The Study of Proton-Rich Nuclei in the Pb Region: A Tale of Three Shapes

- Introduction.
- Experimental Setup at Gammasphere.
- Results from ⁹⁰Zr + ⁹²Mo experiment @ GS + FMA
- Current Status of Mid-Shell Pb nuclei
- Future Studies

Argonne National Laboratory

M.P. Carpenter November 9, 2005

A

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Gammasphere at the proton drip-line

One of the major programs of Gammasphere when coupled with the Fragment Mass Analyzer (FMA) has been to study excited states in nuclei beyond the proton drip line.

Examples:

- Excited states on top of deformed proton emitters
- Shape co-existence in the Pb region.

Moller-Nix Ground State Deformations

- Large shape variations in predicted ground state deformations as function of Z around N~104.
- N~104 Po, Rn, Ra ground states predicted to be β_2 >0.3
- Moller-Nix Predictions ^{192,193}Po oblate, ¹⁸⁶⁻¹⁹¹Po prolate.

Evidence for Shape Coexistence

Yrast Bands in mid-Shell Hg Isotopes

M.P. Carpenter et al., Phys. Rev. Lett. 78 (1997) 3650.

A Triplet of Differently Shaped 0⁺ States in ¹⁸⁶Pb

• 3 shapes in mid-shell Pb nuclei predicted for some time (e.g. R. Bengtsson and W. Nazarewicz, Z. Phys. A334 (1989) 269).

• Established in ¹⁸⁶Pb by measuring coincidences between a-decays and K-x rays. (*A.N. Andreyev et al., Nature 405 (2000) 430*)

Office of Science

U.S. Department

of Energy

ATLAS Facility at Argonne National Laboratory

Recent Experiment:

- ⁹⁰Zr + ⁹²Mo reaction at 385 MeV to study ¹⁸¹Tl and ¹⁸¹Pb via the 1p and 1n evaporation channel.
- ¹⁸¹TI (N=100) lies both beyond the proton drip line and the neutron mid-shell.
- ¹⁸¹Pb (N=99) is the most neutron deficient odd-A Pb isotope identified thus far.

Why do we need the FMA?

Near Barrier Reactions for In-Beam Studies

• Due to large, negative Q-value, the compound system is left with relatively low excitation energy when using bombarding energies near the Coulomb barrier.

- Minimizes fission probability.
- **Minimizes** fragmentation of reaction channel (1 and 2 particle evaporation).
- Maximizes FMA efficiency
- Allows:
 - More beam on target.
 - Less restrictive gating.
- Bottom line: you make more of the stuff you want.

Counts

Motivation: Push Beyond mid-shell in TI isotopes

Alpha Decay of ¹⁸¹TI

Energy (keV)

- ${}^{181}\text{Tl}_{gs}$ (T_{1/2} = 3.2 sec) correlated with gs decay of ${}^{177}\text{Au}$.
- ¹⁸¹TI_{ms} (T_{1/2} = 1.5 ms) feeds 9/2⁻ state in ¹⁷⁷Au and correlates with ¹⁷⁷Au_{ms} α decay.

In-Beam Gamma Rays for ¹⁸¹TI (mass gated)

FMA Only Experiment

¹⁸¹TI Level Scheme: ⁹²Mo(⁹⁰Zr,p)¹⁸¹TI (σ ~ 15μb)

TI level systematics

Triple Shape Coexistence in ¹⁷⁹Hg

F.G. Kondev et al., Phys Lett. B 528 (2002) 221.

¹⁸³**Pb** *α***-Decay** D.J. Jenkins et al., PRC 66 (2002) 011301(R).

• 13/2⁺ isomer feeds the 13/2⁺ oblate state in ¹⁷⁹Hg with $T_{1/2}$ =6.4 ms and establishes the excitation energy of the isomer at 172 keV.

• Alpha decays in ¹⁸³Pb established to come from a ground and isomeric state. The 3/2⁻ (3p_{3/2}) ground state continues the trend starting at ¹⁹⁹Pb.

• Hindrance factors for α decays to the ground state of ¹⁷⁹Hg support near spherical interpretation for the shape of the g.s.

Results: ¹⁸¹**Pb** α **decay**

• Interpret the higher line as sum of *l*-converted electron (~60 keV) and the 7015 keV α decay.

• Ground state of ¹⁸¹Pb is 9/2⁻ not 3/2⁻ as in heavier odd-A Pb isotopes.

- Two α lines are observed to be correlated with the α decay of ¹⁷⁷Hg.
- Both α -lines have same lifetime (T_{1/2}=40ms)
- The 7015 keV line is in coincidence with a 78 keV gamma-ray.

Office of Science

U.S. Department

of Energy

Change in structure of ¹⁸¹Pb ground state

- Occupy states below N=100 sub-shell $h_{9/2}$ and $f_{7/2}.$
- $9/2^{-}$ assignment to ground state, indicates an $h_{9/2}$ configuration.
- Sub-shell gap probably responsible for the near spherical ground states in Pt and Hg isotopes for N<100.
- The 7/2⁻ ground states in ^{177,179}Hg (also ¹⁷⁵Pt) indicates a weakly deformed shape as opposed to spherical.

New Results on Pb Nuclei

186**Pb**

J. Pakarinen *et al.*, Phy. Rev. C **72**, 011304(R) (2005)

G. Dracoulis *et al.*, Phy. Rev. C **67**, 051301(R) (2003)

¹⁸⁸Pb

A. Dewald: Plunger+JUROGAM+RITU+GREAT

Reaction: ¹⁰⁸Pd(⁸³Kr,3n)¹⁸⁸Pb @ 352 MeV , σ~470 μb

preliminary results: (Tuomas Grahn, JYFL, JYVÄSKYLÄ) (Oliver Möller, IKP, KÖLN) B(E2)/W.u. τ/ps O_t /eb 2.1(10)8.5(20) 378(180) 9.3(18) 4.0(15) 429(161) 12(3) 6.9(8) 213(53) 1.7(2)7(2)

9.1(26)

- Deformed yrast prolate band (half-lives of 2₁⁺,4₁⁺,6₁⁺,8₁⁺
- Mixed 2₁⁺ state! (a²_{prol}~ 50-70%)
- ¹⁸⁶Pb B(E2)₄₋₂ = 480, B(E2)₆₋₄ = 438, B(E2)₈₋₆ = 246

first plunger measurement for ¹⁸⁸Pb : A. Dewald et al., PRC68, 034314 (2003) (Gammasphere+FMA)

Shape Co-existence in Po Isotopes

Theoretical Calculations (Beyond Mean Field)

• Skyrme Interaction: M. Bender et al., Phys. Rev. C69, 064303 (2004).

• Gogny Interaction : R. Rodriguez Guzman *et al.,* Phys. Rev. C69, 054319 (2004).

¹⁸⁹**Pb** – A.M. Baxter et al., Phys. Rev. C 71 (2005) 054301

¹⁸¹Pb In-Beam γ spectrum: RDT gated

U.S. Department

of Energy

Future Plans

- In-beam spectroscopy of odd-A mid-shell Pb nuclei (^{183,185,187}Pb) – identify excitation energies of oblate and prolate deformed single-particle states.
- Search for the the 4th minimum, superdeformed states in mid-shell Pb isotopes.
- Measure lifetimes in the so-called oblate deformed bands in the Pb isotopes.
- Waiting for theorists to calculate odd-A cases.

Collaborators on ¹⁸¹TI Studies

M.P. Carpenter, F.G. Kondev, R.V.F. Janssens, C.J. Lister, T.L. Khoo, I. Ahmad, C.N. Davids, T. Lauritsen, D. Seweryniak, S. Zhu *Argonne National Laboratory*

> D.J. Jenkins, P. Raddon, R. Wadsworth University of York

> > G. Jones Univ. of Liverpool

A.J. Larabee, N. Liechty Greenville College

> S.M. Fischer Univ. of DePaul

S.J. Freeman Univ. of Manchester

