irregular shock-melt pockets and pseudotachylite veins comprise up to 20% by volume of the rock. Stöffler *et al.* (1986) concluded that ALHA77005 reached equilibrium shock pressure of 43 ± 2 GPa and post-shock temperature of 400 - 800°C. Bishoff and Stöffler (1992) and Boctor *et al.* (1999) have also studied the shock features in ALHA77005 and Rietmeijer (1983) discussed "shock-induced chemical reactions."

Boctor *et al.* noted that the similar shock features and peak shock pressures of ALHA77005, LEW88516 and EETA79001 might indicate that they were all "metamorphosed" by the same impact event! (however, EETA79001 has a distinct exposure age)

Magnetic Studies

The anhysteretic remanent magnetization (ARM) technique for the determination of the paleomagnetic field on Mars has been attempted on ALHA77005 (Nagata 1980; Collinson 1986), but the results are inconclusive (Sugiura and Strangway 1988). The presence of Fe^{+3} in the magnetic phases (titanomagnetite) may help this experiment, but the high

Figure VIII-8. Rb-Sr isochron for ALH77005 from Borg et al. 2001, GCA 66, 2037.

Figure VIII-9. Sm-Nd isochron for ALHA77005 from Borg et al. 2001, GCA 66, 2037.

shock pressures and complicated histories of SNC meteorites may have disturbed any natural remanent magnetism (NRM), making this important experiment very challenging. If the shock event induced enough reheating, the original NRM may have been erased and re-acquired at the time of shock (Sugiura and Strangway 1988). Nagata (1980) reported a small amount of metallic iron in his magnetic studies, but this can not be in equilibrium with the original mineral assemblage.

Radiogenic Isotopes

Shih *et al.* (1982) reported a Rb-Sr age of 187 ± 12 Ma with 87 Sr/ 86 Sr = 0.71037 ± 5 (λ_{Rb} = 1.39 x 10⁻¹¹ year⁻¹) and a Sm-Nd age of ~ 325 Ma. Schaeffer and Warsila (1981) obtained a vague 40 Ar/ 39 Ar plateau age of about 1.1 Ga. However, Jessberger *et al.* (1981) used laser probe extraction to show that excess 40 Ar is located inhomogenously within the minerals of ALHA77005. Jagoutz (1989b) determined an age of 154 ± 6 Ma (

	Wanke 86	Smith 84	Dreibus92	Dreibus92	Jarosewich90	Jarosewich90	Jarosewich90	Burghele 83	Haramura 95
mainht						dark *	light *		
Weight SiO2 % TiO2 Al2O3 FeO MnO CaO MgO Na2O K2O P2O3 sum	20.71 (b) 0.461 (b) 3.01 (b) 0.597 (b) 0.033 (b)	$\begin{array}{ccc} 0.3 & (b) \\ 3 & (b) \\ 20.2 & (b) \\ 0.44 & (b) \\ 3.8 & (b) \\ 26.5 & (b) \\ 0.48 & (b) \\ 0.028 & (b) \end{array}$	43.08 (b) 0.44 (b) 2.59 (b) 19.95 (b) 0.44 (b) 27.69 (b) 0.44 (b) 0.027 (b) 0.36 (b)	0.44 (d)	42.4 (a) 0.46 (a) 3.14 (a) 19.85 (a) 0.46 (a) 3.39 (a) 28.16 (a) 0.48 (a) 0.48 (a) 0.44 (a) 0.41 (a) 98.79	$\begin{array}{c} 41.41 (a) \\ 0.52 (a) \\ 3.41 (a) \\ 20.84 (a) \\ 0.45 (a) \\ 3.36 (a) \\ 27.84 (a) \\ 0.6 (a) \\ 0.04 (a) \\ 0.45 (a) \\ \textbf{98.92} \end{array}$	45.8 (a) 0.31 (a) 1.99 (a) 18.51 (a) 0.45 (a) 3.37 (a) 28.16 (a) 0.27 (a) 0.22 (a) 0.19 (a) 99.07	43.08 (b) 0.44 (b) 2.59 (b) 19.95 (b) 0.457 (b) 3.35 (b) 27.69 (b) 0.438 (b) 0.027 (b) 0.36 (b) 98.382	43.02 (a) 0.36 (a) 2.54 (a) 18.97 (a) 0.45 (a) 2.84 (a) 29.69 (a) 0.37 (a) 0.37 (a) 0.39 (a) 98.66
Li ppm C F S Cl Sc V	20.1 (b)	22 (b) 158 (b)	1.31 (b) 82 (b) 22 (b) 600 (b) 14 (b) 21.1 (b) 158 (b)		200	100	200	1.31 (b) 82 (b) 21.9 (b) 600 (b) 14 (b) 21.1 (b)	
Ċr	6700 (b)	5679 (b)	6568 (b)		7184 (a)	6090 (a)	7390 (a)	6589 (b)	6842 (a)
Co Ni	75.2 (b) 340 (b)	69 (b) 320 (b)	69.5 (b) 370 (b)		100	300	300	69.5 (b) 335 (b)	240 (a)
Cu	540 (0)	5.5 (b)	4.4 (b)		100	500	500	555 (0)	240 (u)
Zn Ga	62 (b) 8.9 (b)	49 (e) 6.1 (e)	71 (b) 75 (b)					71 (b) 75 (b)	
Ge	0.9 (0)	0.1 (0)	7.5 (0)					7.5 (0)	
As Se		0.0014 (e) 0.15 (e)	0.022 (b) < $0.4 (b)$					0.022 (b) < 0.4 (b)	
Br		0.110 (0)	0.085 (b)					0.069 (b)	Shimizu 81
Rb Sr		0.63 (b)	0.63 (b)	0.75 (d) 14.1 (d)				100 (b)	0.633(c) 8.06 (c)
Y		15		6.18 (d)				100 (0)	0.00 (0)
Zr				19.5 (d)					
Mo	0.2 (b)			0.37 (u)					
Pd ppb		4.4 (a)							
Ag ppb Cd ppb		4.4 (e) 6 (e)							
In ppb	<50 (h)	11 (e)						<(0 (b)	
So ppo Te ppb	<30 (0)	0.68 (e) 0.5 (e)						<00 (D)	
I ppm			1.72 (b)					1.72 (b)	
Cs ppm Ba		0.038 (b) 5.3 (b)	0.04 (b)	0.037 (d) 4.64 (d)					3.45 (c)
La	0.49 (b)	0.32 (b)	0.32 (b)	0.37 (d)				0.32 (b)	0.1812(c)
Ce Pr	1.6 (b)	0.84 (b) 0.13 (b)	1.09 (b)	1 (d)				1.09 (b)	0.758 (c)
Nd	1.9 (b)	0.82 (b)	1.15 (b)	0.8 (d)				1.15 (b)	0.399 (c)
Sm Fu	0.67 (b) 0.288 (b)	0.46 (b) 0.22 (b)	0.42 (b) 0.2 (b)	0.47 (d) 0.22 (d)				0.42 (b) 0.2 (b)	0.226 (c) 0.1187(c)
Gd	1.1 (b)	0.92 (b)	0.2 (0)	0.22 (u)				0.2 (0)	0.44 (c)
Tb	0.19 (b)	0.18 (b)	0.17 (b)	0.16 (d)				0.17 (b)	0.560 (a)
Но	0.28 (b)	0.27 (b)	0.22 (b)	0.25 (d)				0.90 (b) 0.22 (b)	0.509 (0)
Er	0.1 2 (b)	0.66 (b)	0.08 (b)	0.004(4)				0.08 (h)	0.336 (c)
Yb	0.12 (b) 0.73 (b)	0.09 (b) 0.55 (b)	0.08 (b) 0.52 (b)	0.094(d) 0.52(d)				0.08 (b) 0.52 (b)	0.315 (c)
Lu	0.1 (b)	0.077 (b)	0.073 (b)	0.076 (d)				0.073 (b)	0.0461(c)
HI Ta	0.78 (b) 0.033 (b)	0.58 (b)	0.55 (b) 0.026 (b)	0.57 (d)				0.55 (b) 0.026 (b)	
W ppb	(*)		84 (b)					84 (b)	
Re ppb Os ppb									
Ir ppb	4 (b)		3.5 (b)					3.5 (b)	
Au ppb	1.3 (b)	0.29 (e) 1.7 (c)	0.3 (b)					0.3 (b)	
Bi ppb		(0.7 (e))				Chen and Wasse	erburg 86		
Th ppm	<0.1 (b)	0.020()	<0.1 (b)	0.53 (d)		0.058(c)	-	<0.1 (b)	
U ppm	<0.04 (b)	0.029 (e)	$\frac{<0.05(b)}{RN44(c) inst}$	0.012 (d)	ss snac (d) snaul	0.015 (c)	(a) RNAA (A) INAA	$\frac{<0.05(b)}{(a) ICP OFS}$,

e (a) wet chem., (b) INAA & RNAA, (c) isotope dilution mass spec., (d) spark source mass spec., (e) RNAA, (f) INAA, (g) ICP-OES * from powder prepared by Jarosewich

	Treiman94	Trieman 94 light *	Trieman 94 dark *	McSween79	Ma 81	Ma 81	Shih 81	Warren96	Onuma81	Onuma81	Jagoutz89
weight SiO2 % TiO2	<i>calculated</i> 40.8 0.61	70 mg	74 mg		311 mg	42.7 mg					87 mg
Al2O3 FeO	3.8 21.7	18.4 (f)	21 (f)								
CaO MaO	2.9	3.4 (f)	3.5 (f)								
MgO 28 Na2O 0.63 K2O 0.04 P2O3 0.34 sum 99.3	0.63 0.04 0.34 99.3	0.296 (f) 0.02 (f)	0.586 (f)								
Li ppm C F S Cl							1.58 (c)				
Sc V		22.2 (f)	22 (f)		22 (f) 158 (f)						
Cr Co		8142 (f) 67.4 (f)	6979 (f) 77 (f)	67.2 (e)	70 (f)						
Ni Cu		320 (f)	340 (f)	5.47 (e)	320 (f)			298 (e)			
Zn Ga				49.4 (e) 6.07 (e)				58 (e)			
Ge As				0.0014	(e)			0.58 (e)			
Se Br			0.5 (f)	0.149 (e)	. ,						
Rb Sr Y Zr Nb Mo				0.626 (e)		16 (e)	0.783 (c) 14.1 (c)		6.2 (f)	6.3 (f)	0.783(c) 16.4(c)
Pd ppb Ag ppb Cd ppb In ppb Sb ppb Te ppb				4.37 (e) 5.92 (e) 11.1 (e) 0.69 (e) 0.45 (e)							
I ppm Cs ppm		0.03 (f)	0.05 (f)	0.038 (e)			4.52 ()		24 (0	2.2 (5)	0.083(c)
La Ce		0.21 (f)	0.51 (f) 2.6 (f)		0.33 (f)	0.33 (e) 0.94 (e)	4.55 (c) 0.314 (c) 0.74 (c)		2.4 (1)	2.3 (1)	
Pr Nd						0.13 (e) 0.88 (e)	0.76 (c)				1.119(c)
Sm Eu		0.29 (f) 0.134 (f)	0.63 (f) 0.89 (f)		0.46 (f) 0.21 (f)	0.46(e) 0.23(e)	0.45 (c) 0.224 (c)				0.631(c)
Tb Dv		0.13 (f)	0.2 (f)		11 (f)	0.92 (e) 0.18 (e)	1.16 (a)				
Ho Fr					1.1 (1)	0.27 (e)	0.66 (c)				
Tm Yh		04 (f)	0.71 (f)		0.53 (f)	0.09(e) 0.58(e)	0.54 (c)				
Lu Hf Ta W pph		$\begin{array}{c} 0.11 & (1) \\ 0.055 & (f) \\ 0.42 & (f) \\ 0.02 & (f) \end{array}$	$\begin{array}{c} 0.099 (f) \\ 0.81 (f) \\ 0.04 (f) \end{array}$		0.078 (f) 0.58 (f)	0.08 (e)	0.074 (c)				
Re ppb Os ppb Ir ppb Au ppb Tl ppb Bi ppb Th ppm		6 (f) 3.6 (f)	3.3 (f) 1.5 (f)	0.288 (e) 1.7 (e) <0.72 (e) 0.059 (e)				0.102 (e) 4.4 (e) 4.1 (e) 0.26 (e)			
U ppm				0.018 (e)		0.04(e)					

Table VIII-1b. Chemical composition of ALHA77005 (continued).

$ \begin{array}{ c c c c c } \hline 0.45 m & here & h$		Warren 9	97 Mittlefehldt 97	Mittle	fehldt 97	Mittlefehldt 97	Shih 82 Shih 82	Ebihara9'	7 Ebihara97
SNO 2 41.36 1.2 2.19 2.19 ADOS 0.2 7.9 0 0.3 0.10 1.8 1		615 mg	light *	dark	*	bulk		119 mg	
TinQ2 -0.33 -0.3 -0.3 FeO 0.44 1.7 (1) 20.3 (1) 19.9 (1) 18.13 GeO 2.70 (1) 3.6 (1) 3.2 (1) 3.5 - GeO 2.70 (1) 3.6 (1) 3.2 (1) 3.5 - GeO 2.70 (1) 3.6 (1) 0.425 (r) 0.0 3.5 - GeO 2.70 (1) 0.425 (r) 0.425 (r) 0.0 - <t< td=""><td>SiO2 %</td><td>41.36</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	SiO2 %	41.36							
λ1200 0.02 0.44 7.5 (1) 2.0.3 (1) 19.9 (1) 15.1	TiO2	< 0.83					0.3		
EO 20.45 17.5 (1) 20.3 (1) 19.9 (1) 18.1 18.1 Cato 2.34 2.7 (1) 3.6 (1) 3.2 (1) 3.5 3.5 Cato 2.34 0.20'// 0.541 (1) 0.425 (1) 3.6 3.7 3.7 Name 98.51 I <thi< th=""> I I I <th< td=""><td>Al2O3</td><td>3.02</td><td></td><td></td><td></td><td></td><td></td><td>2.19</td><td></td></th<></thi<>	Al2O3	3.02						2.19	
Ma0 0.44	FeO	20.45	17.5 (f)	20.3	(f)	19.9 (f)		18.13	
CAD 2 Ma 2 / (1) 3 / (2) <	MnO	0.44	0.7 (0)	2.6	(2)	2.2 (2		0.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CaO	2.94	2.7 (f)	3.6	(1)	3.2 (f)		3.95	
Name 0.025 (1) 0.25 (1) 0.25 (1) 0.25 (1) 0.25 (1) 0.25 (1) 0.25 (1) sum 98.51 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 132 5	MgO Na2O	29.0	0.207(f)	0.541	(f)	0.425 (f)		25.17	
p2o3 constrained constrained start 98.51	K2O	0.03	0.207(1)	0.541	(1)	0.425 (1)		0.39	
sum98.51Lippen FII </td <td>P2O3</td> <td>0.05</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td> <td></td>	P2O3	0.05						0.00	
Lippon 6 10 20.1 (1) 27.7 (1) 20.4 (1) 21.6 (1) 122 Cu 160 122 (1) 122 (1) 122 (1) 122 Cu 100 132 (1) 343 (1) 200 (1) 328 (1) 12 Cu 100 <	sum	98.51							
Li permi o conservative se									
C1 S 19 20.1 (f) 22.7 (f) 20.4 (f) 12.6 (f) CV 166 - 45.0 - Cu 700 - - 45.0 Cu 77.7 31.0 32.0 (f) 32.0 (f) 32.0 (f) 33.8 Cu - 33.8 - - 33.8 Cu - 9.3 (f) - 9.3 (f) - Ge 0.3 - - 0.37 (f) - - Ge - - - - - - - Ge -	Li ppm								
Cl 19 20.1 (1) 22.7 (1) 20.4 (1) 132 See 19 20.1 (1) 22.7 (1) 20.4 (1) 132 Cr 7800 - 6320 - 6320 - 6320 Co 7.8 65 (1) 32.3 (1) 32.0 (1) 7.7 - Ni 59 7.4 (1) 9.0 (1) 7.1 (1) 60.7 - Ga 6.9 7.4 (1) 9.0 (1) 7.1 (1) 60.7 - - 9.3 -	C								
0.1 0.2 1 (1) 22.7 (1) 20.4 (1) 20.4 (1) 20.4 (1) 12.0 132.0 1	r S								
See 19 20.1 (1) 22.7 (1) 20.4 (1) 11.6 (1) C1 7000	Cl								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sc	19	20.1 (f)	22.7	(f)	20.4 (f)		21.6 (f)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V	166						132	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cr	7000						6520	
Ni 310 320 (f) 353 (f) 420 (f) 353 (f) 420 (f) 358 (f) 538 (f)	Co	78	65 (f)	74.9	(f)	72.2 (f)		77.7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N1 Cu	310	320 (f)	353	(1)	320 (f)		338	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu Zn	50	74 (f)	00	(f)	71 (f)		60.7	
Ge = 0.58 0.4 0.37 Set 0.4 0.37 Rb = -4.2	Ga	6.9	/4 (1)	90	(1)	/1 (1)		9.3	
As 0.04 0.37 Br -4.2	Ge	0.58							
See 0.04 0.37 Br 0.37 Rb 0.37 Rb 0.37 St Y Y Nb 47.3 (e) Mo 47.3 (e) Ag ppb 4 Cd ppb 2.1 4 Sp ppb 4 Cd ppb 2.1 4 Sp ppb 1.28 Ra 0.40 0.156 (f) 0.427 (f) 0.325 (f) 0.614 Cc 1.28 1.28 Pr 0.795 (c) 0.868 (c) 0.77 Eu 0.25 0.094 (f) 0.465 (f) 0.241 (f) 0.373 Gd 0.77 0.373	As								
Br 4.2 Sr <20 Y Zr <30 Mo 41.2 (c) Happb $$ Ag ppb $$ Glippb 2.1 In ppb 2.1 In ppb 2.1 In ppb 2.1 Spp -0.09 Ba <18 La 0.40 0.156 (f) 0.427 (f) 0.325 (f) 0.614 Cs pm <0.09 Ba <18 La 0.40 0.156 (f) 0.427 (f) 0.325 (f) 0.614 Cs pm <0.09 Ba <18 La 0.40 0.156 (f) 0.427 (f) 0.325 (f) 0.614 Cs <2.5 1.28 Pr Nd <0.9 0.795 (c) 0.868 (c) 0.77 Eu 0.25 0.094 (f) 0.465 (f) 0.241 (f) 0.361 (c) 0.356 (c) 0.77 Eu 0.25 0.094 (f) 0.19 (f) 0.16 (f) 0.356 (c) 0.373 Gd 0.373 The 0.17 0.09 (f) 0.19 (f) 0.16 (f) 0.256 (c) 0.296 Fr The 0.17 0.09 (f) 0.19 (f) 0.076 (f) 0.531 (f) 0.296 Fr The 0.77 0.25 (f) 0.67 (f) 0.51 (f) 0.558 (c) 0.991 Hi 0.577 0.23 (f) 0.67 (f) 0.51 (f) 0.558 (c) 0.951 Fr 0.17 0.023 (f) 0.67 (f) 0.51 (f) 0.558 (c) 0.951 Fr 0.17 0.023 (f) 0.67 (f) 0.51 (f) 0.531 (f) 0.5586 (c) 0.951 Fr 0.197 (c) 0.88 (c) 0.197 (c) 0.888 (c) 0.919 Fr 0.104 Fr 0.57 0.25 (f) 0.67 (f) 0.51 (f) 0.551 (f) 0.5586 (c) 0.951 Fr 0.197 (c) 0.89 (f) 0.03 (f) 0.373 (f) 0.888 (c) 0.919 Fr 8.98 (c) 0.991 (f) 0.33 (f) 8.98 (c) 0.991 (f) 0.342 (c) 0.344 (c) 0.076 (d) 0.076 (d) 0.076 (d) 0.076 (f) 0.342 (f) 0.044 (f) 0.0	Se	0.04						0.37	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Br	-1.2							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	KD Sr	<4.2							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Y	~20							
Nb No $47.3 (c)$ $47.3 (c)$ Ag ppb $47.3 (c)$ $47.3 (c)$ $47.3 (c)$ $47.3 (c)$ $47.3 (c)$ Ag ppb $47.3 (c)$ $47.3 ($	Zr	<30							
Mo 47.3 (c) Ag ppb 4 Cd ppb 2.1 in ppb 5 Sb ppb 5 Te ppb 1 Ippm 6 C2 opto 0.156 (f) 0.427 (f) Ba <18	Nb								
Pd ppb .1 .1 In ppb 2.1 In ppb .1 Stoppb .1 Te ppb .1 Stopp .18 La 0.40 0.156 (f) 0.427 (f) 0.325 (f) 0.614 Ce -2.5 .1.28 .1.28 .1.28 .1.28 Pr .1.28 .1.28 .1.28 .1.28 .1.28 Stopp 0.156 (f) 0.465 (f) 0.451 (f) 0.361 (c) 0.356 (c) 0.777 Eu 0.25 0.094 (f) 0.465 (f) 0.241 (f) 0.356 (c) 0.373 Gd .10 .10 .10 .10 .10 .10 .10 Md 0.9 (f) 0.19 (f) 0.16 (f) .296 .11 .11 .10 .11 <	Mo								47.3 (e)
A g ppb 2.1 In ppb 2.1 In ppb 35 ppb 75 pp	Pd ppb								
Cappo 2.1 in ppb 5 Sb ppb 1 Te pbb 1 Jpm 2 CS ppm <0.09 Ba <18 La 0.40 0.156 (f) 0.427 (f) 0.325 (f) 0.614 CC <2.5 1.28 Pr 0.795 (c) 0.868 (c) 0.77 Eu 0.25 0.094 (f) 0.465 (f) 0.451 (f) 0.361 (c) 0.356 (c) 0.77 Eu 0.25 0.094 (f) 0.465 (f) 0.241 (f) 0.361 (c) 0.356 (c) 0.77 Eu 0.25 0.094 (f) 0.465 (f) 0.241 (f) 0.361 (c) 0.356 (c) 0.77 Eu 0.25 0.094 (f) 0.19 (f) 0.16 (f) 0.296 Tb 0.17 0.09 (f) 0.19 (f) 0.16 (f) 0.296 Fr 0.23 Fr 0.57 0.33 (f) 0.68 (f) 0.533 (f) Lee 98 0.127 Hf 0.57 0.25 (f) 0.67 (f) 0.51 (f) 0.586 (c) 0.951 Ta 0.04 0.04 (f) 0.03 (f) W ppb 0.102 0.576 (f) 6 (f) 55.43 (c) 38 (e) Ke ppb 0.102 0.967 (f) 6 (f) 8.7 9.11 (e) Au ppb 0.26 0.926 0.921 0.342 (e) Hf 0.23 0.68 (f) 0.31 (f) 0.03 (f) W ppb 8.7 9.11 (e) 0.342 (e) Hf 0.32 (f) 0.67 (f) 0.03 (f) Hf 0.03 (f) 0.342 (e) 0.342 (e) Hf 0.342 (e) 0.342 (e) Hf 0.7 (f) 0.11 (f) 0.344 (f) 0.342 (f) 0.342 (f) 0.342 (f) 0.342 (f) 0.342 (f) 0.544 (Ag ppb	2.1							4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ca ppo	2.1							
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	Sh nnh								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Te ppb								
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$	I ppm								
Ba < 18 La 0,40 0.156 (f) 0.427 (f) 0.325 (f) 0.414 Cc < 2.5 1.28 Pr Nd < 0.9 0.795 (c) 0.868 (c) Sm 0.48 0.216 (f) 0.565 (f) 0.451 (f) 0.361 (c) 0.356 (c) 0.77 Eu 0.25 0.094 (f) 0.465 (f) 0.241 (f) 0.361 (c) 0.356 (c) 0.77 Gd Tb 0.17 0.09 (f) 0.19 (f) 0.16 (f) 0.296 Tb 0.17 0.09 (f) 0.19 (f) 0.16 (f) 0.296 Fr Tm Yb 0.57 0.33 (f) 0.68 (f) 0.53 (f) 0.919 Fr Tm Yb 0.57 0.33 (f) 0.68 (f) 0.51 (f) 0.9586 (c) 0.919 Lu 0.085 0.047 (f) 0.097 (f) 0.076 (f) Lee 98 0.127 Hf 0.57 0.25 (f) 0.67 (f) 0.51 (f) 0.5586 (c) 0.951 Ta 0.04 0.04 (f) 0.03 (f) W pb Re pb 0.102 Star Re pb 0.102 Star Re pb 0.102 Star Re pb 0.102 Star Re pb 0.102 Star Re pb 0.102 Star St	Cs ppm	< 0.09							
La 0.40 0.156 (f) 0.427 (f) 0.325 (f) 0.614 Ce <2.5	Ba	<18			(2)				
CC < 2.3 1.28 Pr 0.795 (c) 0.868 (c) Sm 0.48 0.216 (f) 0.565 (f) 0.451 (f) 0.361 (c) 0.373 Gd 0.25 0.094 (f) 0.465 (f) 0.241 (f) 0.373 Gd 0.17 0.09 (f) 0.19 (f) 0.16 (f) 0.296 Dy 1.04 0.296 0.296 0.296 But 0.757 0.33 (f) 0.68 (f) 0.53 (f) 0.296 Lu 0.085 0.047 (f) 0.097 (f) 0.076 (f) Lee 98 0.127 Hf 0.57 0.25 (f) 0.67 (f) 0.51 (f) 0.5586 (c) 0.951 Ta 0.04 0.04 (f) 0.03 (f) 0.197 (e) 0.197 (e) So ppb 4.4 5.43 (c) 38 (c) 0.197 (e) Ka ppb 0.26 0.26 (f) 0.342 (e) 0.342 (e) Th ppm <0.1	La	0.40	0.156 (1)	0.427	(1)	0.325 (f)		0.614	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dr	<2.5						1.28	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Nd	<0.9					0.795(c) 0.868(c)		
Eu 0.25 0.094 (f) 0.465 (f) 0.241 (f) 0.373 Gd Tb 0.17 0.09 (f) 0.19 (f) 0.16 (f) 0.296 Dy 1.04 0.23 0.236 0.296 0.296 Er Tm 7 0.33 (f) 0.68 (f) 0.53 (f) 0.919 Lu 0.085 0.047 (f) 0.097 (f) 0.076 (f) Lee 98 0.127 Hf 0.57 0.25 (f) 0.67 (f) 0.51 (f) 0.5586 (c) 0.951 Ta 0.04 0.04 (f) 0.03 (f) 0.197 (e) 0.197 (e) Sppb 4.4 8.98 (e) 0.197 (e) 0.342 (e) Ir ppb 4.1 7 (f) 5 (f) 6 (f) 8.7 9.11 (e) 0.342 (e) 1176 0.342 (e) 0.342 (e) 0.342 (e) Th ppm <0.1 10.676 10.976 0.976 0.1977 (e) O.970 0.0676 6 (f) 0.1976 0.1977 (e) 0.342 (e) Th ppm	Sm	0.48	0.216 (f)	0.565	(f)	0.451 (f)	0.361 (c) 0.356 (c)	0.77	
Gd Tb 0.17 0.09 (f) 0.19 (f) 0.16 (f) 0.296 Dy 1.04 0.23 -	Eu	0.25	0.094 (f)	0.465	(f)	0.241 (f)		0.373	
Tb 0.17 0.09 (f) 0.19 (f) 0.16 (f) 0.296 Dy 1.04 Ho 0.23 0.23 0.23 Er Tm 0.57 0.33 (f) 0.68 (f) 0.53 (f) 0.919 Lu 0.085 0.047 (f) 0.097 (f) 0.076 (f) Lee 98 0.127 Hf 0.57 0.25 (f) 0.67 (f) 0.51 (f) 0.5586 (c) 0.951 Ta 0.04 0.04 (f) 0.03 (f) 0.5386 (c) 0.951 W ppb Star (c) 38 (e) Re ppb 0.102 0.197 (e) 0.995 4.4 8.7 9.11 (e) Ir ppb 4.1 7 (f) 5 (f) 6 (f) 8.7 9.11 (e) 0.342 (e) Th ppm <0.06 Uppm <0.06 (a) wet chem. (b) INAA & RNAA (c) isotone dilution mass spec. (d) spark source mass spec. (e) RNAA (f) INAA (e) ICP-OES	Gd								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tb	0.17	0.09 (f)	0.19	(f)	0.16 (f)		0.296	
Interpretation 0.25 Er Tim 0.57 0.33 (f) 0.68 (f) 0.53 (f) 0.919 Lu 0.085 0.047 (f) 0.097 (f) 0.076 (f) Lee 98 0.127 Hf 0.57 0.25 (f) 0.67 (f) 0.51 (f) 0.5586 (c) 0.951 Ta 0.04 0.04 (f) 0.03 (f) 0.951 0.197 (e) W ppb S 5.43 (c) 38 (e) Re ppb 0.102 0.197 (e) Os ppb 4.4 8.7 9.11 (e) Ir ppb 4.1 7 (f) 5 (f) 6 (f) 8.7 9.11 (e) O .26 0.342 (e) Th ppm <0.06 Uppm <0.06 (d) wet chem. (b) INAA & RNAA. (c) isotone dilution mass spec. (d) spark source mass spec. (e) RNA4. (f) INAA. (c) ICP-OFS	Dy Lo	1.04							
The 0.57 0.33 (f) 0.68 (f) 0.53 (f) 0.919 Lu 0.085 0.047 (f) 0.097 (f) 0.076 (f) Lee 98 0.127 Hf 0.57 0.25 (f) 0.67 (f) 0.51 (f) 0.5586 (c) 0.951 Ta 0.04 0.04 (f) 0.03 (f) 55.43 (c) 38 (e) W ppb State 8.7 9.17 (e) So spb 4.4 8.98 (e) Ir ppb 4.1 7 (f) 5 (f) 6 (f) 8.7 9.11 (e) Au ppb 0.26 0.342 (e) Th ppb 8 Bi ppb 11 (c) isotope dilution mass spec. (d) spark source mass spec. (e) RN44 (f) IN4A (g) ICP-OFS	Fr	0.23							
Yb 0.57 0.33 (f) 0.68 (f) 0.53 (f) 0.919 Lu 0.085 0.047 (f) 0.097 (f) 0.076 (f) Lee 98 0.127 Hf 0.57 0.25 (f) 0.67 (f) 0.51 (f) 0.5586 (c) 0.951 Ta 0.04 0.04 (f) 0.03 (f) 55.43 (c) 38 (e) W ppb 8.98 (e) 0.197 (e) 8.98 (e) 8.98 (e) Ir ppb 4.1 7 (f) 5 (f) 6 (f) 8.7 9.11 (e) Au ppb 0.26 0.342 (e) 0.342 (e) 0.342 (e) Tl ppb Bi ppb 0.06 (a) wet chem. (b) INAA & RNAA. (c) isotope dilution mass spec. (d) spark source mass spec. (e) RNAA (f) INAA (g) ICP-OFS	Tm								
Lu 0.085 0.047 (f) 0.097 (f) 0.076 (f) Lee 98 0.127 Hf 0.57 0.25 (f) 0.67 (f) 0.51 (f) 0.5586 (c) 0.951 Ta 0.04 0.04 (f) 0.03 (f) 55.43 (c) 38 (e) W ppb 55.43 (c) 38 (e) 0.197 (e) 8.98 (e) Ir ppb 4.4 8.98 (e) 8.7 9.11 (e) Au ppb 0.26 0.342 (e) 0.342 (e) Tl ppb Bi ppb 0.06 (a) wet chem. (b) INAA & RNAA. (c) isotone dilution mass spec. (d) spark source mass spec. (e) RNAA (f) INAA (g) ICP-OFS	Yb	0.57	0.33 (f)	0.68	(f)	0.53 (f)		0.919	
Hf 0.57 0.25 (f) 0.67 (f) 0.51 (f) 0.5586 (c) 0.951 Ta 0.04 0.04 (f) 0.03 (f) 55.43 (c) 38 (e) W ppb 55.43 (c) 38 (e) 0.197 (e) Re ppb 0.102 8.98 (e) 8.98 (e) If ppb 4.1 7 (f) 5 (f) 6 (f) 8.7 9.11 (e) Au ppb 0.26 0.342 (e) 0.342 (e) 0.342 (e) Th ppb 8.7 0.102 0.342 (e) 0.342 (e) W ppm <0.06 (a) wet chem. (b) INAA & RNAA. (c) isotope dilution mass spec. (d) spark source mass spec. (e) RNAA. (f) INAA. (c) ICP-OFS	Lu	0.085	0.047 (f)	0.097	(f)	0.076 (f)	Lee 98	0.127	
Ta 0.04 0.04 (f) 0.03 (f) W ppb 55.43 (c) 38 (e) Re ppb 0.102 0.197 (e) 0.197 (e) Os ppb 4.4 8.98 (e) 8.98 (e) If ppb 4.1 7 (f) 5 (f) 6 (f) 8.7 9.11 (e) Au ppb 0.26 0.342 (e) 0.342 (e) 0.342 (e) Th ppb 8 7 0.1 0.06 1000 1	Hf	0.57	0.25 (f)	0.67	(f)	0.51 (f)	0.5586 (c)	0.951	
m ppo 55.45 (c) 38 (e) Re ppb 0.102 0.197 (e) Os ppb 4.4 8.98 (e) If ppb 4.1 7 (f) 5 (f) 6 (f) 8.7 9.11 (e) Au ppb 0.26 0.342 (e) 0.342 (e) 0.342 (e) Tl ppb 8 9.06 1000 1000 Uppm <0.06	Ta W nnh	0.04		0.04	(1)	0.03 (1)	55.42 (a)		29 (a)
0.197 (c) 0.197 (c) 05 ppb 4.4 8.98 (c) If ppb 4.1 7 (f) 5 (f) 6 (f) 8.7 9.11 (c) Au ppb 0.26 0.342 (c) 0.342 (c) Tl ppb 8 8.7 9.11 (c) 0.342 (c) Bi ppb 0.1 0.06 1000000000000000000000000000000000000	w ppp Rennh	0.102					33.43 (C)		0.197(e)
In prior 1.1 7 (f) 5 (f) 6 (f) (f	Os ppb	4.4							8.98 (e)
Au ppb 0.26 0.342 (e) Tl ppb 0.342 (e) Bi ppb 0.1 U ppm <0.06 (e) IN44 & RNA4. (c) isotope dilution mass spec. (d) spark source mass spec. (e) RN44. (f) IN4A. (e) ICP-OFS	Ir ppb	4.1	7 (f)	5	(f)	6 (f)		8.7	9.11 (e)
TI ppb Bi ppb Th ppm <0.1 U ppm <0.06 (a) wet chem. (b) IN4A & RNAA. (c) isotone dilution mass spec. (d) spark source mass spec. (e) RN4A. (f) IN4A. (e) ICP-OFS	Au ppb	0.26	~ /		~ /	× /			0.342 (e)
Bi ppb Th ppm <0.1 U ppm <0.06 (a) wet chem. (b) INAA & RNAA. (c) isotone dilution mass spec. (d) spark source mass spec. (e) RNAA. (f) INAA. (e) ICP-OFS	Tl ppb								
1n ppm <0.1	Bi ppb	-0.1							
technique (a) wet chem. (b) INAA & RNAA. (c) isotope dilution mass spec. (d) spark source mass spec (e) RNAA (f) INAA (g) ICP-OFS	Th ppm	< 0.1							
THE THE THE THE THE TAXAGE AND THE TAXAGE AND THE TAXAGE AT A TAXAGE AT	technique	(a) wet che	m (h) INAA & RNAA	1 (c) ison	tone dilution m	ass spec (d) spark sour	ce mass spec (e) RNAA (f) I	NAA (0) ICP_OF	ES

Table VIII-1c. Chemical composition of ALHA77005 (continued).

(a) wet chem., (b) INAA & RNAA, (c) isotope dilution mass spec., (d) spark source mass spec., (e) RNAA, (f) INAA, (g) ICP-OES * from powder prepared by Jarosewich

SiO2 42.4 41.29	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Li ppm 1.5	
Sc 21 19 (a) 21.6 (a)	
$V = 702 = 100 ext{ (a)} = 132 ext{ (a)} ext{ (a)} ext{ (b)} ext{ (c)} ext{ (c)} $	
Co 72 78 (a) 67.2 (b) 77.7 (a)	
Ni 290 310 (b) 338 (a)	
Cu 5.1	
Zn = 60 = 59 (b) 49.4 (b) 60.7 (a)	
Ga 7.3 0.9 (a) 0.07 (b) 9.3 (a) Ge 0.58 0.58 (b)	
As 0.022	
Se 0.15 0.149 (b)	
Br 0.077 <0.05 (a) Borg 2001	
Rb 0.7 0.626 (b) 0.711 Sr 14 <20 (a) 11.11	
Y 6.2	
Zr 19.5 <30 (a)	
Nb 0.65	
Mo 0.2 0.043 (b)	
Ag ppb 4.4 4.37 (b) 4 (b)	
Cd ppb 2.1 2.1 (b) 5.97 (b)	
In ppb 11 11.1 (b)	
Sb ppb 69 0.68 (b)	
Cs ppm 0.053 < 0.09 (a) 0.0383 (b)	
Ba 4.2	
La 0.34 0.4 (a) 0.614 (a)	
Ce 0.91 <2.5 (a) 1.28 (a) Pr 0.12 Borg 2001	
Nd 0.95 <0.09 (a) 0.814	
Sm 0.49 0.48 (a) 0.77 (a) 0.486	
Eu 0.22 0.25 (a) 0.373 (a)	
Gd 0.92 0.2 (a)	
Dv 1.08 1.04 (a)	
Ho 0.25 0.23 (a)	
Er 0.66	
Im 0.088 0.296 (a) Vb 0.50 0.57 (c) 0.010 (c) Blichort Troft 99	
Lu 0.078 0.085 (a) 0.127 (a) 0.0988 0.0982 (c)	(c)
Hf 0.62 0.57 (a) 0.951 (a) 0.723 0.727 (a)	(c)
Ta 0.033 0.04 (a)	
W ppb 84 38 (b)	
Os ppb 44 44 (b) 8.98 (b) 3.405 (c)	
Ru ppb 3.6 (b) 4.37	
Pt ppb 3.84 (b) 5.4	
Kn ppb 1.3	
Auppb 0.21 0.26 (b) 0.288 (b) 0.342 (b)	
Tl ppb 1.7 1.7 (b)	
Bi ppb <0.7 <0.72 (b)	
Th ppm 0.057 <0.1 (a)	
technique (a) INAA. (b) RNAA. (c) IDMS	

Table VIII-1d. Chemical composition of ALHA77005 (continued).

Mars Meteorite Compendium 2003

⁸⁷Sr/⁸⁶Sr = 0.71042 ± 2) using Rb/Sr isochron between two pyroxenes. Borg *et al.* (2001) re-determined the age of ALH77005; 185 ± 11 Ma and 173 ± 6 Ma, by Rb-Sr and Sm-Nd respectively (figures VIII-8 and 9).

Cosmogenic Isotopes and Exposure Ages*

The terrestrial residence age as reported by Schultz and Freundel (1984) is 190 ± 70 thousand years. Evans *et al.* (1992) provide the activity of ¹⁰Be, ²⁶Al, ⁵³Mn, ³⁵Cl and ¹⁴C and also give a terrestrial age of 190 ± 70 thousand years.

Nishiizumi *et al.* (1986) reported a ¹⁰Be exposure age of 2.5 \pm 0.3 Ma. Pal *et al.* (1986) determined an exposure age of 2.8 \pm 0.6 Ma using ¹⁰Be. Miura *et al.* (1995) determined 2.9 \pm 0.7 Ma and Bogard *et al.* (1984b) determined ~2.6 Ma. From cosmic-ray produced ³He, ²¹Ne and ³⁸Ar, Eugster *et al.* (1996) derived an exposure age for ALHA77005 of 3.4 Ma and concluded that ALHA77005 was "*ejected from Mars simultaneously with* *LEW88516 (3.6 Ma).*" However, Nyquist *et al.* (2001) calculate an average exposure age of 2.87 \pm 0.2 Ma (which is distinct from *that of LEW88516*).

Other Isotopes

Bogard *et al.* (1984b) reported that the ¹²⁹Xe was not enriched in ALHA77005.

Chen and Wasserburg (1986b) studied the U-Th-Pb isotopic system, Harper *et al.* (1995) reported the isotopic composition of Nd, Blichert-Toft *et al.* (1999) determined Hf and Brandon *et al.* (2000) reported on the Re-Os system.

Garrison *et al.* (1995) studied the Ne isotopic system and determined that ALHA77005 was exposed to solarflare protons.

Clayton and Mayeda (1996) give the isotopic data for oxygen (figure I-3), and Wiechert *et al.* (2001) have apparently improved the precision of this measurement.

Gao and Thiemens (1990) determined the isotopic composition of two different S components in ALHA77005.

Schnabel *et al.* (2001) reported the activity of ¹⁰Be, ²⁶Al and ⁵³Mn.

Other Studies:

Salisbury *et al.* (1991) and Hamilton *et al.* (1997) determined the vibrational emission spectra of ALHA77005 and other Martian meteorites (figure VIII-10) for comparison with spectra that may be obtained someday from Martian orbit.

Processing

Initially a chip (~25 grams) was taken from the S1 face. In 1978, the first saw cut divided the sample into roughly two halves (,8 and ,9). One half (,8; 212 grams) immediately went to Japan, because the 1977 Antarctic field trip was a joint U. S. - Japan mission (Yanai and Iguchi 1981). A second bandsaw cut was made a right angles to the first (figure VIII-11) revealing several drusy interior cavities (figure VIII-12). In 1986, subsample ,9 was further sub-divided.

Figures VIII-13 and VIII-14 show the relationship of the various sub-samples of ALHA77005 and the experiments made on them. More than thirty-six thin sections have been made (table VIII-2). Thin sections

Figure VIII-10. Mid-IR emission spectra of Martian meteorites as determined by Hamilton et al. 1997, JGR 102, 597.

Figure VIII-11. Initial cutting of ALHA77005 in 1978. NASA # S78-37990.

Figure VIII-12. Second saw cut of ALHA77005 exposing melted portions in the interior containg large vesicles. NASA S78-37987.

of this Martian rock are included in the Japanese Educational Thin Section Set (see Kubovics *et al.* 1995).

McSween organized the original consortium to study ALHA77005. Subsample ,38 was a bulk sample (10.1g) made from chips which fell off in initial sawing in 1978. It was homogenized and distributed to consortium members. The meteorite was restudied by the McSween consortium in 1986 when splits of a dark (,89; 5.2g) and light (,90; 5.0g) lithologies were taken and homogenized by Jarosewich (AMN 13(1) p134). The remainders of these samples are available to investigators by request to MWG. These two

lithologies are intergrown and there proved to be only a minor REE difference between them (*see section on Whole-rock Composition*).

Table VIII-2. Thin sections of ALHA77005.

butt	section	2001	parent	picture in
,2	54	Rutherfor	,0 d	
	73	Huguenin	u	
	121	Treiman		
	122	Treiman		
	137	Treiman		
4	,157	Trennun	0	
,т	5	Mason	,0	
	,5	NIDD		
	,0 7	Naal		
	, / 50	Wadhwa		
10	,50	waunwa	0	
,10	117	Walkar	,0	
	,117	Walkel		
12	,118	Kell	0	
,15	4.4	Humarum	,0	
	,44	Mallary C	1	Tariman 1004
	,45	McKay, C	Ι.	Treiman 1994
	,46	Schultz		
1.6	,51	Beacham)	
,16			,0	
	,33	Yang		
	,34	Papike		McSween 1979
	,35	Lipschutz		
,22			,0	
	,29	Wanke		
	,30	Papike		
	,31	Terada		McSween 1979
	,32	Greshake		
,48			,13	
	,52	McSween		
,87			,9	
	,98	McKenzie	9	
,88			,9	
	,99	McSween		
	,120	Delaney		
	,166	Papike		
	,167	Kurat		
,103			,9	
	,108	Greenwoo	od	
,105			,9	
	,109	Gleason		
,140			,9	
	,148	Lindstrom	1	
,141			.9	
, 	,149	Lindstrom	ı Í	
,145			.129	
,	.150	Goodrich	,	
.147	,		.129	
, · ·	.151	Lindstrom	1	
.173	,		.92	
,	.180	Kirschvin	k	
.93-1?	,			Mikouchi 2000
93-2?		Ikeda 199	8	

three thin sections, cut at right angels to each other from a 1 cm cube, were studied by Berkley and Keil 1981

Figure VIII-13. Geneology diagram of cutting and allocation of ALHA77005, prior to 1996.

Figure VIII-14. Exploded parts diagram of ALHA77005 (see also figure VIII-11).