Application of the Adiabatic Self-Consistent Collective Coordinate (ASCC) Method to Shape Coexistence/ Mixing Phenomena

Nobuo Hinohara (Kyoyo) Takashi Nakatsukasa (RIKEN)
Masayuki Matsuo (Niigata) Kenichi Matsuyanagi (Kyoto)

Microscopic Description of Nuclear Large－Amplitude Collective Motion by Means of
 the Adiabatic Self－Consistent Collective Coordinate Method

The major part of this thesis will appear in Prog．Theor．Phys． Jan． 2008 within a few days

Sunny Field
Life lively grows
Hinohara Nobuô
日野原 伸生
doctoral dissertation defense

Shape coexistence in N~Z~40 region

Fischer et al. Phys.Rev.C67 (2003) 064318.

\square oblate-prolate shape coexistence
\square oblate ground state
\square shape coexistence/mixing

Skyrme-HFB: Yamagami et al. Nucl.Phys.A693 (2001) 579.

Many-Body Tunneling between Different Vacua

Basic question

Why localization is possible for such a low barrier ?!

Prolate

Main points

I am going to report the first application of
the microscopic theory of large amplitude collective motion, based on the time-dependent mean-field (TDHFB) theory, to real nuclear structure phenomena in nuclei with superfluidity.

0
Coexistence/mixing of oblate and prolate shapes is a typical phenomenon of large amplitude collective motion.

Main points

In contrast to the GCM, collective coordinate and momentum are microscopically derived; i.e., self-consistently extracted from huge-dimensional TDHFB phase space.

In ${ }^{\mathbf{6 8}} \mathrm{Se}$ and ${ }^{\mathbf{7 2}} \mathrm{Kr}$, the collective paths, connecting the oblate and prolate minima, run in the triaxially deformed region.

Collective paths obtained by means of the ASCC method

Comparison with the axially symmetric path

Collective coordinate q

Main points

The collective Hamiltonian, derived microscopically, is quantized and excitation spectra, $\mathbf{E} 2$ transitions and quadrupole moments are evaluated for the first time.

The result indicates that the oblate and prolate shapes are strongly mixed at $\mathrm{I}=0$, but the mixing rapidly decreases with increasing angular momentum.

After a long history (more than 30 years), a way for wide applications of large-amplitude theory
 is now open.
 $$
\delta\langle\phi(q, p)| i \hbar \frac{\partial}{\partial t}-H|\phi(q, p)\rangle=0 .
$$

SCC and quasiparticle SCC

Marumori-Maskawa-SakataKuriyama, Yamamura, Matsuo, Shimizu-Takada, and many colleagues, reviewed in Prog. Theor. Phys. Supplement 141 (2001).

$$
\begin{aligned}
|\phi(q, p)\rangle & =e^{i \hat{G}(q, p)}\left|\phi_{0}\right\rangle \\
\hat{G}(q, p) & =\sum G_{m n}\left(\eta^{*}\right)^{m} \eta^{n} \\
\eta & =\frac{1}{\sqrt{2}}(q+i p)
\end{aligned}
$$

ATDHF and ATDHFB

Villars, Kerman-Koonin, Brink, Rowe-Bassermann, BarangerVeneroni,
Goeke-Reinhard, Bulgac-Klein-Walet, Giannoni-Quentin, DobaczewskiSkalski and many colleagues, reviewed in G. Do Dang, A. Klein and N.R. Walet, Phys.

$$
|\phi(q, p)\rangle=e^{i p \hat{Q}(q)}|\phi(q)\rangle
$$

Time dependent mean-field

$$
\begin{gathered}
q+\delta q \\
\begin{array}{c}
\text { collecive coordinate } \mathbf{q} \\
\text { collective momentum } \mathbf{p}
\end{array} \quad \frac{\partial}{\partial t} \Rightarrow \dot{q} \frac{\partial}{\partial q}+\dot{p} \frac{\partial}{\partial p} \\
|\phi(q, p)\rangle=e^{i p \hat{Q}(q)}|\phi(q)\rangle \begin{array}{c}
\text { Adiabatic expansion } \\
\text { (ATDHFB) }
\end{array} \\
|\phi(q+\delta q)\rangle=(1-i \delta q \hat{P}(q))|\phi(q)\rangle
\end{gathered}
$$

Find an optimum direction at every point of q

ASCC Basic Equations

```
Moving-frame HFB equation
```

$$
\delta\langle\phi(q)| \hat{H}_{M}(q)|\phi(q)\rangle=0 \quad \begin{array}{cc}
\text { moving-frame Hamiltonian } & \left.\hat{H}_{M}(q)=\hat{H}-\lambda(q) \hat{N}-\frac{\partial V}{\partial q} \hat{Q}(q)\right)
\end{array}
$$

Local harmonic equations (moving-frame QRPA equations)
Not included in HFB

$$
\delta\langle\phi(q)|\left[\hat{H}_{M}(q), \hat{Q}(q)\right]-\frac{1}{i} B(q) \hat{P}(q)|\phi(q)\rangle=0 \quad \text { (from 1st-order in } \mathrm{p} \text {) }
$$

$$
\delta\langle\phi(q)|\left[\hat{H}_{M}(q), \frac{1}{i} \hat{P}(q)\right]-C(q) \hat{Q}(q)-\frac{\partial \lambda}{\partial q} \hat{N} \quad \text { (from 2nd-order in } \mathrm{p} \text {) }
$$

$$
-\frac{1}{2 B(q)}\left[\left[\hat{H}_{M}(q),(\hat{H}-\lambda(q) \hat{N})_{a a, a^{\dagger} a^{\dagger} \mathrm{part}}\right], \hat{Q}(q)\right]|\phi(q)\rangle=0
$$

Collective Hamiltonian

$$
\text { Terms not included in QRPA } \longleftarrow C(q)=\frac{\partial^{2} V}{\partial q^{2}}+\frac{1}{2 B(q)} \frac{\partial B}{\partial q} \frac{\partial V}{\partial q}
$$

$$
\hat{P}(q)|\phi(q)\rangle=i \frac{\partial}{\partial q}|\phi(q)\rangle
$$

$$
\begin{aligned}
\mathcal{H}(q, p, N) & =\langle\phi(q, p, N)| \hat{H}|\phi(q, p, N)\rangle \\
& =V(q)+\frac{1}{2} B(q) p^{2}+\lambda(q) n
\end{aligned}
$$

Canonical variable conditions

$$
\left\{\begin{array}{c}
\langle\phi(q)|[\hat{Q}(q), \hat{P}(q)]|\phi(q)\rangle=i \\
\langle\phi(q)|[\hat{\Theta}(q), \hat{N}]|\phi(q)\rangle=i
\end{array}\right.
$$

Basic Scheme of the ASCC method (1)

1st Step: Solve ASCC equations and find collective path.

An important remark

The ASCC method was proposed in
M. Matsuo, T. Nakatsukasa and K. Matsuyanagi ,

Prog. Theor. Phys. 103 (2000) 959.
Quite recently, it was found that its basic equations are invariant against gauge transformations associated with pairing correlations.

$$
|\phi(q, p, \varphi, n)\rangle=e^{-i \varphi \tilde{N}} e^{i p \hat{Q}(q)} e^{i n \hat{\Theta}(q)}|\phi(q)\rangle
$$

Gauge invariant ASCC method.

Choosing an appropriate gauge fixing condition, numerical instabilities encountered previously are now completely removed.
N. Hinohara et al., Prog. Theor. Phys. 117 (2007) 451

- Triaxial deformation connects two local minima
\square Enhancement of the collective mass and Mol by the quadrupole pairing due to the time-odd pair field

Prog.Theor.Phys.115(2006)567.

Collective potential

Collective mass

Moment of Inertia

\square Dynamical symmetry breaking of the path

- Triaxial degrees of freedom: important
- Enhancement of the collective mass and Mol by the quadrupole pairing

Basic Scheme of the ASCC Method (2)

2nd Step: Requantize the collective Hamiltonian.

$$
p \rightarrow \frac{\hbar}{i} \frac{\partial}{\partial q}, \quad I_{i} \rightarrow \hat{I}_{i},
$$

Collective wave function

$$
\begin{aligned}
\Psi_{I M k}(q, \Omega) & =\sum_{K=-I}^{I} \Phi_{I K k}^{\prime}(q) \sqrt{\frac{2 I+1}{8 \pi^{2}}} \mathscr{D}_{M K}^{I}(\Omega) \\
& =\sum_{K=0}^{I} \Phi_{I K k}(q)\langle\Omega \mid I M K\rangle .
\end{aligned}
$$

Collective Schrodinger eq.

$$
\left(-\frac{1}{2} \frac{\partial^{2}}{\partial q^{2}}+\sum_{i=1}^{3} \frac{\hat{I}_{i}^{2}}{2 \mathcal{J}_{i}(q)}+V(q)\right) \Psi_{I M k}(q, \Omega)=E_{I, k} \Psi_{I M k}(q, \Omega)
$$

Excitation spectra of ${ }^{68} \mathrm{Se}$

\square two rotational bands
$\square 0_{2}{ }^{+}$state
\square quadrupole pairing lowers ex.energy
() ...B(E2) $e^{2} \mathrm{fm}^{4}$
effective charge: $\mathbf{e}_{\text {pol }}=0.904$
EXP : Fischer et al., Phys.Rev.C67 (2003) 064318.

Collective wave functions in ${ }^{68} \mathrm{Se}$

$\square \mathrm{I}=0$: oblate and prolate shapes are strongly mixed via triaxial degree of freedom
g ground band: mixing of different K components, excited band: $\mathrm{K}=0$ dominant
\square oblate-prolate mixing: strong in 0^{+}states, decreases as angular momentum increases

Excitation Spectra of ${ }^{72} \mathrm{Kr}$

\square two rotational bands
\square small inter-band $B(E 2)$: shape mixing rather weak
() ...B(E2) $\mathrm{e}^{2} \mathrm{fm}^{4}$
EXP : Fischer et al., Phys.Rev.C67 (2003) 064318, Bouchez, et al., Phys.Rev.Lett. 90 (2003) 082502. Gade, et al., Phys.Rev.Lett. 95 (2005) 022502, 96 (2006) 189901

Collective wave functions in ${ }^{72} \mathrm{Kr}$

Spectroscopic quadrupole moments

Probabilities of the Oblate and Prolate Components

Summary

For the first time, excitation spectra and E2 properties were evaluated quantizing the collective Hamiltonian derived by the ASCC method

The result indicates interesting properties of the oblate-prolate shape mixing dynamics, like decline of mixing with increasing angular momentum.

Wide applications can be envisaged in the coming years

