Characterization of perovskite-YSZ Electrodes (by impregnation)

R. J. Gorte, J. M. Vohs, Y. Huang, F. Bidrawn, M. D. Gross & W. Wang University of Pennsylvania

and E. Paz, J. Law Franklin Fuel Cells

Tape casting with pore formers

Impregnate active components using

- 1. Aqueous salt solutions
- 2. Perovskite nanoparticles
- 3. Molten salts
- 4. Electrodeposition

Advantages:

- 1. Separate firing temperatures for YSZ and perovskite. Avoids solid-state reactions between perovskite & YSZ. JECS, 151 (2004) A646-A651; JECS, 152 (2005) A1347-53
- 2. Composite structure is not random; perovskite coats pores.
 a) High conductivity at loadings below the percolation threshold. JACerS, 87 (2004) 331-336
 - b) CTE is that of YSZ backbone.

JES, 151 (2004) A1592-1597

3. High-performance cathode-supported cells possible.

Cathode-supported cells enable alternative anodes:

LSF-YSZ(300 µm) | YSZ(75 µm) | ceramic anode Anode: metal-doped ceria in YSZ | LST

Porous

YSZ-active

region

ZSA

electrolyte

La_{0.3}Sr_{0.7}TiO₃ current collector

Performance of test cells limited by electrolyte:

1. Methods to fabricate LSM-YSZ cathodes

ESSL, 9 (2006) A237-240

Minimum Requirement: Need 30 to 40 wt% perovskite

- a) Nano-particles (●)
 20 wt% in butandiol
- b) Aqueous solutions (●)
 1.6 molar, nitrate solution
- c) Molten salts (•)

•Performance independent of LSM precursor

•Impregnated LSM indistinguishable from screen-printed LSM/YSZ

# of steps	1	2	3	4
Aqueous solutions	12 wt%	21 wt%	28 wt%	35 wt%
Molten salts	20 wt%	30 wt%		

20 steps required to reach 40 wt% with nanoparticles

d) Electrodeposition

- i) Form conductive carbon film by pyrolysis.
- ii) Electroplate LaMnO₃ (Therese & Kamath, Chem. Matl. 10 (1998) 3364.

iii) Key is to deposit evenly throughout the pores

We have successfully deposited Cu, Co, Cr, and Ni:

- 1. Cu: JECS, 153 (2006) A1539-43.
- 2. Cr: JECS, 153 (2006) A1386-90
- 3. Co: Electrochimica Acta, in press.
- 4. Ni: in preparation.

Impregnated electrodes can be cheap and manufacturable.

2. Modification of LSM-YSZ cathodes by Co and LaCoO₃

JECS, 153 (2006) A951-55.

a) Mixed perovskites: Sr_{0.2}La_{0.8}Mn_xCo_(1-x)O₃

After 900°C calcination, Sr_{0.2}La_{0.8}Mn_{0.8}Co_{0.2}O₃ slightly better than LSM

After 1200°C calcination, LSM showed the best performance; Co-containing cells showed increased ohmic contribution.

b) Co-modified LSM:

Electrodes with up to 10-wt% CoO_x were indistinguishable from that of LSM. No effect of adding CoO_x .

c) LSCo-modified LSM:

Cathode: LSM-YSZ

LSM-YSZ + LSCo

- 20%LSCo-80%LSM mixture very different from Sr_{0.2}La_{0.8}Mn_{0.8}Co_{0.2}O₃
- The LSCo-LSM mixture *dramatically* better than LSM.
- However, Co-containing cathodes were unstable.

Cathode (60 μm) | YSZ(45 μm) | Co-ceria-YSZ anode (600 μm)

3) Progress on understanding polarization activation in LSM-YSZ

ESSL, 7 (2004) A111-A114.

700°C, H₂/3%H₂O, OCV after applying current

Note: These changes are reversible. $\tau \sim 120$ minutes.

- 1) Dense LSM covers YSZ Gaps in LSM film caused by reduction
- 2) Performance limited by Gas can get to YSZ interface. oxygen diffusion.

Process driven by surface interactions between LSM & YSZ

LSM Particles on YSZ (100): Effect of calcination temperature

ESSL, 9 (2006) A237-240

850°C

1050°C

Movement of particles is reversible:

Calcination at 1150°C

Reduced in H₂ (10%H₂O) at 700°C 2 μ m x 2 μ m

1) LSM is stable in 10%H₂O-90% H₂ at 700°C.

2) Reducing LSM-YSZ electrode "activate" it.

Activation affected by calcination temperature JECS, 152 (2005) A1347-53.

 $R = 0.5 \Omega cm^2$ Not activated

-Zim Ω.cm²

R = 6.5 Ωcm² Activated by polarization

	Surface Area (m²/g)	
Porous YSZ without LSM	0.77±0.02	
LSM(850°C)-YSZ	2.53	
LSM(1250°C)-YSZ	0.38±0.02	
LSM(1250°C)-YSZ w/ 700°C reduction	0.78±0.03	

$$\delta = \frac{4 \varepsilon}{[\alpha (1-\varepsilon) \rho]}$$

ε= porosityα= surface areaρ= YSZ density

 $\alpha = 0.77 \text{ m}^2/\text{g} \Rightarrow \delta = 1.6 \text{ microns}$ $\alpha = 0.38 \text{ m}^2/\text{g} \Rightarrow \delta = 0.58 \text{ microns}$ $\Rightarrow \text{ dense LSM film on}$ YSZ pores

Consequences for electrolysis (anode environment is oxidizing):

JECS, in press.

285 mA/cm²; 700°C; 85%H₂-15%H₂O| air

4) Progress on understanding stability of LSF-YSZ

Observations:

1) See no additional phases with calcination temperature (Very different from LaCoO₃)

- 2) Formation of Zr-doped LaFeO₃ only above 1200°C
- 3) Zr doping is not a deactivation process.

Time & calcination temperature have similar effect:

3

Calcine @ 1100°C

 $\mathbf{t} = \mathbf{0} \mathbf{h}$

 R_{Ω} = expected value for YSZ electrolyte R_{P} = 2.5 to 0.1 Ω cm², *depends strongly* on *i* No hysteresis.

Effect of Calcination Temperature, Performance @ 700°C

0.5

Current density (A/cm²)

0

-0.5

n

0.3

0.5

0.7

0.9

Z Re, ohm*cm2

1.1

1.3

1.5

Effect of Calcination Temperature, Performance @ 800°C

Proposed deactivation mechanism:

Implications:

- 1. Deactivation is structural, not associated with interfacial reactions
- 2. Interlayers will probably not be effective
- 3. With LSM, activation of very good electrodes less important use same concepts for stabilizing LSF?