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ABSTRACT. Orbits are considered in conventional stellarators (i.e. with helical coils) using Boozer co-ordinates. The

Advanced Toroidal Facility (ATF) in Oak Ridge, Tennessee, will be used as an example to study the effects of its configurational

flexibility on orbit topology. It is shown that the symplectic integration technique yields superior results for single particle orbits.
These orbits will be compared with predictions using the J* invariant. J* conservation allows examination and understanding

of the global stellarator topology, both with and without radial electric fields.

1. INTRODUCTION

The inherently three dimensional nature of stellarators
causes a wide variety of orbits to occur in these devices.
Knowledge of single particle confinement is required to
assess confinement and alpha heating. However, in conven-
tional stellarators such as the Advanced Toroidal Facility
(ATF) torsatron, radial electric fields can have a dramatic
effect on orbits with energies on the order of the radial
potential. The effect of electric fields is larger in stellarators
than in tokamaks because the poloidal drift of helically
trapped particles is much slower, thus allowing the E × B
drift time to have an effect. Conversely, the ‘banana width’
in a stellarator (the bounce in the helical well) is much
smaller than in a tokamak because the distance between the
bounces is only ~ 2πR0

 ⁄ N, where R0 is the major radius of
the device and N is the number of field periods.

The situation can be somewhat different for stellarators
that are not based upon helical coils, such as the Helias
devices invented at the Max-Planck-Institut für Plas-
maphysik in Garching [1]. In principle, the orbits in a Helias
can achieve an effective helical symmetry (become quasi-
helical). In this circumstance, the 1/R variation in the mag-
netic field due to toroidal effects becomes very small. As a
result, the orbit deviation from a flux surface is reduced, and
most of the effects discussed in this paper do not apply. 

It is the aim of this paper to show that by using a variation
of the second adiabatic invariant, J*,  introduced by Cary,
Hedrick and Tolliver [2], we can quickly and easily deter-
mine the topology of all orbits in conventional stellarators
for a given magnetic configuration. To show that J*  yields
the correct answer, we will start by examining single parti-
cle orbits and their relation to J* = const. contours. Then we
will follow in the spirit of the tokamak topology study by
Rome and Peng [3] in an attempt to give an overview of all
possible orbits given only the equilibrium configuration.

2. SINGLE PARTICLE ORBITS

The advantages of using Boozer co-ordinates [4–6] are
well known. Knowledge of the Fourier spectrum of |B|, and
other surface quantities (the rotational transform ι, the
toroidal current within a flux surface I, the poloidal current
outside a flux surface g) suffice to specify completely the
orbit topology within the last closed flux surface (LCFS).
We will also use Boozer’s equations of motion [4, 6]. 

In this paper, the Boozer co-ordinates are calculated
using the output of the VMEC free boundary equilibrium
code [7]. Three real ATF equilibrium configurations were
used to test the effect of the flexibility of the ATF vertical
field coil set [8]. The cases are called standard, oblate and
prolate to reflect the variation of the poloidal cross-section
from the normal (standard) case. The parameters and coil
currents for these cases are more fully described in Table I.
One of our goals will be to see how changing the shape of
the plasma affects orbit topology.

  TABLE I. ATF EQUILIBRIUM REFERENCE CASES

Parameter Standard Oblate Prolate
Helical-coil
current (kA) −823.9 −826.7 −828.8

Outer trim/
helical current

ratio
−8.90 × 10 −2 −4.4 × 10 −2 −1.2 × 10 −1

Inner trim/
helical current

ratio
1.26 × 10 −1 2.36 × 10 −1 5.33 × 10 −2

Mid trim/
helical current

ratio
−4.06 × 10 −1 −1.33 × 10 −1 1.33 × 10 −1

ψ(r ⁄ a = 1) −0.215 −0.215 0.211

BT (T) 0.942 0.945 0.947 

ι− (r ⁄ a = 1) 0.99 0.96 0.97

beta (%) 0.481 0.386 0.421
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The numerical techniques used for orbit integration de-
serve some discussion. In recent years, the technique of
symplectic integration has been introduced to plasma phys-
ics by Cary [9], whose secord-order symplectic integrator
we will use. The basis for Symplectic integration is to find
a way such that the Hamiltonian equations of motion at time
t + δt are a canonical transformation of the equations at time
t. The integrator is the generating function of this transfor-
mation. As a result, all of the Poincaré invariants are exactly
conserved (to machine accuracy).

When comparing orbits integrated using symplectic in-
tegration with orbits integrated using other techniques (e.g.,
Runge–Kutta, ODE, Bulirisch–Stoer), the symplectic
method will always be more accurate over the long term
because all of the other methods have monotonic changes
in the energy of collisionless orbits. Figure 1 shows a
comparison of the same orbit integrated using the symplec-
tic method and the fourth order Runge–Kutta (RK) method
with the time step halved until the number of right hand side
(rhs) evaluations are about the same. Although the RK

method actually uses a smaller time step and more function
evaluations, the result is incorrect. Smaller time steps, vari-
able time steps, and subtraction of the error in each step
could all be used to improve the short term accuracy of
conventional methods. But over long time-scales, the sym-
plectic method will always yield a better result.

The symplectic method does have some drawbacks. It
must use a fixed time step since it relies upon the error in
the method to cancel itself periodically. Changing the time
step makes the method non-symplectic. In addition, it is an
implicit method, so it requires a fast method for inverting
the rhs. Cary also has developed a fourth order symplectic
method for the guiding centre equations but, in general, it
seems to give worse results than the much simpler second
order method.

3. THE J* ADIABATIC INVARIANT

In Boozer co-ordinates, the toroidal canonical angular
momentum is

FIG. 1. The same collisionless orbit in ATF was integrated by two different methods, fourth order Runge–Kutta (left) and Cary’s second
order symplectic method (right). The time step in the Runge–Kutta method was halved until the number of evaluations of the right hand
side of the equations was greater than that of the symplectic method. The Runge–Kutta integrator shows a monotonic reduction in the
particle’s energy, which is caused by a reduction in v||/v that causes the orbit to become trapped. On the other hand, with the symplectic
integrator, the energy varies periodically along the orbit, but there is no long-term degradation. The magnitude of this periodic change
in the energy is proportional to the time step. 

Oblate ATF

time (ms)

Oblate ATF

time (ms)
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Pϕ = e [g(ψ)ρc − ψp] (1)

where ρc ≡ mv||
 ⁄ eB and the parallel velocity is given by

v|| = ± 


2
m

(E − µB − eΦ)


1⁄2
(2)

Here, e,  m and E are the charge, mass and total energy of
the particle, ψ is the toroidal flux, ψp is the poloidal flux,
µ is the magnetic moment, Φ is the radial potential,  B is
the magnitude of the magnetic field and v|| is the parallel
velocity.

The usual adiabatic invariant J is defined as the integral
of Pϕ along the trapped orbit between turning points (places
where v|| = 0). J* applies to trapped or untrapped particles
and is defined as the integral over a field period along a
ψ = const., θ = const. line. The integration is only carried
out for the portion of the field period where v||

2 ≥ 0. θ is the
poloidal angle in Boozer co-ordinates [2]. The result of the
integration is

FIG. 3. Orbits with J* = 0 approximately follow contours of Bmin independent of mass, charge and energy. On the left is a 350 eV
proton orbit and on the right a 35 keV alpha orbit. The ’centre’ of the alpha orbit is the same as the low energy proton orbit. However,
since J* is only an adiabatic invariant, the actual orbit will wobble about the J* contour, and this wobble gets larger with energy.
Because the Boozer co-ordinate representation of the ATF magnetic field stops at the LCFS, the integration of the alpha orbit is stopped
when it reaches the LCFS. However, in the actual machine, orbits can extend well past the LCFS without hitting the wall. For the ATF
configuration, v|| > 0 corresponds to the counter-circulating portion of the orbit.

time (ms) time (ms)

FIG. 2. J* (thick) and Bmin (thin) contours for the case corre-
sponding to Fig. 3. The grid points marked by × are in a region
where Bmin > Btip and is therefore inaccessible to these orbits.
The edge of this region is the Bmin contour that corresponds to the
orbits shown in Fig. 3. Most of the J* contours intersect the LCFS
and correspond to orbits that are lost.
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J* (ψ, θ) = ∫ 
ψ,θ = const.

g(ψ)dϕ
B

m|v||| − σ||e 
2π
N

ψp (3)

N is the number of field periods, σ|| is the sign of v|| for
locally untrapped particles and σ|| = 0 for locally trapped
particles. By locally trapped, we mean that v|| = 0 along the
line of integration. For convenience, we have attached the
± sign on the second term and divided J* by two for trapped
particles.

For locally trapped particles, the second term of Eq. (3)
cancels since the integral must be taken along both halves
of the orbit. In this case, and in the limit of small rotational
transform per period, J* reduces to the usual adiabatic
invariant, J. For deeply trapped particles, v|| ~ 0, and the J*
= const. contours lie along Bmin  contours.

Bmin contours are often used for quick evaluation of
stellarator configurations, so they are worth exploring in
some detail. To calculate the Bmin contours, a grid of lines
is selected to cover the poloidal cross-section. The mini-
mum value of B is found in a field period, keeping ψ and
θ constant. A contour plot of these values yields the orbits
of the most deeply helically trapped particles. Since it is
thought that these orbits have the biggest excursion from a
flux surface, the ratio of the area of the largest contained
Bmin contour to the area of the LCFS is a measure of the
goodness of the particle containment of the configuration.
If this ratio approaches 1, the orbits are said to be ‘om-
nigeneous’ [10]. For the oblate configuration in ATF (Fig.
2), the area of closed Bmin contours is maximized which
would imply better orbit confinement for deeply trapped
orbits.

A more surprising fact is that since these orbits are
independent of anything other than the topology of B, they
are independent of mass, charge and energy. Thus, if a
trapped ion orbit is contained at low energies, in principle,
an alpha particle orbit will also be contained at high ener-
gies. However, higher energy particles traverse these orbits
much more rapidly since the drifts are proportional to the
particle energy. An example of this phenomenon is shown
in Fig. 3. As explained in the caption, ATF at a field of 1 T
is not designed to hold alpha particles at 3.5 MeV, but the
35 keV orbit that is shown illustrates the principle that
deeply trapped orbits approximately follow Bmin contours.

Figure 2 shows the J* contours that correspond to the
orbits of Fig. 3. The thinner lines are the Bmin contours for
this case. Because these J* contours are drawn for all orbits
with Btip ≡ E ⁄ µ = 0.811, any region of the cross-section
with Bmin > Btip (shown by ×s on the grid points) is forbid-
den to this set of orbits. Only one  J* contour for this value
of Btip can correspond to a Bmin contour, and that is the one
at the edge of the forbidden region, Btip = Bmin.

helically trapped

co

counter

Fig. 4. Surfaces of the three sheets of J* as a function of the
poloidal angle and normalized radius (ρ). Each surface is only
defined over part of the ρ−θ plane.

trapping boundary

barely untrapped
co-circulating orbit

barely untrapped
counter-circulating

orbit

Bmin contour

co

counter

inside
banana

helically trapped

Energy = 5000 eV; Btip = 1.03 T; ΦΦ = 0

Fig. 5. Level contours of the surfaces of Fig. 4 plotted in polar
co-ordinates. Because the functions stop at the trapping bound-
ary, the contour plotter is unable to get all the way to the
boundary. The bold-faced labels are attached to the three pieces
of a single orbit.

Fig. 6. The magnetic field strength plot on a flux surface for the
prolate ATF configuration. In contrast to the other two configu-
rations, two maxima of |B| occur halfway down the field period
instead of a single maximum at  ϕ = 0. These maximum can trap
the orbits in an unexpected location.
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4. COMPARISON OF GUIDING CENTRE ORBITS
WITH THE  J* CONTOURS

In general, the J* topology is more complicated than
shown in Fig. 3 because there may be regions of the plasma
in which the orbits are not locally trapped. According to
Eq. (3), J* for a given orbit will in general be constant for
each phase of the orbit (locally trapped, co-circulating,
counter-circulating), but will undergo a jump when the
trapping boundary is crossed. If an orbit crosses the trapping
boundary, the three pieces of J* = const. contours that meet
at the trapping boundary (on the orbit) must be used to
obtain the entire orbit.

To understand some of the more pathological orbit to-
pology that may be encountered in ATF, we consider the
prolate configuration (Figs  4–6). Figure 4 shows the three
J* surfaces corresponding to the three values of σ|| of
Eq. (3). The discontinuity (jump in J*) occurs at the trap-
ping boundary. Figure 5 shows level contours of the sur-
faces in Fig. 4 plotted in polar co-ordinates. Since the
contour levels are arbitrary, it may be necessary to interpo-
late between adjacent contours of a given type to determine
the orbit on the other side of the trapping boundary. How-
ever, in this case, the three pieces of one orbit (with bold

faced labels in Fig. 5) all meet at one point on the trapping
boundary, and it is easier to see the orbit. This particular
orbit is a transitional orbit that goes out past the LCFS and
is lost.

The trapping boundary will always lie along a Bmax  =
Btip = const. contour. (Bmax contours are calculated in the
same way as Bmin contours, using the maximum value of
|B| along each ψ, θ = const. line.)  The barely trapped orbit

Prolate ATF

time (ms)

FIG. 7. A barely trapped co-orbit corresponding to the J* plot of
Fig. 5. In a stellarator such as ATF, the banana part of the orbit
always eventually becomes helically trapped.

Prolate ATF

time (ms)

Prolate ATF

FIG. 8. Barely trapped initially counter-orbits corresponding to
the J* plot of Fig. 5. The initial value of v||/v is just slightly different
to illustrate that the orbit can follow all of the branches shown in
Fig. 5. In the lower case, the orbit became trapped on an inside
banana, which becomes helically trapped at its next tip. In the
upper case, the orbit missed the well at the top of the orbit and
became helically trapped when it reached the bottom.  The
counter-orbits drift much more slowly than the co-orbit of Fig. 7.
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will have its J* contour tangent to the trapping boundary.
Since this boundary may have a strange shape, barely
trapped stellarator orbits do not always have their v|| = 0
point on the midplane of the stellarator. This is in contrast
to the case of a tokamak.

For example, in Fig. 5, co- and counter-circulating orbits
are contained near the centre of the plasma. The two orbits
labelled ‘barely untrapped’ are just skimming over the tops
of the helical ripple wells. Orbits launched slightly further
from the axis hit the trapping boundary near their top and
bottom, become trapped in the helical ripple well, and are
lost as is shown in Figs 7 and 8. For this value of Btip, all of
these transitional orbits are lost. For the case of Fig. 5, a few
helically trapped orbits are confined near the inside edge,
and some circulating orbits are confined near the centre.  

 Notice that the centres of the two types of circulating
orbits are shifted significantly from the magnetic axis due
to the low (1 T) value of the magnetic field strength. Also,
in this case, none of the orbits shown are deeply trapped
since Btip > Bmin everywhere; accordingly, they do not
follow Bmin contours. In a stellarator such as ATF, the three
orbit classes (co-, counter-, and helically trapped) often
occur in different physical locations, and the orbit traversal
time may differ greatly (Figs 7 and 8), so the collisionality
may be different for each class as well.

For this prolate configuration, the region of closed Bmin
contours is smallest, so orbit confinement is expected to be
poor without a radial electric field. We will leave the Bmin
contours out of future plots to reduce clutter.

5. VOLUME ELEMENT IN J* SPACE

To determine the density of orbits in J* space, it is
necessary to calculate the volume element. The use of  J*
as an invariant only makes sense on time-scales that are long
compared with the orbit drift time. Therefore, we assume
that the particle distribution function, F, is only a function
of the constants of motion, F(J*, E, µ).

The number of particles in the distribution function is
obtained by integrating over all of phase space,

N = ∫F(J∗, E, µ) 2πdE dµ dθ
me

  ∫ 
ψ, θ = const.

g + ι− I 

ρ||B
2  dϕ (4)

The integral in ϕ is taken over the regions where v|| is real.
For simplicity we assume that B ⋅ ∇ × B = 0, in which case
the guiding centre velocity may be written as

vg = v|| 
B
B

 + 
1
B

 ∇ × (ρ||B) (5)

The θ component of Eq. (5) is needed to calculate the overall

orbit drift velocity

vg ⋅ ∇θ = 
v||
B

 
 B2  

g + ι−I
   [ι−  + 

∂
∂ϕ

(β∗ρ||)] (6)

Here β∗  is the coefficient of the ∇ψ portion of the magnetic
field. We also require expressions for the derivatives of J*
(the 〈 〉 represent an average over ϕ):

 
∂J∗

∂ψ
 = − e 〈ι− − 

∂
∂ψ

(gρ||) 〉 (7)

 
∂J∗

∂E
 = 〈 g

Bv||
 〉 (8)

In Eq. (4), we must change variables from ψ to J*:

N = F(J∗, E, µ) 
2π
m2 

g + ι−I
g

  
〈 ∂J∗

   ∂E
〉

〈
∂J∗

   ∂ψ
〉

 ∫ dJ∗dEdµdθ (9)

The bounce averaged drift velocity is given by

〈〈vg ⋅ ∇θ〉〉 = 
∫ 

dϕ
Bv||

 vg ⋅ ∇θ

∫ dϕ
Bv||

(10)

where the integrals are performed at fixed ψ, θ. We have
made use of the fact that in Boozer co-ordinates, the co-or-
dinate along the field line, χ, is given by χ = ∫Bdl. Using
Eqs (7), (8), and (10) in Eq. (9), we obtain

N = F(J∗, E, µ) 
2π
m2e

 ∫ dJ∗dEdµ 
dθ

〈〈vg ⋅ ∇θ〉〉
(11)

or

N = F(J∗, E, µ) 
2πτd

m2e
 ∫ dJ∗dEdµ (12)

τd is the drift time around the entire orbit.
Since the distribution function for a single particle must

be of the form

N = ∫ Cδ(J∗ − J0
∗) δ(E − E0) δ(µ − µ0) 

2πτd

m2e
dJ∗dEdµ

    = 1 (13)

the constant C is given by m2e/2πτd, and we finally obtain
the desired expression for the single-particle distribution
function in this space

Fs(J
∗, E, µ) = 

m2e
2πτd

 δ(J∗ − J0
∗) δ(E − E0) δ(µ − µ0) (14)
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As expected, more particles are required to populate an
orbit with a large τd to obtain a given density at a point
along the orbit in real space.

6. J* TOPOLOGY — NO ELECTRIC FIELD

Now that the topology of J* space has been explained
and the close correspondence of the actual guiding centre

orbits to their  J* predictions has been verified, it is instruc-
tive to display the entire orbit topology at a given energy
for the three different ATF equilibria in the absence of
radial electric fields. Because each plot is parametrized by
the value Btip = E/µ, Btip  ranges from Bn, the minimum
value of B in the plasma, upward. Because the topology of
the circulating orbits is relatively independent of Btip, it is
not necessary to go much above Bm, the maximum value

Oblate ATF

FIG. 9 (First Part). Orbit topology for 5 keV protons in ATF with no radial electric field for the three configurations of Table I. 
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of B in the plasma, because in this regime, no orbit can
become trapped. Accordingly, all of the features of the
orbit topology for the ATF cases can be encountered in a
quite narrow range of Btip, 0.9 < Btip < 1.2. At lower values
of Btip, the entire region becomes forbidden, or else no
helically trapped orbits are contained. At higher values of
Btip, all the orbits are circulating.

The entire orbit topology for the three ATF configura-
tions with no radial electric field is shown in Fig. 9.
According to the size of the last closed Bmin contour, the
best case should be the oblate configuration, and the worst
case should be the prolate configuration. This conclusion
is reflected in the upper two rows of plots since the Bmin
contours surround the forbidden regions. In the oblate
case, the forbidden region has pulled away from the inner
wall, and there are more helically trapped orbits contained.
The middle three rows examine the behaviour of the tran-
sitional orbits. Only the oblate case has any significant
number of transitional orbits contained. The bottom row
shows mostly circulating orbits. The counter-circulating
orbits have more of a tendency to either hit the wall or to
encounter the trapping boundary; co-circulating orbits are
better contained.

The fact that, for all the configurations, almost all of
the transitional orbits are lost (at an energy of 5 keV) is a
source of concern for heating the plasma ions with tangen-
tial neutral beam injection (NBI) or ion cyclotron radio-
frequency (ICRF) heating. Above the critical energy (Ecrit
= 14.8 Te), the injected or heated ions transfer most of their
energy to electrons. Below Ecrit, the ions rapidly pitch
angle scatter and will be lost when they become trapped.
ICRF minority heating interacts with the deeply trapped
ions in the tail of the distribution function. The region of
contained trapped ions is near the inner edge of the plasma,
far from antennas placed in outer ports, making coupling
difficult. Any perpendicular energy delivered to untrapped
ions will cause them to become trapped, and they will also
hit the wall at the trapped–passing transition boundary.

However, the situation changes when a radial electric
field is added.

7. J* TOPOLOGY — WITH ELECTRIC FIELD

In general, stellarators and tokamaks have been shown
to operate with radial potentials that are on the order of the
plasma temperature. The ATF experiment is capable of

FIG. 9 (Second Part). Orbit topology for 5 keV protons in ATF with no radial electric field for the three configurations of Table I. 
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measuring the potential over most of the plasma. A heavy-
ion beam probe diagnostic from Renesselaer Polytechnic
Institute is used for the centre, and a reciprocating Lang-
muir probe (in co-operation with the University of Texas,
Austin) at the edge. For this study,  two experimental
potential profiles (Fig. 10) were measured by S. Aceto
(R.P.I.) [11] that have been smoothly continued to the
centre of the plasma. Two cases are used: in a low density
ECH-heated plasma, the potential acted to contain elec-
trons (electron root); and in an NBI-heated case, the po-
tential acted to contain ions (ion root). The potential meas-
ured in the NBI case has not been corrected for probable
UV loading errors [12] owing to the extremely limited NBI
operating time on ATF during 1991.

Our ion orbit scans (Fig. 11) are performed at constant
total energy, so if the electrostatic potential becomes too
large,  E − µB − eΦ will become less than zero, and orbits
(at the particular value of Btip) will be forbidden. In the
electron root case, the forbidden region occurs in the centre
of the plasma; in the ion root case, it occurs near the edge.
The most deeply trapped orbit hugs the edge of the forbid-
den region just as in the case with no electric field. Accord-
ingly, the remarkable result is that the trapped orbits are

contained inside the circulating orbits in the electron root
case. Since the deviation of the circulating orbits from a
flux surface is small, the loss region is mostly healed. The
ion root case is more conventional: the forbidden region is
at the edge of the plasma, and the ions are contained
electrostatically by it.

The energy of a 1 keV ion is about twice the above
measured potentials. Unfortunately, as the energy is in-
creased, there is inevitably a place where the poloidal
E × B velocity cancels out the slow poloidal precession of
the helically trapped orbits, and resonance occurs with
resulting direct loss of particles. This situation is found in
many devices (e.g., the Elmo Bumpy Torus) and depends
strongly on the shear in the electric field. The good con-
finement of transitional orbits disappears by the time the
energy reaches 3 keV, as shown in Figs 12 and 13. 

8. IMPLICATIONS OF RESULTS

ATF was designed to optimize MHD properties to
achieve stable entry into the second-stability regime, and
not to minimize orbit losses. It was believed that the
naturally occurring electric field would heal the loss re-
gions for the particles in the thermal distribution function;
as Fig. 11 shows, this assumption was correct.

The difficulty occurs when auxiliary heating is consid-
ered. ATF has three types available: ECH, ICRF and NBI.
ECH works very well in ATF since the heated electrons
rapidly transfer their energy to the bulk plasma. Unfortu-
nately, ECH is quite expensive, and the plasma density is
limited by the cut-off frequency.

Neutral beam injectors are aimed tangentially in ATF
(co + counter). The fast (~45 keV) protons are born circu-
lating and are reasonably well contained in ATF. Above
the critical energy (14.8 Te), the fast ions slow down on
the plasma electrons without pitch angle scattering. How-
ever, when pitch angle scattering starts to occur, the fast
ions must cross the large loss region at the trapped–passing
boundary, and many of these ions are lost before they can
transfer their energy directly to ions. Therefore, it is diffi-
cult to heat ions directly via NBI in ATF [13]. At high
plasma densities (n

_
e ~ 1014 cm−3), Te is low and the

electron–ion coupling is high so that the beam energy can
be transferred to the ions via the electrons. But at moderate
densities, ECH still cannot penetrate to the core of the
plasma, and the beam energy is not well coupled to the ions
via the electrons, thus the ion temperature remains low.

Minority ICRF heating in ATF also presents problems.
The minority ions form a tail in the perpendicular region
of velocity space, much of which is in the loss region (Figs
12 and 13). In addition, ICRF tends to increase the perpen-
dicular energy of the heated ions, so they become more
deeply trapped. Contained deeply trapped ions are never

electron root

ΦΦ
 (

v)

ion root

Φ
 (

v)

FIG. 10. Fits to the measured potential profiles in ATF under
ECH heating (top) and NBI heating (bottom).
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Forbidden

J*trap

FIG. 11. Electron root (top) and ion root
(bottom) orbits with an energy of 1 keV. An
electric field of either sign closes most of the
ion loss region in ATF provided that the
potential is on the order of the ion energy.
However, the mechanism for this healing is
quite different for the electron root (top se-
quence) and for the ion root (bottom se-
quence). 
        In the case of an electron root, the
potential acts to hold in electrons and to
push out ions. Thus, the central region of the
plasma is forbidden (the radial cross-
hatched spokes) since E − µB − eΦ < 0 . But
just outside this region, the orbits are all
helically trapped and are concentric with
the forbidden region. Thus, at Btip = 1.5 T,
some helically trapped orbits are contained.
As Btip increases, the circulating orbits sur-
round the trapped orbits and hold them in
like a girdle. 
        For the case of the ion root, the poten-
tial barrier is at the edge of the plasma for
small values of Btip.  A small loss region
exists near the edge of the plasma when Btip
= 1.2 T, but then the helically trapped orbits
are gone and only well confined circulating
orbits are left.
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Forbidden

FIG. 12.  Electron root orbits at 3 keV  still
show a severe loss region at the trapped–
passing boundary.  From  Btip = 1.1–1.3 T,
almost all transitional orbits are lost. The
only exception occurs for the bizarre case
when Btip = 1.2 T. Near the centre, there are
a few orbits with inside bananas and outside
bananas that are joined by helically trapped
sections and encircle the electrostatically
forbidden region in the centre. And, almost
all of the helically trapped (non-transitional
orbits) are in the loss region also. 

FIG. 13.  Ion root orbits at 3 keV also show
a severe loss region at the trapped–passing
boundary.  All transitional orbits are lost.
The few contained helically trapped orbits
are near the inside edge of the plasma.

Forbidden
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found at the outside edge of the plasma, making coupling
to the ATF antenna (which is in an outside port) more
difficult. 

Because ICH is a cheap and long-pulse heating tech-
nology, it is of interest to try and evade the above problems.
One method is to use direct electron heating which has
been successful on TFTR [14, 15]. Another is to try and
find a mechanism for heating the bulk ions directly, per-
haps with ion Bernstein or lower hybrid waves, a subject
of some speculation, but little success.

The ATF configuration is flexible, and there are con-
figurations that provide better particle containment. For
example, pushing the magnetic axis inward improved the
confinement at the expense of MHD stability. However,
as beta increases, the ATF configuration digs a magnetic
well and becomes more stable, so one operation scenario
could be to push the magnetic axis inward as beta in-
creases. However, we have also studied the orbits corre-
sponding to Figs 12 and 13 for the oblate and prolate
configurations of ATF, and no noticeable improvement
was obtained theoretically. Experiments on ATF that var-
ied the configuration showed that, if anything, the prolate
configuration yielded a higher stored energy, but too many
factors changed between the cases to draw firm conclu-
sions.

In addition, we looked at several cases with moderate
values of beta (several per cent). If the vertical field is
increased to keep the magnetic axis at approximately the
same position, the orbit topology is qualitatively the same
as it is in the low beta case. If the magnetic axis is allowed
to move outward with increasing beta, the loss region
becomes worse as would be expected.

9. CONCLUSIONS

This paper has shown that the use of the J* invariant
provides a fast and reliable method to see the totality of the
orbits in any given configuration. The most bizarre orbits
that are predicted by these plots can be found using a
guiding centre orbit code. In addition, we have emphasized
the importance of the use of symplectic integration to
provide reliable orbits over long integration times.

We applied the J* method to the case of ATF and found
that the loss regions that exist without a radial electric field
are healed by a potential of about half the particle energy.
However, the loss regions are moved to higher energies

and can intercept the superthermal ions produced by NBI
or ICH. As a result, heating the ion distribution in ATF
from above is difficult, and schemes that interact directly
with the bulk thermal distribution are preferred.
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