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Overview

Ceramic membranes
– Fuel cell electrodes and electrolytes
– Water dissociation
– Gas separation

Materials properties and role of neutron diffraction
– Bulk phase composition
– Mixed ionic/electronic conductivity - cation and oxygen vacancies
– pO2 gradients - gas mixtures to control pO2 on both sides of membranes
– Kinetics - time-resolved studies

Examples with current instrumentation
– SFC2 - Sr2(Fe,Co)3O6.5+δ

– LSFC - (La,Sr)1(Fe,Co)2O6-δ

– CY20 - Ce0.8Y0.2O1.9-δ

Future prospects
– Higher neutron flux - more detail from each point, shorter runs
– Higher spatial resolution
– New analysis capabilities
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Mixed-conducting ceramic membranes

Technologically important membranes with unique properties
– High oxygen/hydrogen conductivity along with electronic conductivity
– Long-term structural stability under steep pO2 gradients
– Typically perovskite-based oxides with oxygen vacancies
– Typical dimensions: 1-3 mm thick (future applications require 1-100 µm)

Cross-cutting research opportunities
– Understand bulk and surface ionic transport in insulating and electronically-conducting 

materials
– Learn to tailor the properties of materials
– Achieve chemical and thermal stability and surface catalytic properties while maintaining 

the required transport
Applications

– Solid-oxide fuel cells: e.g., Ce0.8Y0.2O1.9-δ, (La,Sr)(Fe,Co)O3- δ

– Gas separation: e.g., Sr(Fe,Co)O3-δ, (La,Sr)3(Fe,Co)2O3-δ

– Hydrogen production: e.g., Ba(Ce0.7Zr0.2Yb0.1)O3- δ
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Solid oxide fuel cells
– Multi-component assemblies that 

generate electricity from chemical 
dissociation

– Wide variety of applications and 
materials

Water dissociation
– Shifts water decomposition reaction toward 

dissociation - H2O = H2 + 1/2O2

– e.g., Ba(Ce0.7Zr0.2Yb0.1)O3-δ proton conductor
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Solid oxide fuel cells and water dissociation
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SOFC components
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Synthesis of fine grain
electrodes:
�  Increase TPB length
�  Increase mass exchange
   at grain boundaries

Complex electrochemistry
– Electrodes “painted” on electrolyte

Cathode
– Reduction, dissociation of O2

– Operates at comparatively high pO2

– e.g., (La,Sr)(Fe,Co)O3-δ

Anode
– Oxidation, dissociation of e.g. H2O or H2

– Operates at low pO2

– e.g., Ni or Ni/stabilized zirconia
Electrolyte

– Ionic only or O2-/H+ mixed conduction
– Nanoscale connectivity critical
– Triple phase boundary - ion, electron, gas 

conduction: need to avoid “blockages”
– e.g., Sm-, Gd-, Y-doped ceria
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Oxidizing
Atmosphere

Air (O2/N2)

Half reaction
1/2 O2 + 2 e- =  O2-

O2 O2

Reducing
Atmosphere

Methane (CH4)

Half reaction
CH4 + O2- =  CO + 

2H2 + 2e-
2e-

O2-

Overall reaction
CH4 + 1/2O2 → CO + 2H2 (syngas)

Typical application is conversion of CH4 to syngas (CO + H2)
– Membrane activated simply by passing gases across opposing surfaces
– pO2 gradient generated: pO2 = 10-0.5 (air), 10-18 (CH4)
– Oxygen ions permeate through membrane to react with CH4

– Single-phase, e.g., Sr(Fe,Co)O3-δ and multi-phase, e.g., Sr2(Fe,Co)3O6.5-δ

Gas separation

e-

O2-

CO+2H2 CO+2H2
(Syngas) (Syngas)

Ceramic Membrane

AirCH4 CH4
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Phase composition
– Most membranes have complex chemical composition
– Some membranes are multi-phase; may vary with pO2

– Neutrons: bulk measurement tracks composition,
phase separation, decomposition in situ 

Oxygen vacancy concentration and distribution
– Control conducting properties
– Mechanical stress - lattice parameter changes with cation reduction, gradient across 

membrane could jeopardize mechanical stability
– Neutrons: oxygen is strong scatterer - defect location, concentration and ordering
– Neutrons: in situ lattice parameters and peak shapes resolve issues related to stress

Hydrogen / deuterium
– Neutrons: bH = -3.7, bD = 6.7, bO = 5.8, bFe = 9.5, bSr = 7.0 fm

Surface oxygen exchange and bulk chemical
diffusion

– Neutrons: Time-resolved variation in lattice parameter
Oxygen / hydrogen flux

– Measure gas conversion 0.E+00
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Membrane properties and role of neutron diffraction
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Built in 1981 - x70 intensity increase @ d = 2Å, 2θ = 145°
(POWGEN3 ~50x current GPPD)

L-CH4 moderator for cool spectrum
Bandwidth chopper to control λ-range
Supermirror neutron guide (85 x 22 mm)                          
to boost flux 
Extended detector range for summing
d-range: 0.3 - 18 Å

Datasets in 5-mins to 6 hrs

Time-focused (vs. d)

Raw (vs. time-of-flight)

Powder diffractometer (GPPD at IPNS)
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Inconel
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reducing 
gas stream

Mass 
spectrometer Neutron 

diffraction

Controlled atmosphere furnace
– Gases include: Air, Ar, CO2, CO, CH4, 

H2/Ar,He
Automated flow control

– pO2 control on both sides of membrane
On-line mass spectrometer

– Allows composition analysis of gas 
effluents from either side

Work of Yaping Li (IPNS-ANL)

Controlling atmosphere at high temperature
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2-3-6
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Sr(Fe,Co)O3-ySr2(Fe,Co)3O6+x

Candidate for syngas production
– Multi-phase mixed conductor with phase composition 

dependent on pO2
– Chemical composition changes within each phase
– 15 - 60 minute runs; slow kinetics

d-spacing
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Phase composition: e.g., Sr2Fe2CoO6+x (SFC2)
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Perovskite lattice expansion
– From Fe4+ to Fe3+ and Co3+ to Co2+ reduction

Possible mechanical strain in gradient
– Large changes for perovskite, layered phase
– Total, weighted by volume fractions, 

intermediate
Lattice parameters in gradient

– Minimal lattice expansion in gradient

Lattice strain across SFC2 membrane

Lattice Expansion during Reduction
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a B. J. Mitchell et al., MRS Bulletin, 35, 491-501 (2000).
b Y. Li et al., J. Am. Ceram. Soc., 88 (5), 1244-1252 (2005).

236 Phase Fraction
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Phase stability:
– Layered phase stable in oxidizing conditions
– Presumably important to mixed conducting properties
– Stability extended to lower pO2 in gradient

Perovskite phase lattice parameter:
– Expansion from Fe4+ to Fe3+ and Co3+ to Co2+ reduction
– Larger changes in Fe-rich perovskite (with and without 

gradient)

Single phase SrFe0.2Co0.8Ox
– Good oxygen conductor
– Minimal lattice expansion in 

gradient
– Lean air on inside (RGA)

SFC2: Effect of pO2 gradient
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x = 6.7 
<Fe/Co>=3.6

x’ = 6.3
<Fe/Co>=3

Fe4+ Fe3+

Ruddlesden-Popper (RP) series
– An+1BnX3n+1 = AX + nABX3

n=2 member in Sr-La-Fe-Co-O system
– (La0.2Sr0.8)3(Fe0.75Co0.25)2Ox

– I4/mmm, a = 3.87, c = 20.18 Å

Lattice expansion
– Fe4+, Co3+ in air, Fe3+, Co3+ in reduced
– Lattice parameter changes anisotropic; 

magnitudes high, ±9 x 10-3

Oxygen vacancies
– Primarily on one oxygen site
– Variation: δ = 0.3-0.7

Rocksalt
layer

Perovskite 
layers

Rocksalt
layer

Oxygen vacancies: La0.6Sr2.4Fe1.5Co0.5O7-δ (LSFC)

Y. Li et al., Solid State Ionics, in press (2007).
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LSFC:
In air

Static
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Neutron diffraction measures:
– Structure including lattice parameters and 

oxygen vacancy concentration
– Measured as function of time (30 min. 

increments) and pO2 (10-0.5 to 10-20)

LSFC
La0.6Sr2.4Fe1.5Co0.5O7-δ

(Fe,Co)O6

La,Sr

oxygen vacancies
form here
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Static
p(O2)=10-16 atm

chemical
potential

1.94 1.96 1.98 2.00 2.02 2.04 2.06 2.08 2.10

C
ou

nt
s 

(n
or

m
al

iz
ed

)

d spacing (Å)

TOF NPD data

Change in pO2 produces:
– Shift in peak positions 
– Increase in oxygen vacancy concentration

LSFC:
Response to low pO2

LSFC
La0.6Sr2.4Fe1.5Co0.5O7-δ

(Fe,Co)O6

La,Sr

oxygen vacancies
form here
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Dynamic
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form here

Peak positions and oxygen vacancy 
content consistent with values in 
static air

– Suggests that majority of membrane has 
comparatively high effective pO2

– Performance limited by reaction at 
reducing side of membrane

LSFC:
Response in pO2 gradient
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LSFC:
Calculated pO2 profile across membrane

Peak from static measurement used as template to reproduce peak profiles in 
dynamic mode

– From static measurements, each pO2 value corresponds to unique peak position
– Projected peak profiles for two possible pO2 gradients not at all representative of actual 

profile
– Calculated profile suggests very strong gradient at reducing surface

Proprietary coatings typically used on surface
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LSFC:
Microstructure of LSFC after neutron experiment

(b)

(c)

Air
side

Methane
side

LSFC 
Ceramic

membrane

Membrane intact after experiment - ~10 hrs in gradient
Micrographs of air and methane surfaces

– Methane (reducing) surface degraded
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Kinetics: Solid-oxide fuel cell electrolyte: Ce0.8Y0.2O1.9-δ (CY20)

Well-studied material
– Intrinsic vacancies from Y-doping; Ce4+, Y3+

– Extrinsic vacancies generated under reduction; some Ce4+ to Ce3+

– Ionic conductor in oxidizing environment
– Electronic conductor in reducing
– Some degree of mixed conduction                                 

in between
Behavior under reduction

– No lattice parameter change                                     
down to log(pO2) = -11

– Expansion at log(pO2) = -14, -18
Gradient

– -0.5 |CY20| -18: shift to air value
– -5.3 |CY20| -18: near -18 value

Switch-like behavior
– Minor change on oxidizing side
– In and out of mixed-conducting                                             

regime?
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Kinetics of CY20 reduction

Time-resolved lattice parameter evolution
– Based on linear relationship between lattice parameter and 

oxygen vacancy concentration
– Parameter plotted is fraction of progress from start to finish

Kinetics parameters
– Kex: surface oxygen exchange                                       

constant
– Dchem: bulk diffusion coefficient

Static measurements
– Traditional relaxation
– (I): log(pO2) = -11 to -14
– (II): log(pO2) = -14 to -18

Gradient measurements
– Not traditional relaxation
– Model not known, although                                       

behavior similar
– (III): log(pO2) = -0.5 |CY20| -18.0
– (IV): log(pO2) = -5.3 |CY20| -18.0

Trends
– Kex doesn’t change; Dchem increases with increasing pO2
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I: Kex =  8.5 x 10-6 cm·s-1, Dchem = 6.7 x 10-6 cm2·s-1

II: Kex = 1.0 x 10-5 cm·s-1, Dchem = 7.9 x 10-8 cm2·s-1

Li, Maxey, Richardson, J. Am. Ceram. Soc. (2007) in print.
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Future prospects in neutron powder diffraction

Higher flux
– More detail from each point, shorter runs
– Local structure changes
– Nanocrystalline components
– Chemical kinetics

Higher spatial resolution
– Multi-component systems
– Mapping across gradients
– Directly probe interfaces
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Electrode/Membrane Design

Very challenging. Electrodes need to support several percolation
networks: electronic, ionic, fuel/oxidizer/product access.

2 Š5 nm

20 -50 
μm

From BES Workshop on Basic Research for Hydrogen 
Production, Storage, and Use
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New analysis capabilities - e.g. MMM

Modified Maximum entropy with Monte carlo (MMM)
– Developed by Ryoji Kiyanagi (IPNS-ANL)

Methodology
– Utilizes integrated intensities of reflections
– Density is described as continuous distribution, not discrete atomic positions
– Nuclear density is adjusted to minimize constraint equation
– Find most disordered representation consistent with data

Application to ceramic membranes
– Oxygen and/or cation vacancies and oxygen migration
– Local coordination often deviates significantly from octahedral
– Up to 5-10% of oxygens de-localized

C =
1
N

FMEM
i − Fobs

i 2

σ i
2

i =1

N

∑

La0.8Sr0.2Ga0.65Fe0.35O3-δ
at 1200°C

La0.2Sr0.8Fe0.8Cr0.2O3-δ
at RT
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Summary

Current neutron powder diffraction instrumentation can probe:
– Phase composition
– Lattice expansion / strain
– Oxygen / hydrogen vacancy concentration
– Diffusion kinetics

Future instrumentation may probe:
– 1-100 µm thick membranes
– Structural relaxation kinetics - local structure changes
– Distributions within thin membranes - spatially resolved

Work supported by the U.S. Department of Energy, Office of Science, 
Office of Basic Energy Sciences, under contract DE-AC02-06CH11357
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