

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Fuel cell related materials using in situ neutron diffraction

James W. Richardson, Jr. Intense Pulsed Neutron Source Argonne National Laboratory

Neutrons for Materials Science and Engineering - ASM Educational Symposium

Overview

Ceramic membranes

- Fuel cell electrodes and electrolytes
- Water dissociation
- Gas separation

Materials properties and role of neutron diffraction

- Bulk phase composition
- Mixed ionic/electronic conductivity cation and oxygen vacancies
- pO_2 gradients gas mixtures to control pO_2 on both sides of membranes
- Kinetics time-resolved studies

Examples with current instrumentation

- SFC2 Sr₂(Fe,Co)₃O_{6.5+ δ}
- LSFC $(La,Sr)_1(Fe,Co)_2O_{6-\delta}$
- CY20 $Ce_{0.8}Y_{0.2}O_{1.9-\delta}$

Future prospects

- Higher neutron flux more detail from each point, shorter runs
- Higher spatial resolution
- New analysis capabilities

Mixed-conducting ceramic membranes

Technologically important membranes with unique properties

- High oxygen/hydrogen conductivity along with electronic conductivity
- Long-term structural stability under steep pO₂ gradients
- Typically perovskite-based oxides with oxygen vacancies
- Typical dimensions: 1-3 mm thick (future applications require 1-100 μm)

Cross-cutting research opportunities

- Understand bulk and surface ionic transport in insulating and electronically-conducting materials
- Learn to tailor the properties of materials
- Achieve chemical and thermal stability and surface catalytic properties while maintaining the required transport

Applications

- Solid-oxide fuel cells: e.g., $Ce_{0.8}Y_{0.2}O_{1.9-\delta}$, (La,Sr)(Fe,Co)O_{3- δ}
- Gas separation: e.g., Sr(Fe,Co)O_{3- δ}, (La,Sr)₃(Fe,Co)₂O_{3- δ}
- Hydrogen production: e.g., $Ba(Ce_{0.7}Zr_{0.2}Yb_{0.1})O_{3-\delta}$

Solid oxide fuel cells and water dissociation

Solid oxide fuel cells

- Multi-component assemblies that generate electricity from chemical dissociation
- Wide variety of applications and materials

Water dissociation

- Shifts water decomposition reaction toward dissociation $H_2O = H_2 + \frac{1}{2}O_2$
- e.g., $Ba(Ce_{0.7}Zr_{0.2}Yb_{0.1})O_{3-\delta}$ proton conductor

SOFC components

Complex electrochemistry

- Electrodes "painted" on electrolyte

Cathode

- Reduction, dissociation of O_2
- Operates at comparatively high pO2
- e.g., (La,Sr)(Fe,Co)O_{3- δ}

Anode

- Oxidation, dissociation of e.g. H_2O or H_2
- Operates at low pO₂
- e.g., Ni or Ni/stabilized zirconia

Electrolyte

- Ionic only or O^{2-}/H^+ mixed conduction
- Nanoscale connectivity critical
- Triple phase boundary ion, electron, gas conduction: need to avoid "blockages"
- e.g., Sm-, Gd-, Y-doped ceria

Gas separation

Typical application is conversion of CH_4 to syngas (CO + H_2)

- Membrane activated simply by passing gases across opposing surfaces
- $-pO_2$ gradient generated: $pO_2 = 10^{-0.5}$ (air), 10^{-18} (CH₄)
- Oxygen ions permeate through membrane to react with CH₄
- Single-phase, e.g., Sr(Fe,Co)O_{3- δ} and multi-phase, e.g., Sr₂(Fe,Co)₃O_{6.5- δ}

Membrane properties and role of neutron diffraction

Phase composition

- Most membranes have complex chemical composition
- Some membranes are multi-phase; may vary with pO₂
- Neutrons: bulk measurement tracks composition, phase separation, decomposition in situ

Oxygen vacancy concentration and distribution

- Control conducting properties

- Mechanical stress lattice parameter changes with cation reduction, gradient across membrane could jeopardize mechanical stability
- Neutrons: oxygen is strong scatterer defect location, concentration and ordering
- Neutrons: in situ lattice parameters and peak shapes resolve issues related to stress

Hydrogen / deuterium

- **Neutrons:** $b_{H} = -3.7$, $b_{D} = 6.7$, $b_{O} = 5.8$, $b_{Fe} = 9.5$, $b_{Sr} = 7.0$ fm

Surface oxygen exchange and bulk chemical diffusion

- Neutrons: Time-resolved variation in lattice parameter

Oxygen / hydrogen flux

- Measure gas conversion

Powder diffractometer (GPPD at IPNS)

d-range: 0.3 - 18 Å

Raw (vs. time-of-flight)

Built in 1981 - x70 intensity increase @ d = 2Å, 2θ = 145° (POWGEN3 ~50x current GPPD)

L-CH₄ moderator for cool spectrum Bandwidth chopper to control λ -range Supermirror neutron guide (85 x 22 mm) to boost flux Extended detector range for summing

Time-focused (vs. d)

Datasets in 5-mins to 6 hrs

Controlling atmosphere at high temperature

Phase composition: e.g., Sr₂Fe₂CoO_{6+x} (SFC2)

Candidate for syngas production

- Multi-phase mixed conductor with phase composition dependent on $\ensuremath{\text{pO}_2}$
- Chemical composition changes within each phase
- 15 60 minute runs; slow kinetics

Lattice strain across SFC2 membrane

Perovskite lattice expansion

– From Fe^{4+} to Fe^{3+} and Co^{3+} to Co^{2+} reduction

Possible mechanical strain in gradient

- Large changes for perovskite, layered phase
- Total, weighted by volume fractions, intermediate

Lattice parameters in gradient

- Minimal lattice expansion in gradient

Lattice Expansion during Reduction

SFC2: Effect of pO₂ gradient

Phase stability:

- Layered phase stable in oxidizing conditions
- Presumably important to mixed conducting properties
- Stability extended to lower pO₂ in gradient

Perovskite phase lattice parameter:

- Expansion from Fe⁴⁺ to Fe³⁺ and Co³⁺ to Co²⁺ reduction
- Larger changes in Fe-rich perovskite (with and without gradient)

^a B. J. Mitchell et al., *MRS Bulletin*, 35, 491-501 (2000). ^b Y. Li et al., *J. Am. Ceram. Soc.*, 88 (5), 1244-1252 (2005).

Oxygen vacancies: $La_{0.6}Sr_{2.4}Fe_{1.5}Co_{0.5}O_{7-\delta}$ (LSFC)

Ruddlesden-Popper (RP) series

 $-A_{n+1}B_nX_{3n+1} = AX + nABX_3$

n=2 member in Sr-La-Fe-Co-O system

- $(La_{0.2}Sr_{0.8})_3(Fe_{0.75}Co_{0.25})_2O_x$
- − *I*4*/mmm, a* = 3.87, *c* = 20.18 Å

Lattice expansion

- Fe⁴⁺, Co³⁺ in air, Fe³⁺, Co³⁺ in reduced
- Lattice parameter changes anisotropic; magnitudes high, ±9 x 10⁻³

Oxygen vacancies

- Primarily on one oxygen site
- Variation: δ = 0.3-0.7

Y. Li et al., Solid State Ionics, in press (2007).

1.96

1.94

1.98

2.00

2.02

d spacing (Å)

2,04

2.06

2.08

2.10

- Measured as function of time (30 min. increments) and pO_2 (10^{-0.5} to 10⁻²⁰)

LSFC: **Response to low pO**₂

LSFC: **Response in pO₂ gradient**

LSFC: Calculated pO₂ profile across membrane

Peak from static measurement used as template to reproduce peak profiles in dynamic mode

- From static measurements, each pO₂ value corresponds to unique peak position
- Projected peak profiles for two possible pO_2 gradients not at all representative of actual profile
- Calculated profile suggests very strong gradient at reducing surface

Proprietary coatings typically used on surface

LSFC: *Microstructure of LSFC after neutron experiment*

Membrane intact after experiment - ~10 hrs in gradient Micrographs of air and methane surfaces

- Methane (reducing) surface degraded

Air side

Methane side

Kinetics: Solid-oxide fuel cell electrolyte: Ce_{0.8}Y_{0.2}O_{1.9-δ} (CY20)

Well-studied material

- Intrinsic vacancies from Y-doping; Ce4+, Y3+
- Extrinsic vacancies generated under reduction; some Ce4+ to Ce3+
- Ionic conductor in oxidizing environment
- Electronic conductor in reducing
- Some degree of mixed conduction in between

Behavior under reduction

- No lattice parameter change down to $log(pO_2) = -11$
- Expansion at log(pO2) = -14, -18

Gradient

- -0.5 |CY20| -18: shift to air value
- -5.3 |CY20| -18: near -18 value

Switch-like behavior

- Minor change on oxidizing side
- In and out of mixed-conducting regime?

Kinetics of CY20 reduction

Time-resolved lattice parameter evolution

- Based on linear relationship between lattice parameter and oxygen vacancy concentration
- Parameter plotted is fraction of progress from start to finish

Kinetics parameters

- K_{ex}: surface oxygen exchange constant
- D_{chem}: bulk diffusion coefficient

Static measurements

- Traditional relaxation
- (I): log(pO₂) = -11 to -14
- (II): log(pO₂) = -14 to -18

Gradient measurements

- Not traditional relaxation
- Model not known, although behavior similar
- (III): log(pO₂) = -0.5 |CY20| -18.0
- (IV): log(pO₂) = -5.3 |CY20| -18.0

Trends

- $\rm K_{ex}$ doesn't change; $\rm D_{chem}$ increases with increasing $\rm pO_2$

Li, Maxey, Richardson, J. Am. Ceram. Soc. (2007) in print.

pO₂ gradient progression in CY20

Future prospects in neutron powder diffraction

Higher flux

- More detail from each point, shorter runs
- Local structure changes
- Nanocrystalline components
- Chemical kinetics

Higher spatial resolution

- Multi-component systems
- Mapping across gradients
- Directly probe interfaces

Electrode/Membrane Design

Very challenging. Electrodes need to support several percolation networks: electronic, ionic, fuel/oxidizer/product access.

From BES Workshop on Basic Research for Hydrogen Production, Storage, and Use

New analysis capabilities - e.g. MMM

Modified Maximum entropy with Monte carlo (MMM)

- Developed by Ryoji Kiyanagi (IPNS-ANL)

Methodology

- Utilizes integrated intensities of reflections
- Density is described as continuous distribution, not discrete atomic positions
- Nuclear density is adjusted to minimize constraint equation
- Find most disordered representation consistent with data

Application to ceramic membranes

- Oxygen and/or cation vacancies and oxygen migration
- Local coordination often deviates significantly from octahedral
- Up to 5-10% of oxygens de-localized

Summary

Current neutron powder diffraction instrumentation can probe:

- Phase composition
- Lattice expansion / strain
- Oxygen / hydrogen vacancy concentration
- Diffusion kinetics

Future instrumentation may probe:

- 1-100 µm thick membranes
- Structural relaxation kinetics local structure changes
- Distributions within thin membranes spatially resolved

Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357

